人教版部编版八年级数学下册期末试卷测试卷附答案.doc
《人教版部编版八年级数学下册期末试卷测试卷附答案.doc》由会员分享,可在线阅读,更多相关《人教版部编版八年级数学下册期末试卷测试卷附答案.doc(30页珍藏版)》请在咨信网上搜索。
人教版部编版八年级数学下册期末试卷测试卷附答案 一、选择题 1.函数y=中自变量x的取值范围是( ) A.x≠1 B.x≥0 C.x>0且x≠1 D.x≥0且x≠1 2.下列各组数中,能构成直角三角形的是( ) A.2,3,4 B.4,5,6 C.1,,2 D.5,11,13 3.下列命题: ①一组对边平行,另一组对边相等的四边形是平行四边形; ②对角线相等的四边形是矩形; ③对角线互相垂直平分的四边形是菱形; ④对角线互相垂直的矩形是正方形. 其中真命题的个数是( ) A.1 B.2 C.3 D.4 4.为了了解某校学生的课外阅读情况,随机抽查了10名学生一周阅读用时数,结果如下表,则关于这10名学生周阅读所用时间,下列说法中正确的是( ) 周阅读用时数(小时) 4 5 8 12 学生人数(人) 3 4 2 1 A.中位数是6.5 B.众数是12 C.平均数是3.9 D.方差是6 5.如图,平行四边形ABCD的对角线AC与BD相交于点O.CE⊥AD于点E,AB=2,AC=4,BD=8,则CE=( ) A. B. C. D. 6.如图,在平行四边形中,将沿折叠后,点恰好落在的延长线上的点处.若,,则的周长为( ) A. B. C. D. 7.□ABCD的对角线AC、BD相交于点O,AE平分∠BAD交BC于点E, 且∠ADC=60°,AB=BC,连接OE. 有下列结论:①∠CAD=30°; ②S□ABCD = AB·AC ; ③OB=AB; ④OE=AB.其中成立的有( ).A.1个 B.2个 C.3个 D.4个 8.一个容器内有进水管和出水管,开始4min内只进水不出水,在随后的8min内既进水又出水,第12min后只出水不进水.进水管每分钟的进水量和出水量每分钟的出水量始终不变,容器内水量(单位:L)与时间(单位:min)之间的关系如图所示. 根据图象有下列说法:①进水管每分钟的进水量为5L;②时,;③当时,;④当时,,或.其中正确说法的个数是( ) A.1个 B.2个 C.3个 D.4个 二、填空题 9.已知是实数,且满足,则的平方根是____________. 10.已知菱形的两条对角线长分别为1和4,则菱形的面积为______. 11.《九章算术》是我国古代重要的数学著作之一,其中记载了一道“折竹抵地”问题:今有竹高一丈,末折抵地,去本三尺,问折者高几何?译为:如图所示,中,求的长.在这个问题中,可求得的长为_________. 12.如阳,在矩形中,对角线、相交于点,点、分别是、的中点,若 cm,cm,则______ cm. 13.已知一次函数的图象过点,那么此一次函数的解析式为__________. 14.如图,在中,已知E、F、D分别是AB、AC、BC上的点,且,,请你添加一个________条件,使四边形AEDF是菱形. 15.正方形,,,…按如下图所示的方式放置.点,,,…和点,,,…分别在直线和轴上,已知正方形的边长为,正方形边长为,则的坐标是______. 16.如图,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,将边AC A沿CE翻折,使点A落在AB上的点D处;再将边 BC沿CF翻折,使点B落在CD的延长线上的点B'处,两条折痕与斜边AB分别交于点 E、F,则△B'FC 的面积为______________. 三、解答题 17.计算 (1) (2) (3) 18.如图,货船和快艇分别从码头A同时出发.其中,货船沿着北偏西54°方向以15海里/小时的速度匀速航行,快艇沿着北偏东36°方向以36海里/小时的速度航行,1小时后.两船分别到达B、C点.求B、C两点之间的距离. 19.如图,在4×4的网格直角坐标系中(图中小正方形的边长代表一个单位长),已知点A(﹣1,﹣1),B(2,2). (1)线段AB的长为 ; (2)在小正方形的顶点上找一点C,连接AC,BC,使得S△ABC=. ①用直尺画出一个满足条件的△ABC; ②写出所有符合条件的点C的坐标. 20.如图,在▱ABCD中,过点D作DF⊥BC于点F,点E在边AD上,AE=CF,连结BE、CE. (1)求证:四边形BFDE是矩形. (2)若DE=AB,∠ABC=130°,求∠DEC的度数. 21.阅读理解题: 定义:如果一个数的平方等于﹣1,记为i2=﹣1,这个数i叫做虚数单位,把形如a+bi(a,b为实数)的数叫做复数,其中a叫这个复数的实部,b叫做这个复数的虚部,它的加、减、乘、除运算与代数式的运算类似. 例如:计算:(2﹣i)+(5+3i)=(2+5)+(﹣1+3)i=7+2i; (1+i)×(2﹣i)=1×2﹣i+2×i﹣i2=2+(﹣1+2)i+1=3+i; 根据以上信息,完成下列问题: (1)填空:i3= ,i4= ,i+i2+i3+…+i2021= ; (2)计算:(1+i)×(3﹣4i)﹣(﹣2+3i)(﹣2﹣3i); (3)已知a+bi=(a,b为实数),求的最小值. 22.亮亮奶茶店生产、两种奶茶,由于地处旅游景点区域,每天都供不应求,经过计算,亮亮发现种奶茶每杯生产时间为4分钟,种奶茶每杯生产时间为1分钟,由于原料和运营时间限制,每天生产的总时间为300分钟. (1)设每天生产种奶茶杯,生产种奶茶杯,求与之间的函数关系式; (2)由于种奶茶比较受顾客青睐,亮亮决定每天生产种奶茶不少于73杯,那么不同的生产方案有多少种? (3)在(2)的情况下,若种奶茶每杯利润为3元,种奶茶每杯利润为1元,求亮亮每天获得的最大利润. 23.定义:有一组对边相等且这一组对边所在直线互相垂直的凸四边形叫做“等垂四边形”. (提出问题) (1)如图①,四边形与四边形都是正方形,,求证:四边形是“等垂四边形”; (类比探究) (2)如图②,四边形是“等垂四边形”,,连接,点,,分别是,,的中点,连接,,.试判定的形状,并证明; (综合运用) (3)如图③,四边形是“等垂四边形”,,,则边长的最小值为________. 24.如图,在平面直角坐标系中,点的坐标为,点在轴正半轴上(),把线段绕点顺时针旋转得到线段,过点分别向轴,轴作垂线,垂足为,. (1)求四边形的面积; (2)若,求直线的表达式; (3)在(2)的条件下,点为延长线上一点,连接,作的平分线,交轴于点,若为等腰三角形,求点的坐标. 25.已知正方形与正方形(点C、E、F、G按顺时针排列),是的中点,连接,. (1)如图1,点在上,点在的延长线上, 求证:=ME,⊥.ME 简析: 由是的中点,AD∥EF,不妨延长EM交AD于点N,从而构造出一对全等的三角形,即 ≌ .由全等三角形性质,易证△DNE是 三角形,进而得出结论. (2)如图2, 在的延长线上,点在上,(1)中结论是否成立?若成立,请证明你的结论;若不成立,请说明理由. (3)当AB=5,CE=3时,正方形的顶点C、E、F、G按顺时针排列.若点在直线CD上,则DM= ;若点E在直线BC上,则DM= . 26.如图1,若是的中位线,则,解答下列问题: (1)如图2,点是边上一点,连接、 ①若,则 ; ②若,,连接,则 , , . (2)如图3,点是外一点,连接、,已知:,,,求的值; (3)如图4,点是正六边形内一点,连接、、,已知:,,,求的值. 【参考答案】 一、选择题 1.D 解析:D 【分析】 根据二次根式有意义的条件列出不等式,解不等式即可. 【详解】 解:由题意得,x≥0且x﹣1≠0, 解得:x≥0且x≠1, 故选:D. 【点睛】 本题考查的是函数自变量的取值范围,自变量的取值范围必须使含有自变量的表达式都有意义.当表达式的分母中含有自变量时,自变量取值要使分母不为零.当函数的表达式是偶次根式时,自变量的取值范围必须使被开方数不小于零. 2.C 解析:C 【分析】 根据勾股定理的逆定理对四组数据进行逐一判断即可. 【详解】 解:A、∵22 +32 ≠4 2 ,∴不能构成直角三角形; B、∵42 +52 ≠62 ,∴不能构成直角三角形; C、∵ ,∴能构成直角三角形; D、∵5 2 +11 2 ≠13 2 ,∴不能构成直角三角形. 故选C. 【点睛】 本题考查了用勾股定理的逆定理判断三角形的形状,即只要三角形的三边满足a 2 +b 2 =c 2 ,则此三角形是直角三角形. 3.B 解析:B 【解析】 【分析】 根据平行四边形、矩形、菱形和正方形的判定直接进行判断即可. 【详解】 解:①一组对边平行且相等的四边形是平行四边形,原命题是假命题; ②对角线相等的平行四边形是矩形,原命题是假命题; ③对角线互相垂直平分的四边形是菱形,是真命题; ④对角线互相垂直的矩形是正方形,是真命题; 故选:B. 【点睛】 本题主要考查命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理. 4.D 解析:D 【解析】 【分析】 根据平均数,中位数,众数和方差的意义分别对每一项进行分析即可得出答案. 【详解】 解:A、这10名学生周阅读所用时间从大到小排列,可得4、4、4、5、5、5、5、8、8、12,则这10名学生周阅读所用时间的中位数是:=5; B、这10名学生周阅读所用时间出现次数最多的是5小时,所以众数是5; C、这组数据的平均数是:(4×3+5×4+8×2+12)÷10=6; D、这组数据的方差是:×[(4-6)2+(4-6)2+(4-6)2+(5-6)2+(5-6)2+(5-6)2+(5-6)2+(8-6)2+(8-6)2+(12-6)2]=6; 故选:D. 【点睛】 本题考查了平均数,中位数,众数和方差的意义.平均数平均数表示一组数据的平均程度.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数);众数是一组数据中出现次数最多的数;方差是用来衡量一组数据波动大小的量. 5.C 解析:C 【分析】 先根据平行四边形的性质可得,再根据勾股定理的逆定理可得,然后利用勾股定理可得的长,最后利用三角形的面积公式即可得. 【详解】 解:四边形是平行四边形,, , , 是直角三角形,, 在中,, , , 解得, 故选:C. 【点睛】 本题考查了平行四边形的性质、勾股定理、勾股定理的逆定理等知识点,熟练掌握勾股定理的逆定理是解题关键. 6.D 解析:D 【解析】 【分析】 根据平行四边形的性质以及折叠的性质,即可得到,,再根据是等边三角形,即可得到的周长为. 【详解】 由折叠可得,, ∵四边形是平行四边形 ∴, 又∵, ∴, ∴, ∴, 由折叠可得, ∴ ∴是等边三角形, ∴的周长为, 故选:D. 【点睛】 本题考查了平行四边形的性质、轴对称图形性质以及等边三角形的判定,解题时注意折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等. 7.C 解析:C 【解析】 【分析】 由四边形ABCD是平行四边形,得到∠ABC=∠ADC=60°,∠BAD=120°,根据AE平分∠BAD,得到∠BAE=∠EAD=60°推出△ABE是等边三角形,由于AB=BC,得到AE=BC,得到△ABC是直角三角形,于是得到∠CAD=30°,故①正确;由于AC⊥AB,得到S▱ABCD=AB•AC,故②正确,根据AB=BC,OB=BD,且BD>BC,得到AB≠OB,故③错误;根据三角形的中位线定理得到OE=AB,故④正确. 【详解】 ∵四边形ABCD是平行四边形, ∴∠ABC=∠ADC=60°,∠BAD=120°, ∵AE平分∠BAD, ∴∠BAE=∠EAD=60° ∴△ABE是等边三角形, ∴AE=AB=BE, ∵AB=BC, ∴AE=BC, ∴∠BAC=90°, ∴∠CAD=30°,故①正确; ∵AC⊥AB, ∴S▱ABCD=AB•AC,故②正确, ∵AB=BC,OB=BD, ∵BD>BC, ∴AB≠OB,故③错误; ∵CE=BE,CO=OA, ∴OE=AB, 故④正确. 故①②④正确,共3个. 故选C 【点睛】 本题考查了平行四边形的性质,等边三角形的判定和性质,直角三角形的性质,平行四边形的面积公式,熟练掌握性质定理和判定定理是解题的关键. 8.C 解析:C 【分析】 根据图象可知进水的速度为5(L/min),再根据第10分钟时容器内水量为27.5L可得出水的速度,从而求出第12min时容器内水量,利用待定系数法求出4≤x≤12时,y与x之间的函数关系式,再对各个选项逐一判断即可. 【详解】 解:由图象可知,进水的速度为:20÷4=5(L/min), 故①说法正确; 出水的速度为:5−(27.5−20)÷(10−4)=3.75(L/min), 第12min时容器内水量为:20+(12−4)×(5−3.75)=30(L), 故③说法正确; 15÷3=3(min),12+(30−15)÷3.75=16(min), 故当y=15时,x=3或x=16,故说法④错误; 设4≤x≤12时,y与x之间的函数关系式为y=kx+b, 根据题意,得, 解得,所以4≤x≤12时, y=x+15,故说法②正确. 所以正确说法的个数是3个. 故选:C. 【点睛】 此题考查了一次函数的应用,解题时首先正确理解题意,利用数形结合的方法即可解决问题. 二、填空题 9. 【解析】 【分析】 根据二次根式有意义的条件可求得x,然后求得y,最后求平方根即可. 【详解】 解:∵是实数,且满足, ∴并且, 解得,此时, ∴,其平方根是. 故答案为:. 【点睛】 本题考查二次根式有意义的条件,求一个数的平方根,二次根式的化简,理解二次根式有意义被开方数非负是解题关键. 10.2 【解析】 【分析】 利用菱形的面积等于对角线乘积的一半求解. 【详解】 解:菱形的面积=×1×4=2. 故答案为2. 【点睛】 本题考查了菱形的性质:熟练掌握菱形的性质(菱形具有平行四边形的一切性质; 菱形的四条边都相等; 菱形的两条对角线互相垂直,并且每一条对角线平分一组对角). 记住菱形面积=ab(a、b是两条对角线的长度). 11.A 解析:55 【解析】 【分析】 设AC=x,可知AB=10-x,再根据勾股定理即可得出结论. 【详解】 解:设AC=x, ∵AC+AB=10, ∴AB=10-x. 在Rt△ABC中,∠ACB=90°, ∴AC2+BC2=AB2,即x2+32=(10-x)2 解得:x=4.55, 即AC=4.55. 故答案为:4.55. 【点睛】 本题考查的是勾股定理的应用,在应用勾股定理解决实际问题时勾股定理与方程的结合是解决实际问题常用的方法,关键是从题中抽象出勾股定理这一数学模型,画出准确的示意图.领会数形结合的思想的应用. 12.B 解析:5 【分析】 先由勾股定理求出BD,再得出OD,证明EF是△AOD的中位线,即可得出结果. 【详解】 ∵四边形ABCD是矩形, ∴∠BAD=90°,OD=BD,AD=BC=8, ∴, ∴OD=5cm, ∵点E、F分别是AO、AD的中点, ∴EF是△AOD的中位线, ∴EF=OD=2.5cm; 故答案为2.5. 【点睛】 本题考查了矩形的性质、勾股定理以及三角形中位线定理;熟练掌握菱形的性质,证明三角形中位线是解决问题的关键. 13. 【分析】 用待定系数法即可得到答案. 【详解】 解:把代入得,解得, 所以一次函数解析式为. 故答案为 【点睛】 本题考查求一次函数解析式,解题的关键是熟练掌握待定系数法. 14.(不唯一) 【分析】 先根据平行四边形的判定可得四边形是平行四边形,再根据菱形的判定即可得. 【详解】 解:, 四边形是平行四边形, 则当时,平行四边形是菱形, 故答案为:(不唯一). 【点睛】 本题考查了平行四边形和菱形的判定,熟练掌握菱形的判定方法是解题关键. 15.(63,64) 【分析】 由题意易得,然后把点的坐标代入直线求解,进而可得点,,…..;由此可得规律为,最后问题可求解. 【详解】 解:∵四边形,是正方形,且正方形的边长为,正方形边长为, ∴, ∴ 解析:(63,64) 【分析】 由题意易得,然后把点的坐标代入直线求解,进而可得点,,…..;由此可得规律为,最后问题可求解. 【详解】 解:∵四边形,是正方形,且正方形的边长为,正方形边长为, ∴, ∴,, ∵点….在直线上, ∴把点的坐标代入得:,解得:, ∴直线, 当x=3时,则有, ∴, 同理可得, ∵,…..; ∴, ∴; 故答案为. 【点睛】 本题主要考查正方形的性质及一次函数的应用,熟练掌握正方形的性质及一次函数的图象与性质是解题的关键. 16.【分析】 由题意可得AB=10,根据面积可得CE=4.8,根据勾股定理可求BE=6.4,由折叠可求∠ECF=45°,可得EC=EF=4.8,即可求BF的长,可求面积. 【详解】 解:∵Rt△ABC 解析: 【分析】 由题意可得AB=10,根据面积可得CE=4.8,根据勾股定理可求BE=6.4,由折叠可求∠ECF=45°,可得EC=EF=4.8,即可求BF的长,可求面积. 【详解】 解:∵Rt△ABC中,∠ACB=90°,AC=6,BC=8, ∴BA= =10, ∵将边AC沿CE翻折,使点A落在AB上的点D处, ∴∠AEC=∠CED,∠ACE=∠DCE, ∵∠AED=180°, ∴∠CED=90°,即CE⊥AB, ∵S△ABC= AB×EC=AC×BC, ∴EC=4.8, 在Rt△BCE中,BE==6.4, ∵将边BC沿CF翻折,使点B落在CD的延长线上的点B′处, ∴BF=B'F,∠BCF=∠B'CF, ∵∠BCF+∠B'CF+∠ACE+∠DCE=∠ACB=90°, ∴ECF=45°, 又CE⊥AB, ∴∠EFC=∠ECF=45°, ∴CE=EF=4.8, ∵BF=BE-EF=6.4-4.8=1.6, ∴△BFC的面积为:FB×EC=, 由翻折可知,△B'FC 的面积=△BFC的面积= 故答案为. 【点睛】 本题考查了折叠问题,勾股定理,根据折叠的性质求∠ECF=45°是本题的关键. 三、解答题 17.(1);(2);(3) 【分析】 (1)根据二次根式乘法法则计算即可; (2)根据二次根式运算法则进行计算即可; (3)利用完全平方公式和平方差公式计算即可. 【详解】 解:(1)原式, 解析:(1);(2);(3) 【分析】 (1)根据二次根式乘法法则计算即可; (2)根据二次根式运算法则进行计算即可; (3)利用完全平方公式和平方差公式计算即可. 【详解】 解:(1)原式, (2)原式 , (3)原式; 【点睛】 本题考查了二次根式的运算,解题关键是熟练运用二次根式运算法则和乘法公式进行计算.. 18.B、C两点之间的距离为海里 【分析】 根据题意可知,然后根据勾股定理计算即可. 【详解】 解:根据题意可知, 1小时后,海里,海里, 在中, 海里, ∴B、C两点之间的距离为海里. 【点睛】 本题考 解析:B、C两点之间的距离为海里 【分析】 根据题意可知,然后根据勾股定理计算即可. 【详解】 解:根据题意可知, 1小时后,海里,海里, 在中, 海里, ∴B、C两点之间的距离为海里. 【点睛】 本题考查了方向角以及勾股定理,读懂题意,得出是关键. 19.(1)3;(2)①见解析;②C1(2,﹣1),C2(﹣1,2),C3(﹣2,1),C4(1,﹣2). 【解析】 【分析】 (1)直接利用勾股定理求出AB的长度即可; (2)①根据三角形ABC的面积画 解析:(1)3;(2)①见解析;②C1(2,﹣1),C2(﹣1,2),C3(﹣2,1),C4(1,﹣2). 【解析】 【分析】 (1)直接利用勾股定理求出AB的长度即可; (2)①根据三角形ABC的面积画出对应的三角形即可; ②根据点C的位置,写出点C的坐标即可. 【详解】 解:(1)如图所示 在Rt△ACB中,∠P=90°,AP=3,BP=3 ∴ (2)①如图所示 Rt△ACB中,∠C=90°,AC=3,BC=3 ∴ ②C1(2,﹣1),C2(﹣1,2),C3(﹣2,1),C4(1,﹣2). 满足条件的三角形如图所示. C1(2,﹣1),C2(﹣1,2),C3(﹣2,1),C4(1,﹣2). 【点睛】 本题主要考查了勾股定理,三角形的面积,点的坐标,解题的关键在于能够熟练掌握相关知识点进行求解. 20.(1)见解析;(2)25° 【分析】 (1)由题意可证四边形DFBE是平行四边形,且DE⊥AB,可得结论; (2)根据平行四边形的性质求得∠ADC=130°,DE=CD,再利用等腰三角形的性质即可求 解析:(1)见解析;(2)25° 【分析】 (1)由题意可证四边形DFBE是平行四边形,且DE⊥AB,可得结论; (2)根据平行四边形的性质求得∠ADC=130°,DE=CD,再利用等腰三角形的性质即可求解. 【详解】 (1)证明:在▱ABCD中,AD∥BC,AD=BC, ∴ED∥BF. ∵ED=AD−AE,BF=BC−CF,AE=CF, ∴ED=BF. ∴四边形BFDE是平行四边形. ∵DF⊥BC, ∴∠DFB=90°, ∴四边形BFDE是矩形; (2)解:在▱ABCD中,AB=CD,∠ABC=∠ADC. ∵DE=AB,∠ABC=130°, ∴DE=CD,∠ADC=130°. ∴∠DEC=×(180°−130°)=25°. 【点睛】 本题考查了矩形的判定,平行四边形的性质,运用等腰三角形的判定和性质解决问题是本题的关键. 21.(1)﹣i,1,;(2)﹣i﹣6;(3)的最小值为25. 【解析】 【分析】 (1)根据题目所给条件可得i3=i2•i,i4=i2•i2计算即可得出答案; (2)根据多项式乘法法则进行计算,及题目所 解析:(1)﹣i,1,;(2)﹣i﹣6;(3)的最小值为25. 【解析】 【分析】 (1)根据题目所给条件可得i3=i2•i,i4=i2•i2计算即可得出答案; (2)根据多项式乘法法则进行计算,及题目所给已知条件即可得出答案; (3)根据题目已知条件,a+bi=4+3i,求出a、b,即可得出答案. 【详解】 (1)i3=i2•i=﹣1×i=﹣i, i4=i2•i2=﹣1×(﹣1)=1, 设S=i+i2+i3+…+i2021, iS=i2+i3+…+i2021+i2022, ∴(1﹣i)S=i﹣i2022, ∴S=, 故答案为﹣i,1,; (2)(1+i)×(3﹣4i)﹣(﹣2+3i)(﹣2﹣3i) =3﹣4i+3i﹣4i2﹣(4﹣9i2) =3﹣i+4﹣4﹣9 =﹣i﹣6; (3)a+bi====4+3i, ∴a=4,b=3, ∴=, ∴的最小值可以看作点(x,0)到点A(0,4),B(24,3)的最小距离, ∵点A(0,4)关于x轴对称的点为A'(0,﹣4),连接A'B即为最短距离, ∴A'B==25, ∴的最小值为25. 【点睛】 此题考查了实数的运算,以及规律型:数字的变化类,弄清题中的新定义是解本题的关键. 22.(1);(2)3种;(3)227元 【分析】 (1)依据每天生产的时间为300分钟列出函数关系式即可; (2)由种奶茶不少于73杯,种奶茶的杯数为非负数列不等式组求解即可; (3)列出利润与的函数关 解析:(1);(2)3种;(3)227元 【分析】 (1)依据每天生产的时间为300分钟列出函数关系式即可; (2)由种奶茶不少于73杯,种奶茶的杯数为非负数列不等式组求解即可; (3)列出利润与的函数关系式,然后依据一次函数的性质求解即可. 【详解】 (1)∵每天生产的时间为300分钟, 由题意得:, (2)由题意得: 解得: 为整数,,74,75 ∴不同的生产方案有3种. (3)设每天的利润为元,则 即 ,随的增大而减小 ∴当时,取最大值, 此时(元) 答:每天获得的最大利润为227元 【点评】 本题主要考查的是一次函数的应用,列出关于的不等式组是解题的关键. 23.(1)见解析;(2)△EFG是等腰直角三角形,理由见解析(3) 【分析】 (1)延长,交于点,先证,得,.结合,知,即可得.从而得证; (2)延长,交于点,由四边形是“等垂四边形”, 知,,从而得, 解析:(1)见解析;(2)△EFG是等腰直角三角形,理由见解析(3) 【分析】 (1)延长,交于点,先证,得,.结合,知,即可得.从而得证; (2)延长,交于点,由四边形是“等垂四边形”, 知,,从而得,根据三个中点知,,,,,据此得,,.由可得答案; (3)延长,交于点,分别取,的中点,.连接,,,由及.可得答案. 【详解】 解:(1)如图①,延长,交于点, 四边形与四边形都为正方形, ,,. . . ,. , , 即, . . 又, 四边形是“等垂四边形”. (2)是等腰直角三角形. 理由如下:如图②,延长,交于点, 四边形是“等垂四边形”, , ,, 点,,分别是,,的中点, ,,,, ,,. . 是等腰直角三角形. (3)延长,交于点,分别取,的中点,.连接,,, 则, 由(2)可知. 最小值为, 故答案为:. 【点睛】 本题是四边形的综合问题,解题的关键是掌握正方形的性质,全等三角形的判定与性质,三角形中位线定理及等腰直角三角形的性质等知识点. 24.(1);(2);(3)或或. 【解析】 【分析】 (1)连接,作,交的延长线于点,可知,,再根据,可得,又因为,得到,即可证明,所以可得,再计算的长度即可求解; (2)设,即可表示出、的长度,根据求 解析:(1);(2);(3)或或. 【解析】 【分析】 (1)连接,作,交的延长线于点,可知,,再根据,可得,又因为,得到,即可证明,所以可得,再计算的长度即可求解; (2)设,即可表示出、的长度,根据求出的值,即可得到点的坐标,再设直线的解析式为,将、两点的坐标代入即可; (3)设点坐标为,因为平分,所以,最后分三种情况进行讨论即可. 【详解】 (1)∵, ∴, 连接,作,交的延长线于点,如图, ∴, ∴, ∵, 即, 在中,, ∵ , ∴, 又∵, ∴, ∵, ∴, ∵, ∴, ∴, ∴, ∴, ∴; (2) 设, 由(1)可知,, ∵, ∴, ∵与都是直角三角形,且, ∴, ∴, ∴,, ∵, ∴, 解得, ∴, 又∵, 设直线的解析式为, 则,解得, ∴直线的解析式为; (3)设点坐标为, ∵平分, ∴, ①当时,则, ∴, ∴与重合, ∴; ②当时, 过点作,垂足为, 则,, 又∵,, ∴, ∴, ∴, 在中,由勾股定理可求得, ∴, 在中,, 在中,, ∴, ∴, 解得, ∴; ③当时,延长交轴于点, ∵,且 ∴, ∴, 过点作,垂足为, 则,, ∴, ∴, ∴, 在中,由勾股定理可求得, ∴, ∴, ∵, 设直线的解析式为, 则,解得, ∴直线解析式为, 当时,解得, ∴. 综上所述,当为等腰三角形时,点坐标为或或. 【点睛】 本题是四边形的综合题,考查了矩形的性质、三角形内角和定理、全等三角形的性质和判定、勾股定理、待定系数法求函数解析式等知识点,解题要注意分类讨论的思想. 25.(1)等腰直角;(2)结论仍成立,见解析;(3)或,. 【分析】 (1)结论:DM⊥EM,DM=EM.只要证明△AMH≌△FME,推出MH=ME,AH=EF=EC,推出DH=DE,因为∠EDH=90 解析:(1)等腰直角;(2)结论仍成立,见解析;(3)或,. 【分析】 (1)结论:DM⊥EM,DM=EM.只要证明△AMH≌△FME,推出MH=ME,AH=EF=EC,推出DH=DE,因为∠EDH=90°,可得DM⊥EM,DM=ME; (2)结论不变,证明方法类似; (3)分两种情形画出图形,理由勾股定理以及等腰直角三角形的性质解决问题即可; 【详解】 解:(1) △AMN ≌ △FME ,等腰直角. 如图1中,延长EM交AD于H. ∵四边形ABCD是正方形,四边形EFGC是正方形, ∴,, ∴, ∴, ∵,, ∴△AMH≌△FME, ∴,, ∴, ∵, ∴DM⊥EM,DM=ME. (2)结论仍成立. 如图,延长EM交DA的延长线于点H, ∵四边形ABCD与四边形CEFG都是正方形, ∴,, ∴AD∥EF,∴. ∵,, ∴△AMF≌△FME(ASA), … ∴,,∴. 在△DHE中,,,, ∴,DM⊥EM. (3)①当E点在CD边上,如图1所示,由(1)的结论可得三角形DME为等腰直角三角形,则DM的长为,此时,所以; ②当E点在CD的延长线上时,如图2所示,由(2)的结论可得三角形DME为等腰直角三角形,则DM的长为,此时 ,所以 ; ③当E点在BC上是,如图三所示,同(1)、(2)理可得到三角形DME为等腰直角三角形, 证明如下:∵四边形ABCD与四边形CEFG都是正方形, 且点E在BC上 ∴AB//EF,∴, ∵M为AF中点,∴AM=MF ∵在三角形AHM与三角形EFM中: , ∴△AMH≌△FME(ASA), ∴,,∴. ∵在三角形AHD与三角形DCE中: , ∴△AHD≌△DCE(SAS), ∴, ∵∠ADC=∠ADH+∠HDC=90°, ∴∠HDE=∠CDE+∠HDC=90°, ∵在△DHE中,,,, ∴三角形DME为等腰直角三角形,则DM的长为,此时在直角三角形DCE中 ,所以 【点睛】 本题考查的是正方形的性质、全等三角形的判定定理和性质定理以及直角三角形的性质,灵活运用相关的定理、正确作出辅助线是解题的关键. 26.(1)①4;②2,3,10;(2);(3)36 【分析】 (1)①由三角形的中位线定理可得DE∥BC,AE=EC,AD=BD,可求S△PDE=S△BDE=1,即可求解;②由三角形的中位线定理可得DE 解析:(1)①4;②2,3,10;(2);(3)36 【分析】 (1)①由三角形的中位线定理可得DE∥BC,AE=EC,AD=BD,可求S△PDE=S△BDE=1,即可求解;②由三角形的中位线定理可得DE∥BC,AE=EC,AD=BD,可得S△PBD=S△APD=2,S△APE=S△PEC=3,即可求解; (2)连接AP,由三角形的中位线定理可得DE∥BC,AE=EC,AD=BD,可得S△PBD=S△APD=4,S△APE=S△PEC=5,可求S△ADE,即可求解; (3)先证△NFK是等边三角形,可得NF=NK=NK=FG=KJ,可得S△PGF=S△PFN=7,S△PKJ=S△PKN=8,即可求解. 【详解】 解:(1)如图2,连接BE, ∵DE是△ABC的中位线, ∴DE∥BC,AE=EC,AD=BD, ∴S△PDE=S△BDE=1, ∴S△ABE=2, ∴S△ABC=4, 故答案为:4; ②∵DE是△ABC的中位线, ∴DE∥BC,AE=EC,AD=BD, ∴S△PBD=S△APD=2,S△APE=S△PEC=3, ∴S△ABC=10; 故答案为:2,3,10; (2)如图3,连接AP, ∵DE是△ABC的中位线, ∴DE∥BC,AE=EC,AD=BD,S△ABC=4S△ADE, ∴S△PBD=S△APD=5,S△APE=S△PEC=5, ∴S△ADE=S△APD+S△APE﹣S△PDE=4, ∴S△ABC=4S△ADE=16; (3)如图4,延长GF,JK交于点N,连接GJ,连接PN, ∵六边形FGHIJK是正六边形, ∴FG=FK=KJ,∠GFK=∠JKF=120°,S六边形FGHIJK=2S四边形FGJK, ∴∠NFK=∠NKF=60°, ∴△NFK是等边三角形, ∴NF=NK=FK=FG=KJ, ∴S△PGF=S△PFN=7,S△PKJ=S△PKN=8,FK是△NGJ的中位线, ∴S△NFK=S△PFN+S△PKN﹣S△PFK=6, ∵FK是△NGJ的中位线, ∴S△NGJ=4S△NFK=24; ∴S四边形FGJK=24﹣6=18, ∴S六边形FGHIJK=36. 【点睛】 本题是四边形综合题,考查了等边三角形的判定和性质,三角形的中位线定理,正六边形的性质等知识,熟练运用三角形中位线定理是解题的关键.- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 人教版部编版 八年 级数 下册 期末试卷 测试 答案
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【快乐****生活】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【快乐****生活】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【快乐****生活】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【快乐****生活】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文