人教版初二上学期压轴题数学综合试题带答案.doc
《人教版初二上学期压轴题数学综合试题带答案.doc》由会员分享,可在线阅读,更多相关《人教版初二上学期压轴题数学综合试题带答案.doc(22页珍藏版)》请在咨信网上搜索。
人教版初二上学期压轴题数学综合试题带答案 1.如图①,在等边△ABC中,点D、E分别是AB、AC上的点,BD=AE,BE与CD交于点O. (1)填空:∠BOC= 度; (2)如图②,以CO为边作等边△OCF,AF与BO相等吗?并说明理由; (3)如图③,若点G是BC的中点,连接AO、GO,判断AO与GO有什么数量关系?并说明理由. 2.如图,是等边三角形,点分别是射线、射线上的动点,点D从点A出发沿着射线移动,点E从点B出发沿着射线移动,点同时出发并且移动速度相同,连接. (1)如图①,当点D移动到线段的中点时,与的长度关系是:_______. (2)如图②,当点D在线段上移动但不是中点时,探究与之间的数量关系,并证明你的结论. (3)如图③,当点D移动到线段的延长线上,并且时,求的度数. 3.如图1,在平面直角坐标系中,AO=AB,∠BAO=90°,BO=8cm,动点D从原点O出发沿x轴正方向以acm/s的速度运动,动点E也同时从原点O出发在y轴上以bcm/s的速度运动,且a,b满足关系式a2+b2﹣4a﹣2b+5=0,连接OD,OE,设运动的时间为t秒. (1)求a,b的值; (2)当t为何值时,△BAD≌△OAE; (3)如图2,在第一象限存在点P,使∠AOP=30°,∠APO=15°,求∠ABP. 4.在△ABC中,AB=AC,点D是直线BC上一点(不与B、C重合),以AD为一边在AD的右侧作△ADE,使AD=AE,∠DAE =∠BAC,连接CE. (1)如图1,当点D在线段BC上,如果∠BAC=90°,则∠BCE=________度; (2)设,. ①如图2,当点在线段BC上移动,则,之间有怎样的数量关系?请说明理由; ②当点在直线BC上移动,则,之间有怎样的数量关系?请直接写出你的结论. 5.如图①,直线AB与x轴负半轴、y轴正半轴分别交于A(a,0)、B(0,b)两点. (1)若+b2-10b+25=0,判断△AOB的形状,并说明理由; (2)如图②,在(1)的条件下,设Q为AB延长线上一点,作直线OQ,过A、B两点分别作AM⊥OQ于M,BN⊥OQ于N,若AM=4,MN=7,求BN的长; (3)如图③,若即点A不变,点B在y轴正半轴上运动,分别以OB、AB为直角边在第一、第二象限作等腰直角△OBF和等腰直角△ABE,连EF交y轴于P点,问当点B在y轴上运动时,试猜想PB的长是否为定值,若是,请求出其值;若不是,请求其取值范围. 6.如图,在等边中,,分别为,边上的点,,. (1)如图1,若点在边上,求证:; (2)如图2,连.若,求证:; (3)如图3,是的中点,点在内,,点,分别在,上,,若,直接写出的度数(用含有的式子表示). 7.如图1,在平面直角坐标系中,点在x轴负半轴上,点B在y轴正半轴上,设,且. (1)直接写出的度数. (2)如图2,点D为AB的中点,点P为y轴负半轴上一点,以AP为边作等边三角形APQ,连接DQ并延长交x轴于点M,若,求点M的坐标. (3)如图3,点C与点A关于y轴对称,点E为OC的中点,连接BE,过点B作,且,连接AF交BC于点P,求的值. 8.在Rt△中,,∠,点是上一点. (1)如图,平分∠,求证; (2)如图,点在线段上,且∠,∠,求证; (3)如图3,BM⊥AM,M是△ABC的中线AD延长线上一点,N在AD上,AN=BM,若DM=2,则MN= (直接写出结果). 【参考答案】 2.(1)120;(2)相等,理由见解析;(3)AO=2OG.理由见解析 【分析】(1)证明△EAB≌△DBC(SAS),可得结论. (2)结论:AF=BO,证明△FCA≌△OCB(SAS),可得结 解析:(1)120;(2)相等,理由见解析;(3)AO=2OG.理由见解析 【分析】(1)证明△EAB≌△DBC(SAS),可得结论. (2)结论:AF=BO,证明△FCA≌△OCB(SAS),可得结论. (3)证明△AFO≌△OBR(SAS),推出OA=OR,可得结论. 【详解】解:(1)如图①中, ∵△ABC是等边三角形, ∴AB=BC,∠A=∠CBD=60°, 在△EAB和△DBC中, , ∴△EAB≌△DBC(SAS), ∴∠ABE=∠BCD, ∴∠BOD=∠BCD+∠CBE=∠ABE+∠CBE=∠CBA=60°, ∴∠BOC=180°-60°=120°. 故答案为:120. (2)相等. 理由:如图②中, ∵△FCO,△ACB都是等边三角形, ∴CF=CO,CA=CB,∠FCO=∠ACB=60°, ∴∠FCA=∠OCB, 在△FCA和△OCB中, , ∴△FCA≌△OCB(SAS), ∴AF=BO. (3)如图③中,结论:AO=2OG. 理由:延长OG到R,使得GR=GO,连接CR,BR. 在△CGO和△BGR中, , ∴△CGO≌△BGR(SAS), ∴CO=BR=OF,∠GCO=∠GBR,AF=BO, ∴CO∥BR, ∵△FCA≌△OCB, ∴∠AFC=∠BOC=120°, ∵∠CFO=∠COF=60°, ∴∠AFO=∠COF=60°, ∴AF∥CO, ∴AF∥BR, ∴∠AFO=∠RBO, 在△AFO和△OBR中, , ∴△AFO≌△OBR(SAS), ∴OA=OR, ∵OR=2OG, ∴OA=2OG. 【点睛】本题属于三角形综合题,考查了等边三角形的判定和性质,全等三角形的判定和性质,解题的关键是学会添加常用辅助线,构造全等三角形解决问题. 3.(1) (2),证明见详解 (3) 【分析】(1)由题意可知,所以,由等边三角形及中点可知,而,所以可证,进一步可证; (2)猜测,在射线AB上截取,如图(见详解),利用等边三角形的性质及可 解析:(1) (2),证明见详解 (3) 【分析】(1)由题意可知,所以,由等边三角形及中点可知,而,所以可证,进一步可证; (2)猜测,在射线AB上截取,如图(见详解),利用等边三角形的性质及可知为等边三角形,再利用边角边即可证明,最后根据全等三角形的性质即可证明; (3)按照第(2)问的思路,作出类似的辅助线:在射线CB上截取,如图(见详解),用同样的方法证明,再根据ED⊥DC,证出为等腰直角三角形,即可求出∠DEC的度数. (1) 解:, 证明过程如下:由题意可知, ∵D为AB的中点, ∴, ∴, ∴. ∵为等边三角形,, ∴. ∵, ∴, ∴, ∴. (2) 解:, 理由如下:在射线AB上截取,连接EF,如图所示, ∵为等边三角形, ∴,. ∵,, ∴为等边三角形, ∴,. 由题意知, ∴, ∴. 即. ∵, ∴. 在和中,, ∴, ∴DE与DC之间的数量关系是. (3) 如图,在射线CB上截取,连接DF,如图所示, ∵为等边三角形, ∴,. ∵,, ∴为等边三角形, ∴,, ∴. 由题意知, ∵, ∴, 即. ∵, ∴. 在和中,, ∴, ∴. ∵ED⊥DC, ∴为等腰直角三角形, ∴. 【点睛】本题主要考查了等腰三角形,等边三角形,以及全等三角形的判定及性质,能够作出辅助线,并合理利用等边三角形的性质是解题的关键. 4.(1)a=2,b=1;(2)t=或t=8;(3)∠ABP=105°. 【分析】(1)将a2+b2﹣4a﹣2b+5=0用配方法得出(a﹣2)2+(b﹣1)2=0,利用非负数的性质,即可得出结论; 解析:(1)a=2,b=1;(2)t=或t=8;(3)∠ABP=105°. 【分析】(1)将a2+b2﹣4a﹣2b+5=0用配方法得出(a﹣2)2+(b﹣1)2=0,利用非负数的性质,即可得出结论; (2)先由运动得出BD=|8﹣2t|,再由全等三角形的性质的出货BD=OE,建立方程求解即可得出结论. (3)先判断出△OAP≌△BAQ(SAS),得出OP=BQ,∠ABQ=∠AOP=30°,∠AQB=∠APO=15°,再求出∠OAP=135°,进而判断出△OAQ≌△BAQ(SAS),得出∠OQA=∠BQA=15°,OQ=BQ,再判断出△OPQ是等边三角形,得出∠OQP=60°,进而求出∠BQP=30°,再求出∠PBQ=75°,即可得出结论. 【详解】解:(1)∵a2+b2﹣4a﹣2b+5=0, ∴(a﹣2)2+(b﹣1)2=0, ∴a﹣2=0,b﹣1=0, ∴a=2,b=1; (2)由(1)知,a=2,b=1, 由运动知,OD=2t,OE=t, ∵OB=8, ∴DB=|8﹣2t| ∵△BAD≌△OAE, ∵DB=OE, ∴|8﹣2t|=t, 解得,t=(如图1)或t=8(如图2); (3)如图3, 过点A作AQ⊥AP,使AQ=AP,连接OQ,BQ,PQ, 则∠APQ=45°,∠PAQ=90°, ∵∠OAB=90°, ∴∠PAQ=∠OAB, ∴∠OAB+∠BAP=∠PAQ+∠BAP, 即:∠OAP=∠BAQ, ∵OA=AB,AD=AD, ∴△OAP≌△BAQ(SAS), ∴OP=BQ,∠ABQ=∠AOP=30°,∠AQB=∠APO=15°, 在△AOP中,∠AOP=30°,∠APO=15°, ∴∠OAP=180°﹣∠AOP﹣∠APO=135°, ∴∠OAQ=360°﹣∠OAP﹣∠PAQ=135°﹣90°=135°=∠OAP, ∵OA=AB,AD=AD, ∴△OAQ≌△BAQ(SAS), ∴∠OQA=∠BQA=15°,OQ=BQ, ∵OP=BQ, ∴OQ=OP, ∵∠APQ=45°,∠APO=15°, ∴∠OPQ=∠APO+∠APQ=60°, ∴△OPQ是等边三角形, ∴∠OQP=60°, ∴∠BQP=∠OQP﹣∠OQA﹣∠BQA=60°﹣15°﹣15°=30°, ∵BQ=PQ, ∴∠PBQ=(180°﹣∠BQP)=75°, ∴∠ABP=∠ABQ+∠PBQ=30°+75°=105°. 【点睛】本题是三角形综合题,主要考查了配方法、非负数的性质、三角形内角和定理、等边三角形的判定和性质、全等三角形的判定及性质,构造出全等三角形是解题的关键. 5.(1)90;(2)①,理由见解析;②当点D在射线BC.上时,a+β=180°,当点D在射线BC的反向延长线上时,a=β. 【分析】(1)可以证明△BAD≌△CAE,得到∠B=∠ACE,证明∠ACB 解析:(1)90;(2)①,理由见解析;②当点D在射线BC.上时,a+β=180°,当点D在射线BC的反向延长线上时,a=β. 【分析】(1)可以证明△BAD≌△CAE,得到∠B=∠ACE,证明∠ACB=45°,即可解决问题; (2)①证明△BAD≌△CAE,得到∠B=∠ACE,β=∠B+∠ACB,即可解决问题; ②证明△BAD≌△CAE,得到∠ABD=∠ACE,借助三角形外角性质即可解决问题. 【详解】解:(1)∵AB=AC,∠BAC=90°, ∴∠ABC=∠ACB=45°, ∵∠DAE=∠BAC, ∴∠BAD=∠CAE, ∵AB=AC,AD=AE, ∴△BAD≌△CAE(SAS) ∴∠ABC=∠ACE=45°, ∴∠BCE=∠ACB+∠ACE=90°, 故答案为:; (2)①. 理由:∵, ∴. 即. 又, ∴. ∴. ∴. ∴. ∵, ∴. ②如图:当点D在射线BC上时,α+β=180°,连接CE, ∵∠BAC=∠DAE, ∴∠BAD=∠CAE, 在△ABD和△ACE中, , ∴△ABD≌△ACE(SAS), ∴∠ABD=∠ACE, 在△ABC中,∠BAC+∠B+∠ACB=180°, ∴∠BAC+∠ACE+∠ACB=∠BAC+∠BCE=180°, 即:∠BCE+∠BAC=180°, ∴α+β=180°, 如图:当点D在射线BC的反向延长线上时,α=β.连接BE, ∵∠BAC=∠DAE, ∴∠BAD=∠CAE, 又∵AB=AC,AD=AE, ∴△ABD≌△ACE(SAS), ∴∠ABD=∠ACE, ∴∠ABD=∠ACE=∠ACB+∠BCE, ∴∠ABD+∠ABC=∠ACE+∠ABC=∠ACB+∠BCE+∠ABC=180°, ∵∠BAC=180°-∠ABC-∠ACB, ∴∠BAC=∠BCE. ∴α=β; 综上所述:点D在直线BC上移动,α+β=180°或α=β. 【点睛】该题主要考查了等腰直角三角形的性质、全等三角形的判定及其性质等几何知识点及其应用问题;应牢固掌握等腰直角三角形的性质、全等三角形的判定及其性质等几何知识点. 6.(1)△AOB为等腰直角三角形;理由见解析 (2)BN=3 (3)PB的长为定值; 【分析】(1)根据题意求出a、b的值,即可得出A与B坐标,根据OA=OB,即可确定△AOB的形状; (2) 解析:(1)△AOB为等腰直角三角形;理由见解析 (2)BN=3 (3)PB的长为定值; 【分析】(1)根据题意求出a、b的值,即可得出A与B坐标,根据OA=OB,即可确定△AOB的形状; (2)由OA=OB,利用AAS得到△AMO≌△ONB,用对应线段相等求长度; (3)如图,作EK⊥y轴于K点,利用AAS得到△AOB≌△BKE,利用全等三角形对应边相等得到OA=BK,EK=OB,再利用AAS得到△PBF≌△PKE,寻找相等线段,并进行转化,求PB的长. (1) 解:结论:△OAB是等腰直角三角形;理由如下: ∵+b2-10b+25=0,即, ∴,解得:, ∴A(−5,0),B(0,5), ∴OA=OB=5, ∴△AOB是等腰直角三角形. (2) 解:∵AM⊥OQ,BN⊥OQ, ∴, , ∴, ∴, ∵在△AMO与△ONB中, ∴△AMO≌△ONB(AAS), ∴AM=ON=4,BN=OM, ∵MN=7, ∴OM=3, ∴BN=OM=3. (3) 解:结论:PB的长为定值.理由如下, 作EK⊥y轴于K点,如图所示: ∵△ABE为等腰直角三角形, ∴AB=BE,∠ABE=90°, ∴∠EBK+∠ABO=90°, ∵∠EBK+∠BEK=90°, ∴∠ABO=∠BEK, ∵在△AOB和△BKE中, ∴△AOB≌△BKE(AAS), ∴OA=BK,EK=OB, ∵△OBF为等腰直角三角形, ∴OB=BF, ∴EK=BF, ∵在△EKP和△FBP中, ∴△PBF≌△PKE(AAS), ∴PK=PB, ∴PB=BK=OA=. 【点睛】本题属于三角形综合题,考查非负数的性质,全等三角形的判定与性质、等腰直角三角形的性质等知识,熟练掌握全等三角形的判定与性质是解本题的关键. 7.(1)见解析 (2)见解析 (3) 【分析】(1)连接DF,根据“有一个角是60°的等腰三角形是等边三角形”可判断△DEF是等边三角形,则DF=EF,又△ABC是等边三角形,根据三角形内角和可 解析:(1)见解析 (2)见解析 (3) 【分析】(1)连接DF,根据“有一个角是60°的等腰三角形是等边三角形”可判断△DEF是等边三角形,则DF=EF,又△ABC是等边三角形,根据三角形内角和可得出,∠AFD=∠FEC,所以△ADF≌△CFE(AAS),则AD=CF; (2)过点F作JKAC交AB于点J,交BC于点K,过点F作PIAB交AC于P,交BC于点I,连接DF,则△BJK和△CPI是等边三角形,△BDE≌△JFD≌KEF,所以DJ=BE=FK,因为ABPI,FKAC,所以四边形AJFP是平行四边形,则AJ=PF,易得△CPI为等边三角形,由∠FCB=30°可得CF平分∠PCI,则FI=FP,所以FP=AJ,FK=BE=DJ,FI=FK,所以AJ=DJ=BE,即AD=AJ+DJ=2BE; (3)延长MO到点G,使OG=OM,连接NG,BG,NM,作∠ACQ=∠ABN,且使CQ=BN,连接MQ,AQ,先得到△BOG≌△COM(SAS),再得到△ACQ≌△ABN(SAS)和△BNG≌△CQM(SAS),所以∠NAM=∠MAQ=∠CAM+∠CAQ=∠CAM+∠BAN,所以∠CAM+∠BAN=30°,则∠CAM=,所以∠BAN=30°-. (1) 证明:如图,连接, ,, ∵是等边三角形, ∴, ∵是等边三角形, ∴, , , , ,, , ; (2) 证明:如图,过点作交于点,交于点,过点作交于,交于点,连接, , , 和是等边三角形, ,, 是等边三角形, 由(1)中结论可知,, , ,, 四边形是平行四边形, , , , 为等边三角形,, , 平分, 是等边三角形, , , ,, ,即; (3) 如图,延长到点,使,连接,,,作,且使,连接,, ,, , ,,, , ,, , , , , 是等边三角形, , , ,, ,,, , ,, ,, , ,, , , , , ,, , , 又, , , . 【点睛】本题属于三角形的综合题,涉及全等三角形的性质与判定,等边三角形的性质与判定,等腰三角形三线合一等知识,类比思想及构造的思想进行分析,仿造(1)中的结论构造出全等三角形是解题关键. 8.(1);(2);(3). 【分析】(1)根据坐标系写出的坐标,进而根据,因式分解可得,进而可得,在x轴的正半轴上取点C,使,连接BC,证明是等边三角形,进而即可求得; (2)连接BM,,进而证明 解析:(1);(2);(3). 【分析】(1)根据坐标系写出的坐标,进而根据,因式分解可得,进而可得,在x轴的正半轴上取点C,使,连接BC,证明是等边三角形,进而即可求得; (2)连接BM,,进而证明为等边三角形,根据含30度角的直角三角形的性质即可求得 (3)过点F作轴交CB的延长线于点N,证明,,设,则等边三角形ABC的边长是4a,,进而计算可得,,即可求得的值. 【详解】(1)∵点在x轴负半轴上, ∴,, ∵,, ∴, ∵, ∴, ∴, 如答图1,在x轴的正半轴上取点C,使,连接BC, ∵, ∴, 又∵, ∴, ∴, ∴是等边三角形, ∴; (2)如答图2,连接BM, ∴是等边三角形, ∵,, ∵∠, ∴, ∴, ∵D为AB的中点, ∴, ∵, ∴, ∴,在和中, ∴, ∴,即, ∴, ∴为等边三角形, ∴,∴; (3)如答图3,过点F作轴交CB的延长线于点N, 则, ∵, ∴, 在和中, ∴, ∴,, ∵, ∴, 又∵E是OC的中点,设, ∴等边三角形ABC的边长是4a,, ∵, ∴, 在和中, ∴, ∴, 又∵, ∴, , ∴. 【点睛】本题考查了坐标与图形,三角形全等的性质与判定,等边三角形的性质与判定,因式分解的应用,掌握三角形全等的性质与判定并正确的添加辅助线是解题的关键. 9.(1)见解析 (2)见解析 (3)8 【分析】(1)如图1中,作DH⊥AB于H.证明△ADC≌△ADH即可解决问题. (2)如图2中,过点C作CM⊥CE交AD的延长线于M,连接BM.证明△A 解析:(1)见解析 (2)见解析 (3)8 【分析】(1)如图1中,作DH⊥AB于H.证明△ADC≌△ADH即可解决问题. (2)如图2中,过点C作CM⊥CE交AD的延长线于M,连接BM.证明△ACE≌△BCM(SAS),推出AE=BM,再利用直角三角形30度角的性质即可解决问题. (3)如图3中,作CH⊥MN于H.证明得到,进一步证明即可解决问题. (1) 证明:如图1中,作DH⊥AB于H. ∵∠ACD=∠AHD=90°,AD=AD,∠DAC=∠DAH, ∴△ADC≌△ADH(ASA), ∴AC=AH,DC=DH, ∵CA=CB,∠C=90°, ∴∠B=45°, ∵∠DHB=90°, ∴∠HDB=∠B=45°, ∴HD=HB, ∴BH=CD, ∴AB=AH+BH=AC+CD. (2) 如图2中,作CM⊥CE交AD的延长线于M,连接BM. , , , , , ∵∠ACB=∠ECM=90°, , , ∵CA=CB,CE=CM, ∴△ACE≌△BCM(SAS), ∴AE=BM, ∵在Rt△EMB中,∠MEB=30°, ∴BE=2BM=2AE. (3) 解:如图3中,作CH⊥MN于H. , , , , , , , ,, , , , , 是的中线, , ,, , , , . 【点睛】本题属于三角形综合题,考查了等腰直角三角形的判定和性质,全等三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题.- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 人教版 初二 上学 压轴 数学 综合 试题 答案
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【精****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【精****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【精****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【精****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文