数学八年级下册数学期末试卷达标训练题(Word版含答案).doc
《数学八年级下册数学期末试卷达标训练题(Word版含答案).doc》由会员分享,可在线阅读,更多相关《数学八年级下册数学期末试卷达标训练题(Word版含答案).doc(30页珍藏版)》请在咨信网上搜索。
数学八年级下册数学期末试卷达标训练题(Word版含答案) 一、选择题 1.使代数式有意义的负整数之积是( ) A.−3 B.3 C.2 D.−2 2.下列各组数中,能构成直角三角形的是( ) A.4,5,6 B.1,1, C.6,8,11 D.5,12,23 3.如图,下列条件中,能判定四边形是平行四边形的是( ) A., B., C., D., 4.为了解居民用水情况,在某小区随机抽查了10户家庭的月用水量,结果统计如图.关于这组数据,下列说法错误的是( ) A.众数是 B.中位数是 C.平均数是 D.方差是 5.如图所示,正方形ABCD的边长为4,点E为线段BC上一动点,连结AE,将AE绕点E顺时针旋转90°至EF,连结BF,取BF的中点M,若点E从点B运动至点C,则点M经过的路径长为( ) A.2 B. C. D.4 6.如图,将沿对角线进行折叠,折叠后点落在点处,交于点,有下列结论:①;②;③;④,其中正确结论的个数是( ) A.个 B.个 C.个 D.个 7.如图,在△ABC中,F为BC的中点,点E是AC边上的一点,且AC=10,当AE的长为( )时,EF∥AB A.3 B.4 C.5 D.4.5 8.在平面直角坐标系中,已知直线与轴交于点,直线分别与交于点,与轴交于点.若,则下列范围中,含有符合条件的的( ) A. B. C. D. 二、填空题 9.二次根式中字母x的取值范围是__________. 10.已知菱形的边长为4,∠A=60°,则菱形的面积为_________. 11.在△ABC中,∠ACB=90°,若AC=5,AB=13,则BC=___. 12.在矩形ABCD中,AB=4,BC=3,过点A作∠DAC的角平分线交BC的延长线于点H,取AH的中点P,连接BP,则S△ABP=___. 13.已知直线经过点,那么_________. 14.如图,在平面直角坐标系中,矩形的顶点、的坐标分别为,,点是的中点,点在上运动,点是坐标平面内的任意一点.若以、、、为顶点的四边形是边长为5的菱形时,则点的坐标为__________. 15.如图,在平面直角坐标系中,点,都在轴正半轴上,点,都在直线上,,,都是等边三角形,且,则点的横坐标是_______. 16.如图,在直角三角形中,,,,点D是边上一点,将沿折叠,使点C落在边的E点,那么的长度是________. 三、解答题 17.计算: (1)()×; (2)()2. 18.一艘轮船以30千米/时的速度离开港口,向东南方向航行,另一艘轮船同时离开港口,以40千米/时的速度航行,它们离开港口一个半小时后相距75千米,求第二艘船的航行方向. 19.图①、图②都是4×4的正方形网格,每个小正方形的项点为格点,每个小正方形的边长均为1,在图①、图②中已画出AB,点A、B均在格点上,按下列要求画图: (1)在图①中,画一个以AB为腰且三边长都是无理数的等腰三角形ABC,点C为格点; (2)在图②中,画一个以AB为底的等腰三角形ABD,点D为格点. 20.如图,在平行四边形ABCD中,点P是AB边上一点(不与A,B重合),过点P作PQ⊥CP,交AD边于点Q,且∠QPA=∠PCB,QP=QD. (1)求证:四边形ABCD是矩形; (2)求证:CD=CP. 21.在数学课外学习活动中,嘉琪遇到一道题:已知,求2a2﹣8a+1的值.他是这样解答的: ∵, ∴. ∴(a﹣2)2=3,即a2﹣4a+4=3. ∴a2﹣4a=﹣1. ∴2a2﹣8a+1=2(a2﹣4a)+1=2×(﹣1)+1=﹣1. 请你根据嘉琪的解题过程,解决如下问题: (1)试化简和; (2)化简; (3)若,求4a2﹣8a+1的值. 22.小美打算在“母亲节”买一束百合和康乃馨组合的鲜花送给妈妈.已知买2支百合和1支康乃馨共需花费14元,3支康乃馨的价格比2支百合的价格多2元. (1)求买一支康乃馨和一支百合各需多少元? (2)小美准备买康乃馨和百合共11支,且康乃馨不多于9支,设买康乃馨x支,买这束鲜花所需总费用为w元. ①求w与x之间的函数关系式; ②请你帮小美设计一种使费用最少的买花方案,并求出最少费用. 23.已知:如图,平行四边形ABCD中,AB=5,BD=8,点E、F分别在边BC、CD上(点E、F与平行四边形ABCD的顶点不重合),CE=CF,AE=AF. (1)求证:四边形ABCD是菱形; (2)设BE=x,AF=y,求y关于x的函数解析式,并写出定义域; (3)如果AE=5,点P在直线AF上,△ABP是以AB为腰的等腰三角形,那么△ABP的底边长为 .(请将答案直接填写在空格内) 24.如图,,是直线与坐标轴的交点,直线过点,与轴交于点. (1)求,,三点的坐标. (2)当点是的中点时,在轴上找一点,使的和最小,画出点的位置,并求点的坐标. (3)若点是折线上一动点,是否存在点,使为直角三角形,若存在,直接写出点的坐标;若不存在,请说明理由. 25.如图1,在矩形ABCD中,对角线AC与BD相交于点O,过点O作直线EF⊥BD,且交AC于点E,交BC于点F,连接BE、DF,且BE平分∠ABD. (1)①求证:四边形BFDE是菱形;②求∠EBF的度数. (2)把(1)中菱形BFDE进行分离研究,如图2,G,I分别在BF,BE边上,且BG=BI,连接GD,H为GD的中点,连接FH,并延长FH交ED于点J,连接IJ,IH,IF,IG.试探究线段IH与FH之间满足的数量关系,并说明理由; (3)把(1)中矩形ABCD进行特殊化探究,如图3,矩形ABCD满足AB=AD时,点E是对角线AC上一点,连接DE,作EF⊥DE,垂足为点E,交AB于点F,连接DF,交AC于点G.请直接写出线段AG,GE,EC三者之间满足的数量关系. 【参考答案】 一、选择题 1.C 解析:C 【分析】 先根据二次根式和分式有意义的条件求出x的取值范围,然后求出满足题意的负整数的积即可. 【详解】 解:∵有意义, ∴, 解得, ∴满足题意的负整数解为-2,-1, ∴负整数解的积=, 故选C. 【点睛】 本题主要考查了分式有意义的条件,二次根式有意义的条件,解题的关键在于能够熟练掌握相关知识进行求解. 2.B 解析:B 【分析】 根据勾股定理的逆定理:如果三角形有两边的平方和等于第三边的平方,那么这个三角形是直角三角形.如果没有这种关系,这个三角形就不是直角三角形. 【详解】 解:A、42+52≠62,不能构成直角三角形,故此选项不符合题意; B、12+12= ,能构成直角三角形,故此选项符合题意; C、62+82≠112,不能构成直角三角形,故此选项不符合题意; D、52+122≠232,不能构成直角三角形,故此选项不符合题意. 故选:B. 【点睛】 本题考查了勾股定理的逆定理,在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断. 3.B 解析:B 【解析】 【分析】 根据平行四边形的判定定理进行分析即可. 【详解】 解:根据两组对边分别相等的四边形为平行四边形,则B选项正确, 故选:B. 【点睛】 本题考查平行四边形的判定,熟记基本的判定方法是解题关键. 4.D 解析:D 【解析】 【分析】 根据统计图得出10户家庭的用水量数据,求得众数,中位数,平均数,方差,进而逐项判断即可 【详解】 根据统计图可得这10户家庭的用水量分别为:5,5,6,6,6,6,6,6,7,7 其中6出现了6次,次数最多,故众数是6,故A选项正确,不符合题意; 这组数据的中位数为:6,故B选项正确,不符合题意; 这组数据的平均数为,故C选项正确,不符合题意; 这组数据的方差为:,故D选项不正确,符合题意. 故选D. 【点睛】 本题考查了求众数,中位数,平均数,方差,掌握方差的计算公式是解题的关键.方差的计算公式:. 5.B 解析:B 【分析】 已知EF⊥AE,当E点在线段BC上运动到两端时,正好是M点运动的两个端点,由此可以判断M点的运动轨迹是BC、CD中点的连线长. 【详解】 解:取BC、CD的中点G、H,连接GH,连接BD ∴GH为△BCD的中位线,即 ∵将AE绕点E顺时针旋转90°至EF, ∴EF⊥AE, 当E点在B处时,M点在BC的中点G处,当E点在C点处时,M点在CD中点处, ∴点M经过的路径长为GH的长, ∵正方形ABCD的边长为4, ∴ ∴, 故选B. 【点睛】 本题主要考查了正方形的性质,勾股定理和中位线定理,解题的关键在于找到M点的运动轨迹. 6.C 解析:C 【解析】 【分析】 根据SSS即可判定△ABF≌△CFB,根据全等三角形的性质以及等式性质,即可得到EC=EA,根据∠EBF=∠EFB=∠EAC=∠ECA,即可得出BF∥AC.根据E不一定是BC的中点,可得BE=CE不一定成立. 【详解】 解:由折叠可得,AD=AF,DC=FC, 又∵平行四边形ABCD中,AD=BC,AB=CD, ∴AF=BC,AB=CF, 在△ABF和△CFB中, , ∴△ABF≌△CFB(SSS),故①正确; ∴∠EBF=∠EFB, ∴BE=FE, ∴BC−BE=FA−FE,即EC=EA,故②正确; ∴∠EAC=∠ECA, 又∵∠AEC=∠BEF, ∴∠EBF=∠EFB=∠EAC=∠ECA, ∴BF∥AC,故③正确; ∵E不一定是BC的中点, ∴BE=CE不一定成立,故④错误; 故选:C. 【点睛】 本题主要考查了折叠问题,全等三角形的判定与性质以及平行线的判定的运用,解题时注意:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等. 7.C 解析:C 【解析】 【分析】 由三角形中位线的性质可得当为的中点时,,即可求解. 【详解】 解:当为的中点时,∵F为BC的中点 ∴为的中位线, ∴ 此时 故选C 【点睛】 此题考查了三角形中位线的性质,掌握三角形中位线的性质是解题的关键. 8.D 解析:D 【解析】 【分析】 两直线与y轴的交点相同为(0,-2),求出A与B坐标,由S△GAB<S△GOA,得AB<OA,由此列出不等式进行解答. 【详解】 ∵直线l1:y=kx-2与x轴交于点A,直线l2:y=(k-3)x-2分别与l1交于点G,与x轴交于点B. ∴G(0,-2),A( ,0),B( ,0), ∵S△GAB<S△GOA, ∴AB<OA, 即 ,即 当k<0时, ,解得k<0; 当0<k<3时,,解得k<0(舍去); 当k>3时,,解得k>6, 综上,k<0或k>6, ∴含有符合条件的k的是k>3. 故选D. 【点睛】 本题主要考查了两直线相交问题,三角形的面积,一次函数图象与坐标轴的交点问题,关键是根据AB<OA列出k的不等式. 二、填空题 9. 【解析】 【分析】 根据二次根式成立的条件可直接进行求解. 【详解】 解:由题意得: ,解得:; 故答案为. 【点睛】 本题主要考查二次根式有意义的条件,熟练掌握二次根式有意义的条件是解题的关键. 10.A 解析:8 【解析】 【分析】 作出图形,利用30°直角三角形的性质求出高,利用菱形的面积公式可求解. 【详解】 如图所示,菱形ABCD中,AB=AD=4,∠A=60°, 过点D作DE⊥AB于点E, 则, ∴菱形ABCD的面积为AB∙DE=4×= , 故答案为:. 【点睛】 本题考查了菱形的性质,熟练运用30°直角三角形的性质以及菱形的面积公式是本题的关键. 11.12 【解析】 【分析】 根据勾股定理求解即可. 【详解】 由勾股定理得:. 故答案为:12. 【点睛】 本题主要考查了勾股定理的运用,熟练掌握相关概念是解题的关键. 12.A 解析:8 【分析】 由勾股定理可得AC=5,根据角平分线的性质可证∠H=∠CAH=∠DAH,即AC=CH=5,则可求S△ABH的值,由P是中点,可得S△ABP的值. 【详解】 解:∵四边形ABCD是矩形, ∴ADBC,∠ABC=90°, ∵AB=4,BC=3, ∴AC==5, ∵AH平分∠DAC, ∴∠DAH=∠CAH, ∵ADBC, ∴∠DAH=∠H, ∴∠H=∠CAH, ∴AC=CH=5, ∵BH=BC+CH, ∴BH=8, ∵S△ABH=AB×BH=×4×8=16, ∵P是AH的中点 ∴S△ABP=S△ABH=8; 故答案为:8. 【点睛】 此题主要考查矩形的性质与判定综合,解题的关键是矩形的性质及勾股定理的应用. 13.-4 【分析】 将点代入直线的表达式中求解即可. 【详解】 解:∵直线经过点, ∴0=4+b, 解得:b=﹣4, 故答案为:﹣4. 【点睛】 本题考查待定系数法求一次函数的解析式,熟练掌握待定系数法求函数解析式的方法是解答的关键. 14.D 解析:或或 【分析】 因为点是坐标平面内的任意一点.若以、、、为顶点的四边形是边长为5的菱形时,始终有△ODP是腰长为5的等腰三角形,而△ODP是腰长为5的等腰三角形有三种情况,要分类讨论求解即可. 【详解】 解:由题意,若以、、、为顶点的四边形是边长为5的菱形时,始终有△ODP是腰长为5的等腰三角形,而当△ODP是腰长为5的等腰三角形时,有三种情况: (1)如答图①所示,PD=OD=5,点P在点D的左侧. 过点P作PE⊥x轴于点E,则PE=4. 在Rt△PDE中,由勾股定理得:DE=, ∴OE=OD-DE=5-3=2, ∴此时点P坐标为(2,4); (2)如答图②所示,OP=OD=5. 过点P作PE⊥x轴于点E,则PE=4. 在Rt△POE中,由勾股定理得:OE=, ∴此时点P坐标为(3,4); (3)如答图③所示,PD=OD=5,点P在点D的右侧. 过点P作PE⊥x轴于点E,则PE=4. 在Rt△PDE中,由勾股定理得:DE= ∴OE=OD+DE=5+3=8, ∴此时点P坐标为(8,4). 综上所述,点P的坐标为:(2,4)或(3,4)或(8,4); 故答案为:(2,4)或(3,4)或(8,4); 【点睛】 本题考查了分类讨论思想在几何图形中的应用,符合题意的等腰三角形有三种情形,注意不要遗漏. 15.【分析】 设△的边长为,根据直线的解析式得出,再结合等边三角形的性质及外角的性质即可得出,,从而得出,由点的坐标为,得到,,,,,,即可解决问题. 【详解】 解:过作轴于,过作轴于,过作轴于,如图 解析: 【分析】 设△的边长为,根据直线的解析式得出,再结合等边三角形的性质及外角的性质即可得出,,从而得出,由点的坐标为,得到,,,,,,即可解决问题. 【详解】 解:过作轴于,过作轴于,过作轴于,如图所示: 设△的边长为, 则,,, ,,,, ,, 点,,,是直线上的第一象限内的点, , , 又△为等边三角形, , ,, , , 点的坐标为, ,,,,, , , 点的横坐标为, 故答案为:. 【点睛】 本题考查了一次函数的性质、等边三角形的性质、规律型、以及三角形外角的性质等,解题的关键是找出规律. 16.3 【分析】 先根据勾股定理得到AB=10,再根据折叠的性质得到DC=DE,BC=BE=6,则AE=4,设DE=x,在Rt△ADE中利用勾股定理得(8-x)2=x2+42,解得方程即可. 【详解】 解析:3 【分析】 先根据勾股定理得到AB=10,再根据折叠的性质得到DC=DE,BC=BE=6,则AE=4,设DE=x,在Rt△ADE中利用勾股定理得(8-x)2=x2+42,解得方程即可. 【详解】 解:∵∠C=90°,BC=6,AC=8, ∴ ∵将△BCD沿BD折叠,使点C落在AB边的E点, ∴△BCD≌△BED, ∴∠C=∠BED=∠AED=90°,DC=DE,BC=BE=6, ∴AE=AB-BE=4, 设DC=x,则AD=8-x, 在Rt△ADE中,AD2=AE2+ED2, 即(8-x)2=x2+42,解得x=3, ∴DE=3 【点睛】 本题考查了折叠的性质以及勾股定理等知识,利用折叠性质折叠前后两图形全等,即对应角相等,对应线段相等,对应点的连线段被折痕垂直平分是解题关键. 三、解答题 17.(1)5;(2)11+2. 【分析】 (1)利用二次根式的乘法法则运算; (2)先把化简,再合并,然后利用完全平方公式计算. 【详解】 解:(1))× =- =6-1 =5; (2)()2 =(2- 解析:(1)5;(2)11+2. 【分析】 (1)利用二次根式的乘法法则运算; (2)先把化简,再合并,然后利用完全平方公式计算. 【详解】 解:(1))× =- =6-1 =5; (2)()2 =(2-+)2 =(+)2 =6+2+5 =11+2. 【点睛】 本题考查了二次根式的混合运算,熟练掌握二次根式的性质、二次根式的乘法法则和完全平方公式是解决问题的关键. 18.第二艘船的航行方向为东北或西南方向 【分析】 根据路程=速度×时间分别求得OA、OB的长,再进一步根据勾股定理的逆定理可以证明三角形OAB是直角三角形,从而求解. 【详解】 解:如图, 根据题意, 解析:第二艘船的航行方向为东北或西南方向 【分析】 根据路程=速度×时间分别求得OA、OB的长,再进一步根据勾股定理的逆定理可以证明三角形OAB是直角三角形,从而求解. 【详解】 解:如图, 根据题意,得 (千米),(千米),千米. ∵, ∴,∴ ∴第二艘船的航行方向为东北或西南方向. 【点睛】 此题考查了勾股定理的逆定理:如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形.根据条件得出第二艘船的航行方向与第一艘船的航行方向成90°是解题的关键. 19.(1)答案见详解;(2)答案见详解. 【解析】 【分析】 (1)直接利用网格结合勾股定理得出符合题意的图形; (2)直接利用网格结合勾股定理得出符合题意的图形. 【详解】 (1)如图所示:即为所求; 解析:(1)答案见详解;(2)答案见详解. 【解析】 【分析】 (1)直接利用网格结合勾股定理得出符合题意的图形; (2)直接利用网格结合勾股定理得出符合题意的图形. 【详解】 (1)如图所示:即为所求; (2)如图所示:即为所求. 【点睛】 本题考查了应用设计与作图,正确应用勾股定理是解题的关键. 20.(1)见解析;(2)见解析 【分析】 (1)根据垂直求出∠QPC=90°,求出∠QPA+∠BPC=90°,求出∠BPC+∠PCB=90°,根据三角形内角和定理求出∠B=90°,再根据矩形的判定得出即 解析:(1)见解析;(2)见解析 【分析】 (1)根据垂直求出∠QPC=90°,求出∠QPA+∠BPC=90°,求出∠BPC+∠PCB=90°,根据三角形内角和定理求出∠B=90°,再根据矩形的判定得出即可; (2)连接CQ,根据全等三角形的判定定理HL推出Rt△CDQ≌Rt△CPQ,根据全等三角形的性质推出即可. 【详解】 解:证明:(1)∵PQ⊥CP, ∴∠QPC=90°, ∴∠QPA+∠BPC=180°-90°=90°, ∵∠QPA=∠PCB, ∴∠BPC+∠PCB=90°, ∴∠B=180°-(∠BPC+∠PCB)=90°, ∵四边形ABCD是平行四边形, ∴四边形ABCD是矩形; (2)连接CQ, ∵四边形ABCD是矩形, ∴∠D=90°, ∵∠CPQ=90°, ∴在Rt△CDQ和Rt△CPQ中, , ∴Rt△CDQ≌Rt△CPQ(HL), ∴CD=CP. 【点睛】 本题考查了三角形内角和定理,垂直的定义,矩形的判定和性质,全等三角形的性质和判定,能求出∠B=90°和Rt△CDQ≌Rt△CPQ是解此题的关键. 21.(1),;(2);(3)5 【解析】 【分析】 (1)利用分母有理化计算; (2)先分母有理化,然后合并即可; (3)先将a的值化简为,进而可得到,两边平方得到,然后利用整体代入的方法计算. 【详解 解析:(1),;(2);(3)5 【解析】 【分析】 (1)利用分母有理化计算; (2)先分母有理化,然后合并即可; (3)先将a的值化简为,进而可得到,两边平方得到,然后利用整体代入的方法计算. 【详解】 解:(1), , 故答案为:,; (2)原式 ; (3), , , 即. . . 【点睛】 本题考查了二次根式的化简求值:二次根式的化简求值,一定要先化简再代入求值.二次根式运算的最后,注意结果要化到最简二次根式,二次根式的乘除运算要与加减运算区分,避免互相干扰. 22.(1)买一支康乃馨需4元,买一支百合需5元;(2)①w=﹣x+55;②买9支康乃馨,买2支百合费用最少,最少费用为46元. 【分析】 (1)设买一支康乃馨需m元,买一支百合需n元,根据题意列方程组求 解析:(1)买一支康乃馨需4元,买一支百合需5元;(2)①w=﹣x+55;②买9支康乃馨,买2支百合费用最少,最少费用为46元. 【分析】 (1)设买一支康乃馨需m元,买一支百合需n元,根据题意列方程组求解即可; (2)根据康乃馨和百合的费用之和列出函数关系式,然后根据函数的性质和康乃馨不多于9支求函数的最小值即可. 【详解】 解:(1)设买一支康乃馨需m元,买一支百合需n元, 则根据题意得:, 解得: , 答:买一支康乃馨需4元,买一支百合需5元; (2)①根据题意得:w=4x+5(11﹣x)=﹣x+55, ②∵康乃馨不多于9支, ∴x≤9, ∵﹣1<0, ∴w随x的增大而减小, ∴当x=9时,w最小, 即买9支康乃馨,买11﹣9=2支百合费用最少,wmin=﹣9+55=46(元), 答:w与x之间的函数关系式:w=﹣x+55,买9支康乃馨,买2支百合费用最少,最少费用为46元. 【点睛】 本题主要考查一次函数的性质和二元一次方程组的应用,关键是利用题意写出函数关系式. 23.(1)见解析;(2);(3)8或或6 【分析】 (1)连结,证明,得到相等的角,再由平行线的性质证明,从而得,由菱形的定义判定四边形是菱形; (2)连结,交于点,作于点,由菱形的面积及边长求出菱形的 解析:(1)见解析;(2);(3)8或或6 【分析】 (1)连结,证明,得到相等的角,再由平行线的性质证明,从而得,由菱形的定义判定四边形是菱形; (2)连结,交于点,作于点,由菱形的面积及边长求出菱形的高,再求的长,由勾股定理列出关于、的等式,整理得到关于的函数解析式; (3)以为腰的等腰三角形分三种情况,其中有两种情况是等腰三角形与或全等,另一种情况可由(2)中求得的菱形的高求出的长,再求等腰三角形的底边长. 【详解】 解:(1)证明:如图1,连结, ,,, , , 即; 四边形是平行四边形, , , , , 四边形是菱形 (2)如图2,连结,交于点,作于点,则, 由(1)得,四边形是菱形, , , ,, , , , 由,且,得, 解得; , , 由,且,得, 点在边上且不与点、重合, , 关于的函数解析式为, (3)如图3,,且点在的延长线上, ,, , , , , , , , , , , , ,, , , 即等腰三角形的底边长为8; 如图4,,作于点,于点,则, , , , , , 由(2)得,, , , 即等腰三角形的底边长为; 如图5,,点与点重合,连结, ,,, , , 即, 等腰三角形的底边长为6. 综上所述,以为腰的等腰三角形的底边长为8或或6, 故答案为:8或或6. 【点睛】 此题重点考查菱形的性质、全等三角形的判定与性质、等腰三角形的判定、勾股定理、求与几何图形有关的函数关系式等知识与方法,在解第(3)题时,需要进行分类讨论,求出所有符合条件的值,以免丢解. 24.(1)A(-4,0),B(0,4),C(2,0);(2)画图见解析;E(-34,0);(3)存在,点的坐标为(-1,3)或45,125. 【解析】 【分析】 (1)分别令x=0,y=0即可确定A、B 解析:(1)A(-4,0),B(0,4),C(2,0);(2)画图见解析;E;(3)存在,点的坐标为或. 【解析】 【分析】 (1)分别令x=0,y=0即可确定A、B的坐标,然后确定直线BC的解析式,然后再令y=0,即可求得C的坐标; (2)先根据中点的性质求出D的坐标,然后再根据轴对称确定的坐标,然后确定DB1的解析式,令y=0,即可求得E的坐标; (3)分别就D点在AB和D点BC上两种情况进行解答即可. 【详解】 解:(1)在中, 令,得, 令,得, ,. 把代入,, 得 直线为:. 在中, 令,得, 点的坐标为; (2)如图点为所求 点是的中点,,. . 点关于轴的对称点的坐标为. 设直线的解析式为. 把,代入, 得. 解得,. 故该直线方程为:. 令,得点的坐标为. (3)存在,点的坐标为或. ①当点在上时,由 得到:, 由等腰直角三角形求得点的坐标为; ②当点在上时,如图,设交轴于点. 在与中, . , 点的坐标为, 易得直线的解析式为, 与组成方程组, 解得. 交点的坐标为 【点睛】 本题是一次函数的综合题,考查了利用待定系数法求一次函数的解析式、轴对称等知识点,掌握一次函数的函数的知识和差分类讨论的思想是解答本题的关键. 25.(1)①证明见解析;②;(2);(3). 【分析】 (1)①由,推出,,推出四边形是平行四边形,再证明即可. ②先证明,推出,延长即可解决问题. (2).只要证明是等边三角形即可. (3)结论:.如 解析:(1)①证明见解析;②;(2);(3). 【分析】 (1)①由,推出,,推出四边形是平行四边形,再证明即可. ②先证明,推出,延长即可解决问题. (2).只要证明是等边三角形即可. (3)结论:.如图3中,将绕点逆时针旋转得到,先证明,再证明是直角三角形即可解决问题. 【详解】 (1)①证明:如图1中, 四边形是矩形, ,, , 在和中, , , ,, 四边形是平行四边形, ,, , 四边形是菱形. ②平分, , , , , , ,, , . (2)结论:. 理由:如图2中,延长到,使得,连接. 四边形是菱形,, ,, , 在和中, , , ,, , , , 是等边三角形, , 在和中, , , ,,, , , , , 是等边三角形, 在中,,, , . (3)结论:. 理由:如图3中,将绕点逆时针旋转得到, , 四点共圆, ,, , , , 在和中, , , , ,, , ,, . 【点睛】 本题考查四边形综合题、矩形的性质、正方形的性质、菱形的判定和性质,等边三角形的判定和性质,勾股定理等知识,解题的关键是学会添加常用辅助线,构造全等三角形,学会转化的思想思考问题,属于中考压轴题.- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 数学 年级 下册 期末试卷 达标 训练 Word 答案
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【a199****6536】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【a199****6536】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【a199****6536】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【a199****6536】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文