数学八年级下册数学期末试卷模拟训练(Word版含解析).doc
《数学八年级下册数学期末试卷模拟训练(Word版含解析).doc》由会员分享,可在线阅读,更多相关《数学八年级下册数学期末试卷模拟训练(Word版含解析).doc(27页珍藏版)》请在咨信网上搜索。
数学八年级下册数学期末试卷模拟训练(Word版含解析) 一、选择题 1.要使式子在实数范围内有意义,则的取值范围是( ) A. B. C. D. 2.三条线段首尾相连,不能围成直角三角形的是( ) A.,, B.,, C.,, D.,, 3.下列命题不是真命题的是( ) A.等边三角形的角平分线相等 B.线段的垂直平分线上的点到线段两端的距离相等 C.有两个角相等的三角形是等腰三角形 D.一组对边平行的四边形是平行四边形 4.校篮球队所买10双运动鞋的尺码统计如表,则这10双运动鞋尺码的众数和中位数分别为( ) 尺码(cm) 25 25.5 26 26.5 27 购买量(双) 1 1 2 4 2 A.4 cm,26 cm B.4 cm,26.5 cm C.26.5 cm,26.5 cm D.26.5 cm,26 cm 5.三角形三边长分别是6,10,8,则它的最长边上的高为( ) A.6 B.10 C.8 D.4.8 6.如图,在中,,,平分线与的垂直平分线交于点,将沿(在上,在上)折叠,点与点O恰好重合,有如下五个结论:①;②;③是等边三角形;④;⑤.则上列说法中正确的个数是( ) A.2 B.3 C.4 D.5 7.如图,以Rt△ABC(AC⊥BC)的三边为边,分别向外作正方形,它们的面积分别为S1﹑S2﹑S3,若S1+S2+S3=12,则S1的值是( ) A.4 B.5 C.6 D.7 8.如图所示的图象(折线)描述了一辆汽车在某一直线上的行驶过程中,汽车离出发地的距离(千米)与行驶时间(时)之间的函数关系,根据图中提供的信息,给出下列说法:①汽车共行驶了140千米;②汽车在行驶途中停留了1小时;③汽车在整个行驶过程中的平均速度为30千米/时;④汽车出发后6小时至9小时之间行驶的速度在逐渐减小.其中正确的说法共有( ) A.1个 B.2个 C.3个 D.4个 二、填空题 9.若代数式有意义,则的取值范围是_____________. 10.菱形的对角线与相交于点O,若,则菱形的面积是___________. 11.如图,则阴影小长方形的面积S=_____. 12.如图所示,矩形中,,,点在边上,若平分,则的长是______. 13.已知A(﹣2,2),B(2,3),若要在x轴上找一点P,使AP+BP最短,此时点P的坐标为_____ 14.如图,在正方形ABCD中,点E、F分别在对角线BD上,请你添加一个条件____________,使四边形AECF是菱形. 15.如图,已知直线:,直线:和点,过点作轴的平行线交直线于点,过点作轴的平行线交直线于点,过点作轴的平行线交直线于点,过点作轴的平行线交直线于点,…,按此作法进行下去,则点的横坐标为________. 16.如图,在中,,,,点、分别在、上,将沿翻折,使与的中点重合,则的长为______. 三、解答题 17.计算: (1)﹣(π﹣3.14)0+|﹣2| (2)﹣4﹣2(﹣1) (3)(2)(2)﹣(﹣3)2 18.《九章算术》是我国古代最重要的数学著作之一,在“勾股”章中记载了一道“折竹抵地”问题:“今有竹高一丈,末折抵地,去根四尺,问折者高几何?”翻译成数学问题是:如图所示,中,∠ACB=90°,AC+AB=10,BC=4,求AC的长. 19.如图①,图②,图③都是4×4的正方形网格,每个小正方形的顶点称为格点.A,B两点均在格点上,在给定的网格中,按下列要求画图: (1)在图①中,画出以AB为底边的等腰△ABC,并且点C为格点. (2)在图②中,画出以AB为腰的等腰△ABD,并且点D为格点. (3)在图③中,画出以AB为腰的等腰△ABE,并且点E为格点,所画的△ABE与图②中所画的△ABD不全等. 20.如图,在平行四边形ABCD中,∠ABC的平分线BE交AD于点E,点F是BC边上的一点,且BF=AB,连接EF. (1)求证:四边形ABFE是菱形; (2)连接AF,交BE于点O,若AB=5,BE+AF=14,求菱形ABFE的面积. 21.观察下列等式: ①; ②; ③; …… 回答下列问题: (1)仿照上列等式,写出第n个等式: ; (2)利用你观察到的规律,化简:; (3)计算: 22.某电商在线销售甲、乙、丙三种水果,已知每千克乙水果的售价比每千克甲水果的售价多3元,每千克丙水果的售价是每千克甲水果售价的2倍,用200元购买丙水果的数量是用80元购买乙水果数量的2倍. (1)求丙水果每千克的售价是多少元? (2)电商推出如下销售方案:甲、乙、丙三种水果搭配销售共7千克,其中乙水果的数量是丙水果数量的2倍,且甲、乙两种水果数量之和不超过丙水果数量的6倍.请直接写出按此方案购买7千克水果最少要花费 元. 23.已知如图,在中,点是边上一点,连接、,,,点是上一动点,连接. (1)如图1,若点是的中点,,求的面积; (2)如图2,当时,连接,求证:; (3)如图3,以为直角边作等腰,,连接,若,,当点在运动过程中,请直接写出周长的最小值. 24.在平面直角坐标系xOy中,对于任意三点A,B,C的“矩积”,给出如下定义:“横底”a:任意两点横坐标差的最大值;“纵高”h:任意两点纵坐标差的最大值;则“矩积”S=ah.例如:三点坐标分别为A(1,﹣2),B(2,2),C(﹣1,﹣3),则“横底”a=3,“纵高”h=5,“矩积”S=ah=15.已知点D(﹣2,3),E(1,﹣1). (1)若点F在x轴上. ①当D,E,F三点的“矩积”为24,则点F的坐标为 ; ②直接写出D,E,F三点的“矩积”的最小值为 ; (2)若点F在直线y=mx+4上,使得D,E,F三点的“矩积”取到最小值,直接写出m的取值范围是 . 25.如图,在平面直角坐标系中,点A的坐标为(0,6),点B在x轴的正半轴上.若点P、Q在线段AB上,且PQ为某个一边与x轴平行的矩形的对角线,则称这个矩形为点P、Q的“涵矩形”。下图为点P、Q的“涵矩形”的示意图. (1)点B的坐标为(3,0); ①若点P的横坐标为,点Q与点B重合,则点P、Q的“涵矩形”的周长为 . ②若点P、Q的“涵矩形”的周长为6,点P的坐标为(1,4),则点E(2,1),F(1,2),G(4,0)中,能够成为点P、Q的“涵矩形”的顶点的是 . (2)四边形PMQN是点P、Q的“涵矩形”,点M在△AOB的内部,且它是正方形; ①当正方形PMQN的周长为8,点P的横坐标为3时,求点Q的坐标. ②当正方形PMQN的对角线长度为/2时,连结OM.直接写出线段OM的取值范围 . 【参考答案】 一、选择题 1.B 解析:B 【分析】 根据负数没有平方根判断即可确定出的范围. 【详解】 解:要使式子在实数范围内有意义,则需,即, 则的取值范围是, 故选:B. 【点睛】 此题考查了二次根式有意义的条件,弄清二次根式性质是解本题的关键. 2.D 解析:D 【分析】 根据勾股定理逆定理,验证两条较短边的平方和是否等于最长边的平方即可求解. 【详解】 解:A、因为 ,所以,,能围成直角三角形,故本选项不符合题意; B、因为 ,所以,,能围成直角三角形,故本选项不符合题意; C、因为 ,所以,,能围成直角三角形,故本选项不符合题意; D、因为 ,所以,,不能围成直角三角形,故本选项符合题意; 故选:D. 【点睛】 本题主要考查了勾股定理逆定理,熟练掌握若一个三角形的两边的平方和等于第三边的平方,则这个三角形是直角三角形是解题的关键. 3.D 解析:D 【解析】 【分析】 根据等边三角形的性质、线段垂直平分线的性质定理、等腰三角形的判定定理、平行四边形的定义判断即可. 【详解】 解:A、等边三角形的角平分线相等,是真命题,不符合题意; B、线段的垂直平分线上的点到线段两端的距离相等,是真命题,不符合题意; C、有两个角相等的三角形是等腰三角形,是真命题,不符合题意; D、一组对边平行的四边形是平行四边形或梯形,本选项说法不是真命题,符合题意; 故选:D. 【点睛】 本题考查了真假命题的判断,等边三角形,线段的垂直平分线,等腰三角形,平行四边形,掌握相关性质定理是解题的关键. 4.C 解析:C 【解析】 【分析】 根据众数的含义及中位数的求法进行即可. 【详解】 在这一组数据中26.5是出现次数最多的,故众数是26.5cm; 处于这组数据中间位置的数是26.5、26.5,那么中位数的定义可知,这组数据的中位数是(26.5+26.5)÷2=26.5cm. 故选C. 【点睛】 本题考查了众数及中位数,一组数据中出现次数最多的数称为众数,一组数据的众数可以不止一个,把一组数据按大小排列,中间位置一个数或两个数的平均数是这组数据的中位数;掌握它们的含义是关键. 5.D 解析:D 【分析】 先判断三角形的形状,再依据三角形的面积公式求出这个三角形的面积,且依据同一个三角形的面积不变求出斜边上的高. 【详解】 解:∵三角形三边长分别是6,10,8 ∴62+82=102 ∴该三角形为直角三角形 ∴该三角形的面积:6×8÷2=24 斜边上的高:24×2÷10=4.8 ∴这个三角形最长边上的高是4.8. 故选:D. 【点睛】 本题考查了勾股定理逆定理以及面积不变原则,解答此题的关键是:先确定出计算三角形的面积需要的线段的长度,再据同一个三角形的面积不变,求出斜边上的高. 6.B 解析:B 【解析】 【分析】 利用三线合一可判断①;由折叠的性质可判断④;根据垂直平分线的性质得到OA=OB,从而计算出∠ACB=∠EOF=63°,可判断③;证明△OAB≌△OAC,得到OA=OB=OC,从而推出∠OEF=54°,可判断⑤;而题中条件无法得出OD=OE,可判断②. 【详解】 解:如图,连接OB,OC, ∵AB=AC,OA平分∠BAC,∠BAC=54°, ∴AO⊥BC(三线合一),故①正确; ∠BAO=∠CAO=∠BAC=×54°=27°, ∠ABC=∠ACB=×(180°-∠BAC)=×126°=63°, ∵DO是AB的垂直平分线, ∴OA=OB,即∠OAB=∠OBA=27°, 则∠OBC=∠ABC-∠OBA=63°-27°=36°≠∠OBA, 由折叠可知:△OEF≌△CEF,故④正确; 即∠ACB=∠EOF=63°≠60°,OE=CE,∠OEF=∠CEF, ∴△OEF不是等边三角形,故③错误; 在△OAB和△OAC中, , ∴△OAB≌△OAC(SAS), ∴OB=OC, 又OB=OA, ∴OA=OB=OC, ∠OCB=∠OBC=36°, 又OE=CE, ∴∠OCB=∠EOC=36°, ∴∠OEC=180°-(∠OCB+∠EOC)=180°-72°=108°, 又∠OEC=∠OEF+∠CEF ∠OEF=108°÷2=54°,故⑤正确; 而题中条件无法得出OD=OE,故②错误; ∴正确的结论为①④⑤共3个, 故选B. 【点睛】 本题考查了折叠的性质,线段垂直平分线的性质,等腰三角形三线合一的性质,等边对等角的性质,以及全等三角形的判定和性质,综合性较强,难度较大,作辅助线,构造出等腰三角形是解题的关键. 7.C 解析:C 【解析】 【分析】 根据正方形的面积公式结合勾股定理就可发现大正方形的面积是两个小正方形的面积和,即可得出答案. 【详解】 解:∵由勾股定理得:AC2+BC2=AB2, ∴S3+S2=S1, ∵S1+S2+S3=12, ∴2S1=12, ∴S1=6, 故选:C. 【点睛】 题考查了勾股定理和正方形面积的应用,注意:分别以直角三角形的边作相同的图形,则两个小图形的面积等于大图形的面积. 8.A 解析:A 【分析】 根据函数图像上的特殊点以及函数图像自身的实际意义进行判断即可. 【详解】 解:由图象可知,汽车走到距离出发点140千米的地方后又返回出发点,所以汽车共行驶了280千米,①错;从3时开始到4时结束,时间在增多,而路程没有变化,说明此时在停留,停留了4-3=1小时,②对;汽车用9小时走了280千米,平均速度为:280÷9≠30米/时,③错.汽车自出发后6小时至9小时,图象是直线形式,说明是在匀速前进,④错. 故答案为A. 【点睛】 本题考查由函数图象的实际意义,理解函数图像所反映的运动过程是解答本题的关键. 二、填空题 9.且 【解析】 【分析】 根据二次根式和分式有意义的条件即可得出答案. 【详解】 解:根据题意得:1-x≥0,且x+1≠0, ∴且 故答案为:且. 【点睛】 本题考查了二次根式和分式有意义的条件,掌握二次根式中的被开方数是非负数和分母≠0是解题的关键. 10.A 解析:120 【解析】 【分析】 在Rt△AOB中,AO2+BO2=AB2,从而求出BO,继而得出BD,根据菱形的面积等于对角线乘积的一半可得出答案. 【详解】 解:∵四边形ABCD是菱形, ∴AO=OC,BO=DO,AC⊥BD ∵AC=24,AO=AC=12, 在Rt△AOB中,AO2+BO2=AB2, 又AB=13, ∴BO==5, ∴BD=10, ∴S菱形ABCD=AC•BD=×10×24=120, ∴菱形ABCD的面积为120. 故答案为:120. 【点睛】 本题考查菱形的性质,属于中等难度的题目,解答本题关键是掌握①菱形的对角线互相垂直且平分,②菱形的面积等于底乘以底边上的高,还等于对角线乘积的一半. 11.30 【解析】 【分析】 由勾股定理求出小长方形的长,再由长方形的面积公式进行计算. 【详解】 由勾股定理得:=10, ∴阴影小长方形的面积S=3×10=30; 故答案是:30. 【点睛】 考查了勾股定理;解题关键是利用勾股定理求出小长方形的长. 12. 【分析】 过点作于,由题意可证,可得,,根据勾股定理可求的长,即可求的长. 【详解】 解:过点作于 四边形是矩形 ,, 平分 ,且, ,, , ,、 , 在中, 故答案为: 【点睛】 本题考查了矩形的性质,全等三角形的判定和性质,解题的关键是添加适当的辅助线构造全等三角形. 13.A 解析:(-0.4,0) 【分析】 点A(-2,2)关于x轴对称的点A'(-2,-2),求得直线A'B的解析式,令y=0可求点P的横坐标. 【详解】 解:点A(-2,2)关于x轴对称的点A'(-2,-2), 设直线A'B的解析式为y=kx+b, 把A'(-2,-2),B(2,3)代入,可得 ,解得 , ∴直线A'B的解析式为y=x+, 令y=0,则0=x+, 解得x=-0.4, ∴点P的坐标为(-0.4,0), 故答案为(-0.4,0). 【点睛】 本题综合考查待定系数法求一次函数解析式,一次函数图象上点的坐标特征,两点之间线段最短等知识点.凡是涉及最短距离的问题,一般要考虑线段的性质定理,多数情况要作点关于某直线的对称点. 14.B 解析:BE=DF 【分析】 根据正方形的性质,可得正方形的四条边相等,对角线平分对角,根据 SAS,可得△ABF与△CBF与△CDE与△ADE的关系,根据三角形全等,可得对应边相等,再根据四条边相等的四边形,可得证明结果. 【详解】 添加的条件为:BE=DF, 理由:正方形ABCD中,对角线BD, ∴AB=BC=CD=DA,∠ABE=∠CBE=∠CDF=∠ADF=45°. ∵BE=DF, ∴△ABE≌△CBE≌△DCF≌△DAF(SAS). ∴AE=CE=CF=AF, ∴四边形AECF是菱形; 故答案为:BE=DF. 【点睛】 本题考查了正方形的性质,菱形的判定,全等三角形的判定和性质,熟练掌握全等三角形的判定定理是解题的关键. 15.【分析】 点P(1,0),P1在直线y=x上,得到P1(1,1),求得P2的纵坐标=P1的纵坐标=1,得到P2(-2,1),即P2的横坐标为-2=-21,同理,P3的横坐标为-2=-21,P4的横 解析:【分析】 点P(1,0),P1在直线y=x上,得到P1(1,1),求得P2的纵坐标=P1的纵坐标=1,得到P2(-2,1),即P2的横坐标为-2=-21,同理,P3的横坐标为-2=-21,P4的横坐标为4=22,P5=22,P6=-23,P7=-23,P8=24…,求得,于是得到结论. 【详解】 解:∵点P(1,0),P1在直线y=x上, ∴P1(1,1), ∵P1P2∥x轴, ∴P2的纵坐标=P1的纵坐标=1, ∵P2在直线上, ∴ ∴x=-2, ∴P2(-2,1),即P2的横坐标为-2=-21, 同理,P3的横坐标为-2=-21,P4的横坐标为4=22,P5=22,P6=-23,P7=-23,P8=24…, ∴, ∴P2020的横坐标为=21010, ∴P2021的横坐标为21010, 故答案为:21010. 【点睛】 本题考查了一次函数图象上点的坐标特征,规律型:点的坐标,正确的作出规律是解题的关键. 16.【分析】 过点M作于N,则,可得MN是的中位线,利用三角形中位线定理可得MN=AC=3,BN=CN=BC=4,设CF=x,则NF=4-x,由折叠的性质可得MF=CF,在中,利用勾股定理即可求解. 解析: 【分析】 过点M作于N,则,可得MN是的中位线,利用三角形中位线定理可得MN=AC=3,BN=CN=BC=4,设CF=x,则NF=4-x,由折叠的性质可得MF=CF,在中,利用勾股定理即可求解. 【详解】 解:过点M作于N, ∵,, ∴, ∵是的中点, ∴MN是的中位线, ∴MN=AC=3,BN=CN=BC=4, 设CF=x,则NF=4-x, ∵将沿翻折,使与的中点重合, ∴MF=CF=x, 在中,, ∴,解得, ∴CF=. 故答案为:. 【点睛】 本题考查折叠的性质,三角形的中位线定理,勾股定理等知识,熟练掌握三角形的中位线定理,利用勾股定理建立方程求解是解题的关键. 三、解答题 17.(1);(2)2;(3) 【分析】 (1)根据零次幂、立方根及绝对值可直接进行求解; (2)先对二次根式进行化简,然后再进行二次根式的加减运算; (3)利用乘法公式进行二次根式的混合运算即可. 【详 解析:(1);(2)2;(3) 【分析】 (1)根据零次幂、立方根及绝对值可直接进行求解; (2)先对二次根式进行化简,然后再进行二次根式的加减运算; (3)利用乘法公式进行二次根式的混合运算即可. 【详解】 解:(1)原式=; (2)原式=; (3)原式=. 【点睛】 本题主要考查二次根式的混合运算及零次幂,熟练掌握二次根式的混合运算及零次幂是解题的关键. 18.【分析】 直接利用勾股定理进而得出AC的长. 【详解】 解:∵在△ABC中,∠ACB=90°, ∴AC2+BC2=AB2, ∵AC+AB=10,BC=4, 设AC=x,则AB=10﹣x, ∴x2+ 解析: 【分析】 直接利用勾股定理进而得出AC的长. 【详解】 解:∵在△ABC中,∠ACB=90°, ∴AC2+BC2=AB2, ∵AC+AB=10,BC=4, 设AC=x,则AB=10﹣x, ∴x2+42=(10﹣x)2, 解得:x=, 答:AC的长为. 【点睛】 此题主要考查了勾股定理的应用,正确得出等式方程是解题关键. 19.(1)见解析;(2)见解析;(3)见解析. 【解析】 【分析】 (1)根据勾股定理AB=,以AB为底等腰直角三角形,两直角边为x, 根据勾股定理求出,找横1竖2个格,或横2竖1个格画线即可; (2) 解析:(1)见解析;(2)见解析;(3)见解析. 【解析】 【分析】 (1)根据勾股定理AB=,以AB为底等腰直角三角形,两直角边为x, 根据勾股定理求出,找横1竖2个格,或横2竖1个格画线即可; (2)以AB=为腰的等腰△ABD,AB=AD,以点A为起点找横1竖3个格,或横3竖1个格画线;如图△ABD; AB=BD,以点B为起点找横1竖3个格,或横3竖1个格画线;如图△ABD. (3)以AB=为腰的等腰△ABD,AB=BE,以点B为起点找横1竖3个格,或横3竖1个格;如图△ABE.AB=AE,以点A为起点找横1竖3个格,或横3竖1个格;所画的△ABE与图②中所画的△ABD不同即可. 【详解】 解:(1)∵根据勾股定理AB=,以AB为底等腰直角三角形,两直角边为x, 根据勾股定理,解得,横1竖2,或横2竖1个画线;如图△ABC; (2)以AB=为腰的等腰△ABD,AB=AD,以点A为起点找横1竖3个格,或横3竖1个格画线;如图△ABD;AB=BD,以点B为起点找横1竖3个格画线,或横3竖1个格;如图△ABD; (3)以AB=为腰的等腰△ABD,AB=BE,以点B为起点找横1竖3个格,或横3竖1个格;如图△ABE.AB=AE,以点A为起点找横1竖3个格,或横3竖1个格;所画的△ABE与图②中所画的△ABD不全等. 【点睛】 本题考查网格作图,掌握网格作图方法与勾股定理,利用勾股定理确定腰长构造直角三角形是解题关键. 20.(1)见解析;(2)24 【分析】 (1)证,则,,得四边形是平行四边形,再由,即可得出结论; (2)由菱形的性质得,,,则,再由勾股定理得出方程:,解方程即可. 【详解】 (1)证明:四边形是平行 解析:(1)见解析;(2)24 【分析】 (1)证,则,,得四边形是平行四边形,再由,即可得出结论; (2)由菱形的性质得,,,则,再由勾股定理得出方程:,解方程即可. 【详解】 (1)证明:四边形是平行四边形, , , 的平分线交于点, , , , , ,, 四边形是平行四边形, 又, 平行四边形是菱形; (2)解:由(1)得:四边形是菱形, ,,, , , 在中,由勾股定理得:, 即, 解得:或, 当时,,则,; 当时,,则,; 菱形的面积. 【点睛】 本题考查了平行四边形的性质、菱形的判定和性质、勾股定理等知识,熟练掌握菱形的判定与性质是解题的关键. 21.(1) (2分) (2)(3分) (3)-1(3分) 【解析】 【详解】 试题分析: (1)根据题意可以观察出:第n个等式:; (2)由(1)中的结论可得结果;(3)由(1)中的结论将式子化简,然后 解析:(1) (2分) (2)(3分) (3)-1(3分) 【解析】 【详解】 试题分析: (1)根据题意可以观察出:第n个等式:; (2)由(1)中的结论可得结果;(3)由(1)中的结论将式子化简,然后其中的有些数可以互相抵消,最后化简即可. 试题解析: (1)根据题意可以观察出:第n个等式:; (2)根据(1)的结论可得:; (3)原式= . 考点:分母有理化. 22.(1)10;(2)46 【分析】 (1)设每千克甲水果的售价是元,则每千克乙水果的售价是元,每千克丙水果的售价是元,利用数量总价单价,结合用200元购买丙水果的数量是用80元购买乙水果数量的2倍,即 解析:(1)10;(2)46 【分析】 (1)设每千克甲水果的售价是元,则每千克乙水果的售价是元,每千克丙水果的售价是元,利用数量总价单价,结合用200元购买丙水果的数量是用80元购买乙水果数量的2倍,即可得出关于的分式方程,解之经检验后即可得出结论; (2)设搭配方案中含丙水果千克,则含乙水果千克,甲水果千克,根据甲、乙两种水果数量之和不超过丙水果数量的6倍,即可得出关于的一元一次不等式,解之即可得出的取值范围,设购买7千克水果的费用为元,利用总价单价数量,即可得出关于的函数关系式,再利用一次函数的性质即可解决最值问题. 【详解】 解:(1)设每千克甲水果的售价是元,则每千克乙水果的售价是元,每千克丙水果的售价是元, 依题意得:, 解得:, 经检验,是原方程的解,且符合题意, ,. 答:每千克丙水果的售价是10元. (2)设搭配方案中含丙水果千克,则含乙水果千克,甲水果千克, 依题意得:, 解得:. 设购买7千克水果的费用为元,则. , 随的增大而增大, 当时,取得最小值,最小值(元. 故答案为:46. 【点睛】 本题考查了分式方程的应用、一元一次不等式的应用以及一次函数的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)根据各数量之间的关系,找出关于的函数关系式. 23.(1);(2)证明见解析;(3) 【分析】 (1)先利用等腰直角三角形的性质求解 再求解的面积,从而可得平行四边形的面积; (2)如图,延长交于点 先证明再证明 再结合平行四边形的性质可得: (3) 解析:(1);(2)证明见解析;(3) 【分析】 (1)先利用等腰直角三角形的性质求解 再求解的面积,从而可得平行四边形的面积; (2)如图,延长交于点 先证明再证明 再结合平行四边形的性质可得: (3)如图,过作,交的延长线于 过作 交于 先证明在上运动,作关于的对称点,连接,交于 确定三角形周长最小时的位置,再过作于 分别求解 再利用勾股定理求解即可. 【详解】 解:(1)是的中点, 设 解得: (负根舍去) , (2)如图,延长交于点 在中, (3)如图,过作,交的延长线于 过作 交于 等腰直角三角形 在上运动, 如图,作关于的对称点,连接,交于 此时周长最短, 过作于 由(2)得: 而 由(2)得: 是等腰直角三角形, 即的周长的最小值是 【点睛】 本题考查的是全等三角形的判定与性质,等腰直角三角形的性质,勾股定理的应用,平行四边形的性质,轴对称的性质,动点的轨迹,灵活应用以上知识是解题的关键. 24.(1)①(﹣5,0)或(4,0);②12;(2)或 【解析】 【分析】 (1)①已知F在x轴上,故“纵高”=4,根据“矩积”的定义,可知“横底”=6,应分三种情况进行分类讨论,当a<-2时、当-2≤ 解析:(1)①(﹣5,0)或(4,0);②12;(2)或 【解析】 【分析】 (1)①已知F在x轴上,故“纵高”=4,根据“矩积”的定义,可知“横底”=6,应分三种情况进行分类讨论,当a<-2时、当-2≤a≤1时、当a>1时; ②将F点的横坐标仍按照三类情况进行讨论,根据“矩积”的定义可求解; (2)使直线过点D(-2,3)或点H(1,3),求出该特殊位置时m的值,即可求解. 【详解】 解:(1)设点F坐标为(a,0), ①∵D,E,F三点的“矩积”为24,“纵高”=4, ∴“横底”=6, 当a<-2时,则“横底”=1-a=6, ∴a=-5; 当-2≤a≤1时,则“横底”=3≠6,不合题意舍去; 当a>1时,则“横底”=a-(-2)=6; ∴a=4, ∴点F(﹣5,0)或(4,0), 故答案为:(﹣5,0)或(4,0); ②当a<-2时,则1-a>3, ∴S=4(1-a)>12, 当﹣2≤a≤1时,S=34=12, 当a>1时,则a-(-2)>3, ∴S=4[a-(-2)]>12, ∴D,E,F三点的“矩积”的最小值为12, 故答案为:12; (2)由(1)可知:设点F(a,0),当﹣2≤a≤1时,D,E,F三点的“矩积”能取到最小值,如图下图所示,直线y=mx+4恒过点(0,4),使该直线过点D(-2,3)或点H(1,3),当F在点D或点H时,D,E,F三点的“矩积”的最小值为12, 当直线y=mx+4过点D(-2,3)时, ∴3=-2m+4, ∴解得:, 当直线y=mx+4过点H(1,3)时, ∴3=m+4, ∴m=-1, ∴当m≥或m≤-1时,D,E,F三点的“矩积”能取到最小值. 【点睛】 本题主要考察了一次函数的几何应用,提出了“矩积”这个全新的概念,解题的关键在于通过题目的描述,知道“矩积”的定义,同时要注意分类讨论. 25.(1)①9,②(1,2);(2)①(1,5)或(5,1),②522≤OM≤5 【解析】 【分析】 (1)①根据题意求出PE,EQ即可解决问题. ②求出点P、Q的“涵矩形”的长与宽即可判断. (2)① 解析:(1)①9,②(1,2);(2)①(1,5)或(5,1),② 【解析】 【分析】 (1)①根据题意求出PE,EQ即可解决问题. ②求出点P、Q的“涵矩形”的长与宽即可判断. (2)①求出正方形的边长,分两种情形分别求解即可解决问题. ②点M在直线y=-x+5上运动,设直线y=-x+5交x轴于F,交y轴于E,作OD⊥EF于D.求出OM的最大值,最小值即可判断. 【详解】 解:(1)①如图1中, 由题意:矩形PEQF中,EQ=PF=3- , ∴OE=EQ, ∵EP∥OA, ∴AP=PQ, ∴PE=QF=OA=3, ∴点P、Q的“涵矩形”的周长=(3+)×2=9. ②如图2中, ∵点P、Q的“涵矩形”的周长为6, ∴邻边之和为3, ∵矩形的长是宽的两倍, ∴点P、Q的“涵矩形”的长为2,宽为1, ∵P(1,4),F(1,2), ∴PF=2,满足条件, ∴F(1,2)是矩形的顶点. (2)①如图3中, ∵点P、Q的“涵矩形”是正方形, ∴∠ABO=45°, ∴点A的坐标为(0,6), ∴点B的坐标为(6,0), ∴直线AB的函数表达式为y=-x+6, ∵点P的横坐标为3, ∴点P的坐标为(3,3), ∵正方形PMQN的周长为8, ∴点Q的横坐标为3-2=1或3+2=5, ∴点Q的坐标为(1,5)或(5,1). ②如图4中, ∵正方形PMQN的对角线为, ∴PM=MQ=1, 易知M在直线y=-x+5上运动,设直线y=-x+5交x轴于F,交y轴于E,作OD⊥EF于D, ∵OE=OF=5, ∴EF= , ∵OD⊥EF, ∴ED=DF, ∴OD=EF= , ∴OM的最大值为5,最小值为, ∴. 【点睛】 本题属于四边形综合题,考查了矩形的判定和性质,正方形的判定和性质,一次函数的应用,垂线段最短等知识,解题的关键是理解题意,学会用分类讨论的思想思考问题,属于中考压轴题.- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 数学 年级 下册 期末试卷 模拟 训练 Word 解析
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【快乐****生活】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【快乐****生活】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【快乐****生活】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【快乐****生活】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文