人教版七年级下册数学期末解答题压轴题卷含答案.doc
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 人教版七 年级 下册 数学 期末 解答 压轴 题卷含 答案
- 资源描述:
-
人教版七年级下册数学期末解答题压轴题卷含答案 一、解答题 1.(1)小丽计划在母亲节那天送份礼物妈妈,特设计一个表面积为12dm2的正方体纸盒,则这个正方体的棱长是 . (2)为了增加小区的绿化面积,幸福公园准备修建一个面积121πm2的草坪,草坪周围用篱笆围绕.现从对称美的角度考虑有甲,乙两种方案,甲方案:建成正方形;乙方案:建成圆形的.如果从节省篱笆费用的角度考虑,你会选择哪种方案?请说明理由; (3)在(2)的方案中,审批时发现修如此大的草坪,目的是亲近自然,若按上方案就没达到目的,因此建议用如图的设计方案:正方形里修三条小路,三条小路的宽度是一样,这样草坪的实际面积就减少了21πm2,请你根据此方案求出各小路的宽度(π取整数). 2.有一块面积为100cm2的正方形纸片. (1)该正方形纸片的边长为 cm(直接写出结果); (2)小丽想沿着该纸片边的方向裁剪出一块面积为90cm2的长方形纸片,使它的长宽之比为4:3.小丽能用这块纸片裁剪出符合要求的纸片吗? 3.观察下图,每个小正方形的边长均为1, (1)图中阴影部分的面积是多少?边长是多少? (2)估计边长的值在哪两个整数之间. 4.如图,用两个边长为15的小正方形拼成一个大的正方形, (1)求大正方形的边长? (2)若沿此大正方形边的方向剪出一个长方形,能否使剪出的长方形纸片的长宽之比为4:3,且面积为720cm2? 5.某市在招商引资期间,把已倒闭的油泵厂出租给外地某投资商,该投资商为减少固定资产投资,将原来的400m2的正方形场地改建成300m2的长方形场地,且其长、宽的比为5:3. (1)求原来正方形场地的周长; (2)如果把原来的正方形场地的铁栅栏围墙全部利用,围成新场地的长方形围墙,那么这些铁栅栏是否够用?试利用所学知识说明理由. 二、解答题 6.如图1,已AB∥CD,∠C=∠A. (1)求证:AD∥BC; (2)如图2,若点E是在平行线AB,CD内,AD右侧的任意一点,探究∠BAE,∠CDE,∠E之间的数量关系,并证明. (3)如图3,若∠C=90°,且点E在线段BC上,DF平分∠EDC,射线DF在∠EDC的内部,且交BC于点M,交AE延长线于点F,∠AED+∠AEC=180°, ①直接写出∠AED与∠FDC的数量关系: . ②点P在射线DA上,且满足∠DEP=2∠F,∠DEA﹣∠PEA=∠DEB,补全图形后,求∠EPD的度数 7.如图,已知直线,点在直线上,点在直线上,点在点的右侧,平分平分,直线交于点. (1)若时,则___________; (2)试求出的度数(用含的代数式表示); (3)将线段向右平行移动,其他条件不变,请画出相应图形,并直接写出的度数.(用含的代数式表示) 8.已知,定点,分别在直线,上,在平行线,之间有一动点. (1)如图1所示时,试问,,满足怎样的数量关系?并说明理由. (2)除了(1)的结论外,试问,,还可能满足怎样的数量关系?请画图并证明 (3)当满足,且,分别平分和, ①若,则__________°. ②猜想与的数量关系.(直接写出结论) 9.直线AB∥CD,点P为平面内一点,连接AP,CP. (1)如图①,点P在直线AB,CD之间,当∠BAP=60°,∠DCP=20°时,求∠APC的度数; (2)如图②,点P在直线AB,CD之间,∠BAP与∠DCP的角平分线相交于K,写出∠AKC与∠APC之间的数量关系,并说明理由; (3)如图③,点P在直线CD下方,当∠BAK=∠BAP,∠DCK=∠DCP时,写出∠AKC与∠APC之间的数量关系,并说明理由. 10.问题情境: (1)如图1,,,.求度数.小颖同学的解题思路是:如图2,过点作,请你接着完成解答. 问题迁移: (2)如图3,,点在射线上运动,当点在、两点之间运动时,,.试判断、、之间有何数量关系?(提示:过点作),请说明理由; (3)在(2)的条件下,如果点在、两点外侧运动时(点与点、、三点不重合),请你猜想、、之间的数量关系并证明. 三、解答题 11.已知,点为平面内一点,于. (1)如图1,点在两条平行线外,则与之间的数量关系为______; (2)点在两条平行线之间,过点作于点. ①如图2,说明成立的理由; ②如图3,平分交于点平分交于点.若,求的度数. 12.长江汛期即将来临,防汛指挥部在一危险地带两岸各安置了一探照灯,便于夜间查看江水及两岸河堤的情况,如图,灯A射线自顺时针旋转至便立即回转,灯B射线自顺时针旋转至便立即回转,两灯不停交叉照射巡视,若灯A转动的速度是a°/秒,灯B转动的速度是b°/秒,且a、b满足.假定这一带长江两岸河堤是平行的,即,且 (1)求a、b的值; (2)若灯B射线先转动45秒,灯A射线才开始转动,当灯B射线第一次到达时运动停止,问A灯转动几秒,两灯的光束互相平行? (3)如图,两灯同时转动,在灯A射线到达之前.若射出的光束交于点C,过C作交于点D,则在转动过程中,与的数量关系是否发生变化?若不变,请求出其数量关系;若改变,请求出其取值范围. 13.已知,交AC于点E,交AB于点F. (1)如图1,若点D在边BC上, ①补全图形; ②求证:. (2)点G是线段AC上的一点,连接FG,DG. ①若点G是线段AE的中点,请你在图2中补全图形,判断,,之间的数量关系,并证明; ②若点G是线段EC上的一点,请你直接写出,,之间的数量关系. 14.已知:和同一平面内的点. (1)如图1,点在边上,过作交于,交于.根据题意,在图1中补全图形,请写出与的数量关系,并说明理由; (2)如图2,点在的延长线上,,.请判断与的位置关系,并说明理由. (3)如图3,点是外部的一个动点.过作交直线于,交直线于,直接写出与的数量关系,并在图3中补全图形. 15.如图1,,在、内有一条折线. (1)求证:; (2)在图2中,画的平分线与的平分线,两条角平分线交于点,请你补全图形,试探索与之间的关系,并证明你的结论; (3)在(2)的条件下,已知和均为钝角,点在直线、之间,且满足,,(其中为常数且),直接写出与的数量关系. 四、解答题 16.在△ABC中,∠BAC=90°,点D是BC上一点,将△ABD沿AD翻折后得到△AED,边AE交BC于点F. (1)如图①,当AE⊥BC时,写出图中所有与∠B相等的角: ;所有与∠C相等的角: . (2)若∠C-∠B=50°,∠BAD=x°(0<x≤45) . ① 求∠B的度数; ②是否存在这样的x的值,使得△DEF中有两个角相等.若存在,并求x的值;若不存在,请说明理由. 17.如图所示,已知射线.点E、F在射线CB上,且满足,OE平分 (1)求的度数; (2)若平行移动AB,那么的值是否随之发生变化?如果变化,找出变化规律.若不变,求出这个比值; (3)在平行移动AB的过程中,是否存在某种情况,使?若存在,求出其度数.若不存在,请说明理由. 18.如图,在中,与的角平分线交于点. (1)若,则 ; (2)若,则 ; (3)若,与的角平分线交于点,的平分线与的平分线交于点,,的平分线与的平分线交于点,则 . 19.Rt△ABC中,∠C=90°,点D、E分别是△ABC边AC、BC上的点,点P是一动点.令∠PDA=∠1,∠PEB=∠2,∠DPE=∠α. (1)若点P在线段AB上,如图(1)所示,且∠α=50°,则∠1+∠2= °; (2)若点P在边AB上运动,如图(2)所示,则∠α、∠1、∠2之间的关系为: ; (3)若点P运动到边AB的延长线上,如图(3)所示,则∠α、∠1、∠2之间有何关系?猜想并说明理由. (4)若点P运动到△ABC形外,如图(4)所示,则∠α、∠1、∠2之间的关系为: . 20.如图1,已知线段AB、CD相交于点O,连接AC、BD,我们把形如图1的图形称之为“8字形”.如图2,∠CAB和∠BDC的平分线AP和DP相交于点P,并且与CD、AB分别相交于M、N.试解答下列问题: (1)仔细观察,在图2中有 个以线段AC为边的“8字形”; (2)在图2中,若∠B=96°,∠C=100°,求∠P的度数; (3)在图2中,若设∠C=α,∠B=β,∠CAP=∠CAB,∠CDP=∠CDB,试问∠P与∠C、∠B之间存在着怎样的数量关系(用α、β表示∠P),并说明理由; (4)如图3,则∠A+∠B+∠C+∠D+∠E+∠F的度数为 . 【参考答案】 一、解答题 1.(1)dm;(2)从节省篱笆费用的角度考虑,选择乙方案建成圆形;(3)根据此方案求出小路的宽度为 【分析】 (1)先求得正方体的一个面的面积,然后依据算术平方根的定义求解即可; (2)根据正方形的周 解析:(1)dm;(2)从节省篱笆费用的角度考虑,选择乙方案建成圆形;(3)根据此方案求出小路的宽度为 【分析】 (1)先求得正方体的一个面的面积,然后依据算术平方根的定义求解即可; (2)根据正方形的周长公式以及圆形的周长公式即可求出答案; (3)根据图形的平移求解. 【详解】 解:(1)∵正方体有6个面且每个面都相等, ∴正方体的一个面的面积=2 dm2. ∴正方形的棱长=dm; 故答案为: dm ; (2)甲方案:设正方形的边长为xm,则x2 =121 ∴x =11 ∴正方形的周长为:4x=44m 乙方案: 设圆的半径rm为,则r2==121 ∴r =11 ∴圆的周长为:2= 22m ∴ 442222(2- ∵ 4> ∴ 2 ∴ ∴正方形的周长比圆的周长大 故从节省篱笆费用的角度考虑,选择乙方案建成圆形; (3)依题意可进行如图所示的平移,设小路的宽度为ym ,则 (11 –y)2=12121 ∴11 –y =10 ∴ y= ∵ 取整数 ∴ y = 答:根据此方案求出小路的宽度为; 【点睛】 本题主要考查的是算术平方根的定义,熟练掌握正方形的性质以及平移的性质是解题的关键; 2.(1)10;(2)小丽不能用这块纸片裁出符合要求的纸片. 【分析】 (1)根据算术平方根的定义直接得出; (2)直接利用算术平方根的定义长方形纸片的长与宽,进而得出答案. 【详解】 解:(1)根据算 解析:(1)10;(2)小丽不能用这块纸片裁出符合要求的纸片. 【分析】 (1)根据算术平方根的定义直接得出; (2)直接利用算术平方根的定义长方形纸片的长与宽,进而得出答案. 【详解】 解:(1)根据算术平方根定义可得,该正方形纸片的边长为10cm; 故答案为:10; (2)∵长方形纸片的长宽之比为4:3, ∴设长方形纸片的长为4xcm,则宽为3xcm, 则4x•3x=90, ∴12x2=90, ∴x2=, 解得:x=或x=-(负值不符合题意,舍去), ∴长方形纸片的长为2cm, ∵5<<6, ∴10<2, ∴小丽不能用这块纸片裁出符合要求的纸片. 【点睛】 本题考查了算术平方根.解题的关键是掌握算术平方根的定义:一个正数的正的平方根叫这个数的算术平方根;0的算术平方根为0.也考查了估算无理数的大小. 3.(1)图中阴影部分的面积17,边长是;(2)边长的值在4与5之间 【分析】 (1)由图形可以得到阴影正方形的面积等于原来大正方形的面积减去周围四个直角三角形的面积,由正方形的面积等于边长乘以边长,可 解析:(1)图中阴影部分的面积17,边长是;(2)边长的值在4与5之间 【分析】 (1)由图形可以得到阴影正方形的面积等于原来大正方形的面积减去周围四个直角三角形的面积,由正方形的面积等于边长乘以边长,可以得到阴影正方形的边长; (2)根据,可以估算出边长的值在哪两个整数之间. 【详解】 (1)由图可知,图中阴影正方形的面积是:5×5−=17 则阴影正方形的边长为: 答:图中阴影部分的面积17,边长是 (2)∵ 所以4<<5 ∴边长的值在4与5之间; 【点睛】 本题主要考查了无理数的估算及算术平方根的定义,解题主要利用了勾股定理和正方形的面积求解,有一定的综合性,解题关键是无理数的估算. 4.(1)30;(2)不能. 【解析】 【分析】 (1)根据已知正方形的面积求出大正方形的面积,即可求出边长; (2)先求出长方形的边长,再判断即可. 【详解】 解:(1)∵大正方形的面积是: ∴大正 解析:(1)30;(2)不能. 【解析】 【分析】 (1)根据已知正方形的面积求出大正方形的面积,即可求出边长; (2)先求出长方形的边长,再判断即可. 【详解】 解:(1)∵大正方形的面积是: ∴大正方形的边长是: =30; (2)设长方形纸片的长为4xcm,宽为3xcm, 则4x•3x=720, 解得:x= , 4x= = >30, 所以沿此大正方形边的方向剪出一个长方形,不能使剪出的长方形纸片的长宽之比为4:3,且面积为720cm2. 故答案为(1)30;(2)不能. 【点睛】 本题考查算术平方根,解题的关键是能根据题意列出算式. 5.(1)原来正方形场地的周长为80m;(2)这些铁栅栏够用. 【分析】 (1)正方形边长=面积的算术平方根,周长=边长×4,由此解答即可; (2)长、宽的比为5:3,设这个长方形场地宽为3am,则长为 解析:(1)原来正方形场地的周长为80m;(2)这些铁栅栏够用. 【分析】 (1)正方形边长=面积的算术平方根,周长=边长×4,由此解答即可; (2)长、宽的比为5:3,设这个长方形场地宽为3am,则长为5am,计算出长方形的长与宽可知长方形周长,同理可得正方形的周长,比较大小可知是否够用. 【详解】 解:(1)=20(m),4×20=80(m), 答:原来正方形场地的周长为80m; (2)设这个长方形场地宽为3am,则长为5am. 由题意有:3a×5a=300, 解得:a=±, ∵3a表示长度, ∴a>0, ∴a=, ∴这个长方形场地的周长为 2(3a+5a)=16a=16(m), ∵80=16×5=16×>16, ∴这些铁栅栏够用. 【点睛】 本题考查了算术平方根的实际应用,解答本题的关键是明确题意,求出长方形和正方形的周长. 二、解答题 6.(1)见解析;(2)∠BAE+∠CDE=∠AED,证明见解析;(3)①∠AED-∠FDC=45°,理由见解析;②50° 【分析】 (1)根据平行线的性质及判定可得结论; (2)过点E作EF∥AB,根 解析:(1)见解析;(2)∠BAE+∠CDE=∠AED,证明见解析;(3)①∠AED-∠FDC=45°,理由见解析;②50° 【分析】 (1)根据平行线的性质及判定可得结论; (2)过点E作EF∥AB,根据平行线的性质得AB∥CD∥EF,然后由两直线平行内错角相等可得结论; (3)①根据∠AED+∠AEC=180°,∠AED+∠DEC+∠AEB=180°,DF平分∠EDC,可得出2∠AED+(90°-2∠FDC)=180°,即可导出角的关系; ②先根据∠AED=∠F+∠FDE,∠AED-∠FDC=45°得出∠DEP=2∠F=90°,再根据∠DEA-∠PEA=∠DEB,求出∠AED=50°,即可得出∠EPD的度数. 【详解】 解:(1)证明:AB∥CD, ∴∠A+∠D=180°, ∵∠C=∠A, ∴∠C+∠D=180°, ∴AD∥BC; (2)∠BAE+∠CDE=∠AED,理由如下: 如图2,过点E作EF∥AB, ∵AB∥CD ∴AB∥CD∥EF ∴∠BAE=∠AEF,∠CDE=∠DEF 即∠FEA+∠FED=∠CDE+∠BAE ∴∠BAE+∠CDE=∠AED; (3)①∠AED-∠FDC=45°; ∵∠AED+∠AEC=180°,∠AED+∠DEC+∠AEB=180°, ∴∠AEC=∠DEC+∠AEB, ∴∠AED=∠AEB, ∵DF平分∠EDC ∠DEC=2∠FDC ∴∠DEC=90°-2∠FDC, ∴2∠AED+(90°-2∠FDC)=180°, ∴∠AED-∠FDC=45°, 故答案为:∠AED-∠FDC=45°; ②如图3, ∵∠AED=∠F+∠FDE,∠AED-∠FDC=45°, ∴∠F=45°, ∴∠DEP=2∠F=90°, ∵∠DEA-∠PEA=∠DEB=∠DEA, ∴∠PEA=∠AED, ∴∠DEP=∠PEA+∠AED=∠AED=90°, ∴∠AED=70°, ∵∠AED+∠AEC=180°, ∴∠DEC+2∠AED=180°, ∴∠DEC=40°, ∵AD∥BC, ∴∠ADE=∠DEC=40°, 在△PDE中,∠EPD=180°-∠DEP-∠AED=50°, 即∠EPD=50°. 【点睛】 本题主要考查平行线的判定和性质,熟练掌握平行线的判定和性质,角平分线的性质等知识点是解题的关键. 7.(1)60°;(2)n°+40°;(3)n°+40°或n°-40°或220°-n° 【分析】 (1)过点E作EF∥AB,然后根据两直线平行内错角相等,即可求∠BED的度数; (2)同(1)中方法求解 解析:(1)60°;(2)n°+40°;(3)n°+40°或n°-40°或220°-n° 【分析】 (1)过点E作EF∥AB,然后根据两直线平行内错角相等,即可求∠BED的度数; (2)同(1)中方法求解即可; (3)分当点B在点A左侧和当点B在点A右侧,再分三种情况,讨论,分别过点E作EF∥AB,由角平分线的定义,平行线的性质,以及角的和差计算即可. 【详解】 解:(1)当n=20时,∠ABC=40°, 过E作EF∥AB,则EF∥CD, ∴∠BEF=∠ABE,∠DEF=∠CDE, ∵BE平分∠ABC,DE平分∠ADC, ∴∠BEF=∠ABE=20°,∠DEF=∠CDE=40°, ∴∠BED=∠BEF+∠DEF=60°; (2)同(1)可知: ∠BEF=∠ABE=n°,∠DEF=∠CDE=40°, ∴∠BED=∠BEF+∠DEF=n°+40°; (3)当点B在点A左侧时,由(2)可知:∠BED=n°+40°; 当点B在点A右侧时, 如图所示,过点E作EF∥AB, ∵BE平分∠ABC,DE平分∠ADC,∠ABC=2n°,∠ADC=80°, ∴∠ABE=∠ABC=n°,∠CDG=∠ADC=40°, ∵AB∥CD∥EF, ∴∠BEF=∠ABE=n°,∠CDG=∠DEF=40°, ∴∠BED=∠BEF-∠DEF=n°-40°; 如图所示,过点E作EF∥AB, ∵BE平分∠ABC,DE平分∠ADC,∠ABC=2n°,∠ADC=80°, ∴∠ABE=∠ABC=n°,∠CDG=∠ADC=40°, ∵AB∥CD∥EF, ∴∠BEF=180°-∠ABE=180°-n°,∠CDE=∠DEF=40°, ∴∠BED=∠BEF+∠DEF=180°-n°+40°=220°-n°; 如图所示,过点E作EF∥AB, ∵BE平分∠ABC,DE平分∠ADC,∠ABC=n°,∠ADC=70°, ∴∠ABG=∠ABC=n°,∠CDE=∠ADC=40°, ∵AB∥CD∥EF, ∴∠BEF=∠ABG=n°,∠CDE=∠DEF=40°, ∴∠BED=∠BEF-∠DEF=n°-40°; 综上所述,∠BED的度数为n°+40°或n°-40°或220°-n°. 【点睛】 此题考查了平行线的判定与性质,以及角平分线的定义,正确应用平行线的性质得出各角之间关系是解题关键. 8.(1)∠AEP+∠PFC=∠EPF;(2)∠AEP+∠EPF+∠PFC=360°;(3)①150°或30;②∠EPF+2∠EQF=360°或∠EPF=2∠EQF 【分析】 (1)由于点是平行线,之间 解析:(1)∠AEP+∠PFC=∠EPF;(2)∠AEP+∠EPF+∠PFC=360°;(3)①150°或30;②∠EPF+2∠EQF=360°或∠EPF=2∠EQF 【分析】 (1)由于点是平行线,之间有一动点,因此需要对点的位置进行分类讨论:如图1,当点在的左侧时,,,满足数量关系为:; (2)当点在的右侧时,,,满足数量关系为:; (3)①若当点在的左侧时,;当点在的右侧时,可求得; ②结合①可得,由,得出;可得,由,得出. 【详解】 解:(1)如图1,过点作, , , , , , ; (2)如图2,当点在的右侧时,,,满足数量关系为:; 过点作, , , , , , ; (3)①如图3,若当点在的左侧时, , , ,分别平分和, ,, ; 如图4,当点在的右侧时, , , ; 故答案为:或30; ②由①可知:, ; , . 综合以上可得与的数量关系为:或. 【点睛】 本题主要考查了平行线的性质,平行公理和及推论等知识点,作辅助线后能求出各个角的度数,是解此题的关键. 9.(1)80°;(2)∠AKC=∠APC,理由见解析;(3)∠AKC=∠APC,理由见解析 【分析】 (1)先过P作PE∥AB,根据平行线的性质即可得到∠APE=∠BAP,∠CPE=∠DCP,再根据∠ 解析:(1)80°;(2)∠AKC=∠APC,理由见解析;(3)∠AKC=∠APC,理由见解析 【分析】 (1)先过P作PE∥AB,根据平行线的性质即可得到∠APE=∠BAP,∠CPE=∠DCP,再根据∠APC=∠APE+∠CPE=∠BAP+∠DCP进行计算即可; (2)过K作KE∥AB,根据KE∥AB∥CD,可得∠AKE=∠BAK,∠CKE=∠DCK,进而得到∠AKC=∠AKE+∠CKE=∠BAK+∠DCK,同理可得,∠APC=∠BAP+∠DCP,再根据角平分线的定义,得出∠BAK+∠DCK=∠BAP+∠DCP=(∠BAP+∠DCP)=∠APC,进而得到∠AKC=∠APC; (3)过K作KE∥AB,根据KE∥AB∥CD,可得∠BAK=∠AKE,∠DCK=∠CKE,进而得到∠AKC=∠BAK﹣∠DCK,同理可得,∠APC=∠BAP﹣∠DCP,再根据已知得出∠BAK﹣∠DCK=∠BAP﹣∠DCP=∠APC,进而得到∠BAK﹣∠DCK=∠APC. 【详解】 (1)如图1,过P作PE∥AB, ∵AB∥CD, ∴PE∥AB∥CD, ∴∠APE=∠BAP,∠CPE=∠DCP, ∴∠APC=∠APE+∠CPE=∠BAP+∠DCP=60°+20°=80°; (2)∠AKC=∠APC. 理由:如图2,过K作KE∥AB, ∵AB∥CD, ∴KE∥AB∥CD, ∴∠AKE=∠BAK,∠CKE=∠DCK, ∴∠AKC=∠AKE+∠CKE=∠BAK+∠DCK, 过P作PF∥AB, 同理可得,∠APC=∠BAP+∠DCP, ∵∠BAP与∠DCP的角平分线相交于点K, ∴∠BAK+∠DCK=∠BAP+∠DCP=(∠BAP+∠DCP)=∠APC, ∴∠AKC=∠APC; (3)∠AKC=∠APC 理由:如图3,过K作KE∥AB, ∵AB∥CD, ∴KE∥AB∥CD, ∴∠BAK=∠AKE,∠DCK=∠CKE, ∴∠AKC=∠AKE﹣∠CKE=∠BAK﹣∠DCK, 过P作PF∥AB, 同理可得,∠APC=∠BAP﹣∠DCP, ∵∠BAK=∠BAP,∠DCK=∠DCP, ∴∠BAK﹣∠DCK=∠BAP﹣∠DCP=(∠BAP﹣∠DCP)=∠APC, ∴∠AKC=∠APC. 【点睛】 本题考查了平行线的性质和角平分线的定义,解题的关键是作出平行线构造内错角相等计算. 10.(1)见解析;(2),理由见解析;(3)①当在延长线时(点不与点重合),;②当在之间时(点不与点,重合),.理由见解析 【分析】 (1)过P作PE∥AB,构造同旁内角,利用平行线性质,可得∠APC= 解析:(1)见解析;(2),理由见解析;(3)①当在延长线时(点不与点重合),;②当在之间时(点不与点,重合),.理由见解析 【分析】 (1)过P作PE∥AB,构造同旁内角,利用平行线性质,可得∠APC=113°; (2)过过作交于,,推出,根据平行线的性质得出,即可得出答案; (3)画出图形(分两种情况:①点P在BA的延长线上,②当在之间时(点不与点,重合)),根据平行线的性质即可得出答案. 【详解】 解:(1)过作, , , ,, , ,, ; (2),理由如下: 如图3,过作交于, , , ,, ,, 又 ; (3)①当在延长线时(点不与点重合),; 理由:如图4,过作交于, , , ,, ,, , 又, ; ②当在之间时(点不与点,重合),. 理由:如图5,过作交于, , , ,, ,, , 又 . 【点睛】 本题考查了平行线的性质的应用,主要考查学生的推理能力,解决问题的关键是作辅助线构造内错角以及同旁内角. 三、解答题 11.(1)∠A+∠C=90°;(2)①见解析;②105° 【分析】 (1)根据平行线的性质以及直角三角形的性质进行证明即可; (2)①过点B作BG∥DM,根据平行线找角的联系即可求解;②先过点B作BG∥ 解析:(1)∠A+∠C=90°;(2)①见解析;②105° 【分析】 (1)根据平行线的性质以及直角三角形的性质进行证明即可; (2)①过点B作BG∥DM,根据平行线找角的联系即可求解;②先过点B作BG∥DM,根据角平分线的定义,得出∠ABF=∠GBF,再设∠DBE=α,∠ABF=β,根据∠CBF+∠BFC+∠BCF=180°,可得2α+β+3α+3α+β=180°,根据AB⊥BC,可得β+β+2α=90°,最后解方程组即可得到∠ABE=15°,进而得出∠EBC=∠ABE+∠ABC=15°+90°=105°. 【详解】 解:(1)如图1,AM与BC的交点记作点O, ∵AM∥CN, ∴∠C=∠AOB, ∵AB⊥BC, ∴∠A+∠AOB=90°, ∴∠A+∠C=90°; (2)①如图2,过点B作BG∥DM, ∵BD⊥AM, ∴DB⊥BG, ∴∠DBG=90°, ∴∠ABD+∠ABG=90°, ∵AB⊥BC, ∴∠CBG+∠ABG=90°, ∴∠ABD=∠CBG, ∵AM∥CN,BG∥DM, ∴∠C=∠CBG, ∠ABD=∠C; ②如图3,过点B作BG∥DM, ∵BF平分∠DBC,BE平分∠ABD, ∴∠DBF=∠CBF,∠DBE=∠ABE, 由(2)知∠ABD=∠CBG, ∴∠ABF=∠GBF, 设∠DBE=α,∠ABF=β, 则∠ABE=α,∠ABD=2α=∠CBG, ∠GBF=∠AFB=β, ∠BFC=3∠DBE=3α, ∴∠AFC=3α+β, ∵∠AFC+∠NCF=180°,∠FCB+∠NCF=180°, ∴∠FCB=∠AFC=3α+β, △BCF中,由∠CBF+∠BFC+∠BCF=180°得: 2α+β+3α+3α+β=180°, ∵AB⊥BC, ∴β+β+2α=90°, ∴α=15°, ∴∠ABE=15°, ∴∠EBC=∠ABE+∠ABC=15°+90°=105°. 【点睛】 本题主要考查了平行线的性质的运用,解决问题的关键是作平行线构造内错角,运用等角的余角(补角)相等进行推导.余角和补角计算的应用,常常与等式的性质、等量代换相关联.解题时注意方程思想的运用. 12.(1),;(2)15秒或63秒;(3)不发生变化, 【分析】 (1)利用非负数的性质解决问题即可. (2)分三种情形,利用平行线的性质构建方程即可解决问题. (3)由参数表示,即可判断. 【详解】 解析:(1),;(2)15秒或63秒;(3)不发生变化, 【分析】 (1)利用非负数的性质解决问题即可. (2)分三种情形,利用平行线的性质构建方程即可解决问题. (3)由参数表示,即可判断. 【详解】 解:(1)∵, ∴, ,; (2)设灯转动秒,两灯的光束互相平行, ①当时, , 解得; ②当时, , 解得; ③当时, , 解得,(不合题意) 综上所述,当t=15秒或63秒时,两灯的光束互相平行; (3)设灯转动时间为秒, , , 又, , 而, , , 即. 【点睛】 本题考查平行线的性质和判定,非负数的性质等知识,解题的关键是理解题意,学会利用参数构建方程解决问题,属于中考常考题型. 13.(1)①见解析;②;见解析(2)①∠AFG+∠EDG=∠DGF;②∠AFG-∠EDG=∠DGF 【分析】 (1)①根据题意画出图形;②依据DE∥AB,DF∥AC,可得∠EDF+∠AFD=180°,∠ 解析:(1)①见解析;②;见解析(2)①∠AFG+∠EDG=∠DGF;②∠AFG-∠EDG=∠DGF 【分析】 (1)①根据题意画出图形;②依据DE∥AB,DF∥AC,可得∠EDF+∠AFD=180°,∠A+∠AFD=180°,进而得出∠EDF=∠A; (2)①过G作GH∥AB,依据平行线的性质,即可得到∠AFG+∠EDG=∠FGH+∠DGH=∠DGF;②过G作GH∥AB,依据平行线的性质,即可得到∠AFG-∠EDG=∠FGH-∠DGH=∠DGF. 【详解】 解:(1)①如图, ②∵DE∥AB,DF∥AC, ∴∠EDF+∠AFD=180°,∠A+∠AFD=180°, ∴∠EDF=∠A; (2)①∠AFG+∠EDG=∠DGF. 如图2所示,过G作GH∥AB, ∵AB∥DE, ∴GH∥DE, ∴∠AFG=∠FGH,∠EDG=∠DGH, ∴∠AFG+∠EDG=∠FGH+∠DGH=∠DGF; ②∠AFG-∠EDG=∠DGF. 如图所示,过G作GH∥AB, ∵AB∥DE, ∴GH∥DE, ∴∠AFG=∠FGH,∠EDG=∠DGH, ∴∠AFG-∠EDG=∠FGH-∠DGH=∠DGF. 【点睛】 本题考查了平行线的判定和性质:两直线平行,内错角相等.正确的作出辅助线是解题的关键. 14.(1)图见解析,,理由见解析;(2),理由见解析;(3)图见解析,或. 【分析】 (1)根据平行线的画法补全图形即可得,根据平行线的性质可得,由此即可得; (2)如图(见解析),先根据平行线的性质可 解析:(1)图见解析,,理由见解析;(2),理由见解析;(3)图见解析,或. 【分析】 (1)根据平行线的画法补全图形即可得,根据平行线的性质可得,由此即可得; (2)如图(见解析),先根据平行线的性质可得,再根据等量代换可得,然后根据平行线的判定即可得; (3)先根据点D的位置画出如图(见解析)的两种情况,再分别利用平行线的性质、对顶角相等即可得. 【详解】 (1)由题意,补全图形如下: ,理由如下: , , , , ; (2),理由如下: 如图,延长BA交DF于点O, , , , , ; (3)由题意,有以下两种情况: ①如图3-1,,理由如下: , , , , , 由对顶角相等得:, ; ②如图3-2,,理由如下: , , , , . 【点睛】 本题考查了平行线的判定与性质等知识点,较难的是题(3),正确分两种情况讨论是解题关键. 15.(1)见解析;(2);见解析;(3) 【分析】 (1)过点作,根据平行线性质可得; (2)由(1)结论可得:,,再根据角平分线性质可得; (3)由(2)结论可得:. 【详解】 (1)证明:如图1,过 解析:(1)见解析;(2);见解析;(3) 【分析】 (1)过点作,根据平行线性质可得; (2)由(1)结论可得:,,再根据角平分线性质可得; (3)由(2)结论可得:. 【详解】 (1)证明:如图1,过点作, ∵, ∴, ∴,, 又∵, ∴; (2)如图2, 由(1)可得:,, ∵的平分线与的平分线相交于点, ∴ , ∴; (3)由(2)可得:,, ∵,, ∴ , ∴; 【点睛】 考核知识点:平行线性质和判定的综合运用.熟练运用平行线性质和判定是关键. 四、解答题 16.(1)∠E、∠CAF;∠CDE、∠BAF; (2)①20°;②30 【分析】 (1)由翻折的性质和平行线的性质即可得与∠B相等的角;由等角代换即可得与∠C相等的角; (2)①由三角形内角和定理可得, 解析:(1)∠E、∠CAF;∠CDE、∠BAF; (2)①20°;②30 【分析】 (1)由翻折的性质和平行线的性质即可得与∠B相等的角;由等角代换即可得与∠C相等的角; (2)①由三角形内角和定理可得,再由根据角的和差计算即可得∠C的度数,进而得∠B的度数. ②根据翻折的性质和三角形外角及三角形内角和定理,用含x的代数式表示出∠FDE、∠DFE的度数,分三种情况讨论求出符合题意的x值即可. 【详解】 (1)由翻折的性质可得:∠E=∠B, ∵∠BAC=90°,AE⊥BC, ∴∠DFE=90°, ∴180°-∠BAC=180°-∠DFE=90°, 即:∠B+∠C=∠E+∠FDE=90°, ∴∠C=∠FDE, ∴AC∥DE, ∴∠CAF=∠E, ∴∠CAF=∠E=∠B 故与∠B相等的角有∠CAF和∠E; ∵∠BAC=90°,AE⊥BC, ∴∠BAF+∠CAF=90°, ∠CFA=180°-(∠CAF+∠C)=90° ∴∠BAF+∠CAF=∠CAF+∠C=90° ∴∠BAF=∠C 又AC∥DE, ∴∠C=∠CDE, ∴故与∠C相等的角有∠CDE、∠BAF; (2)①∵ ∴ 又∵, ∴∠C=70°,∠B=20°; ②∵∠BAD=x°, ∠B=20°则,, 由翻折可知:∵, , ∴, , 当∠FDE=∠DFE时,, 解得:; 当∠FDE=∠E时,,解得:(因为0<x≤45,故舍去); 当∠DFE=∠E时,,解得:(因为0<x≤45,故舍去); 综上所述,存在这样的x的值,使得△DEF中有两个角相等.且. 【点睛】 本题考查图形的翻折、三角形内角和定理、平行线的判定及其性质、三角形外角的性质、等角代换,解题的关键是熟知图形翻折的性质及综合运用所学知识. 17.(1)40°;(2)的值不变,比值为;(3)∠OEC=∠OBA=60°. 【分析】 (1)根据OB平分∠AOF,OE平分∠COF,即可得出∠EOB=∠EOF+∠FOB=∠COA,从而得出答案; (2 解析:(1)40°;(2)的值不变,比值为;(3)∠OEC=∠OBA=60°. 【分析】 (1)根据OB平分∠AOF,OE平分∠COF,即可得出∠EOB=∠EOF+∠FOB=∠COA,从而得出答案; (2)根据平行线的性质,即可得出∠OBC=∠BOA,∠OFC=∠FOA,再根据∠FOA=∠FOB+∠AOB=2∠AOB,即可得出∠OBC:展开阅读全文
咨信网温馨提示:1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:0574-28810668;投诉电话:18658249818。




人教版七年级下册数学期末解答题压轴题卷含答案.doc



实名认证













自信AI助手
















微信客服
客服QQ
发送邮件
意见反馈



链接地址:https://www.zixin.com.cn/doc/1921794.html