人教版初二上册期末强化数学质量检测试卷含解析(一).doc
《人教版初二上册期末强化数学质量检测试卷含解析(一).doc》由会员分享,可在线阅读,更多相关《人教版初二上册期末强化数学质量检测试卷含解析(一).doc(22页珍藏版)》请在咨信网上搜索。
人教版初二上册期末强化数学质量检测试卷含解析(一) 一、选择题 1.下列不是轴对称图形的是 ( ) A. B. C. D. 2.人类第一次探测到了引力波的信号显著性极其大,探测结果只有三百五十万分之一的误差,三百五十万分之一约为0.0000002857.将0.0000002857用科学记数法表示应为( ) A. B. C. D. 3.下列计算结果错误的是( ) A.a2•a3=a5 B.(a3)2=a6 C.a5÷a5=a D.(ab)3=a3b3 4.不论x取何值,分式都有意义的是( ) A. B. C. D. 5.下列等式从左到右变形,属于因式分解的是( ) A. B. C. D. 6.下列说法正确的是( ) A.分式的值为0,则x的值为 B.根据分式的基本性质,可以变形为 C.分式中的x,y都扩大3倍,分式的值不变 D.分式是最简分式 7.如图,已知∠ABD=∠CBD,添加以下条件,不一定能判定△ABD≌△CBD的是( ) A.∠A=∠C B.AB=CB C.∠BDA=∠BDC D.AD=CD 8.关于的分式方程有增根,则的值为( ) A.1 B.-1 C.2 D.-2 9.如图,在中,,,点是边(不与端点重合)上一点,将沿翻折后得到,射线交射线于点F.若,则( ) A. B. C. D. 10.如图,点P是AB上任意一点,∠ABC=∠ABD,还应补充一个条件,才能推出△APC≌△APD.从下列条件中补充一个条件,不一定能推出△APC≌△APD的是( ) A.BC=BD; B.AC=AD; C.∠ACB=∠ADB; D.∠CAB=∠DAB 二、填空题 11.当x=_____时,分式的值为零. 12.点P关于y轴的对称点P′的坐标是(4,-3),则点P的坐标是_________. 13.若,则______. 14.已知,则=_____. 15.如图,的面积为24,的长为8,平分,E、F分别是和上的动点,则的最小值为____________. 16.已知关于x,y的多项式x2﹣2kxy+16y2是完全平方式,则k=_____. 17.已知,,则______. 18.已知正△ABC的边长为1,点P,点Q同时从点A出发,点P以每秒1个单位速度沿边AB向点B运动,点Q以每秒4个单位速度沿折线A﹣C﹣B﹣A运动,当点Q停止运动时,点P也同时停止运动.在整个运动过程中,若以点A,B,C中的两点和点Q为顶点构成的三角形与△PAC全等,运动时间为t秒,则t的值为__. 三、解答题 19.分解因式: (1)x2﹣9; (2). 20.先化简,再求值:,然后从-2,-1,0中选择适当的数代入求值. 21.如图,点、、、在同一条直线上,,,.求证: (1); (2). 22.探索归纳: (1)如图1,已知为直角三角形,,若沿图中虚线剪去,则________. (2)如图2,已知中,,剪去后成四边形,则__________. (3)如图2,根据(1)与(2)的求解过程,请你归纳猜想与的关系是___________. (4)如图3,若没有剪掉,而是把它折成如图3形状,试探究与的关系并说明理由. 23.为进一步落实“德、智、体、美、劳”五有并举工作,某中学以体有为突破口,准备从体育用品商场一次性购买若干个足球和篮球,用于学校开展球类活动,已知篮球的单价比足球单价的2倍少30元,用1200元购买足球的数量是用900元购买篮球数量的2倍. (1)足球和篮球的单价各是多少元? (2)根据学校实际情况,需一次性购买足球和篮球共200个,总费用不超过15600元,学校最多可以购买多少个篮球? 24.问题情景:分解下列因式,将结果直接写在横线上: ___; ___; ___. 探究发现:观察以上三个多项式的系数,我们发现: ; ; 归纳猜想:若多项式是完全平方式,则系数a,b,c存在某种关系,请你猜想并用式子表示出a,b,c之间的关系. 验证结论:请你写出一个不同于上面出现的完全平方式,并验证你猜想的结论. 解决问题:若多项式是一个完全平方式,利用你猜想的结论求出m的值. 25.如图,在平面直角坐标系中,已知点,,且,为轴上点右侧的动点,以为腰作等腰,使,,直线交轴于点. (1)求证:; (2)求证:; (3)当点运动时,点在轴上的位置是否发生变化,为什么? 26.请按照研究问题的步骤依次完成任务. 【问题背景】 (1)如图1的图形我们把它称为“8字形”, 请说理证明∠A+∠B=∠C+∠D. 【简单应用】 (2)如图2,AP、CP分别平分∠BAD、∠BCD,若∠ABC=20°,∠ADC=26°,求∠P的度数(可直接使用问题(1)中的结论) 【问题探究】 (3)如图3,直线AP平分∠BAD的外角∠FAD,CP平分∠BCD的外角∠BCE, 若∠ABC=36°,∠ADC=16°,猜想∠P的度数为 ; 【拓展延伸】 (4)在图4中,若设∠C=x,∠B=y,∠CAP=∠CAB,∠CDP=∠CDB,试问∠P与∠C、∠B之间的数量关系为 (用x、y表示∠P) ; (5)在图5中,AP平分∠BAD,CP平分∠BCD的外角∠BCE,猜想∠P与∠B、D的关系,直接写出结论 . 【参考答案】 一、选择题 2.B 解析:B 【分析】根据轴对称图形的定义(如果一个图形沿一条直线折叠,直线两旁的部分能够完全重合,那么这个图形叫做轴对称图形)逐项判断即可得. 【详解】解:A、是轴对称图形,则此项符合题意; B、不是轴对称图形,则此项不符合题意; C、是轴对称图形,则此项符合题意; D、是轴对称图形,则此项符合题意; 故选:B. 【点睛】本题考查了轴对称图形,熟记轴对称图形的定义是解题关键. 3.C 解析:C 【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负整数指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定. 【详解】解:0.0000002857=2.857×10-7. 故选:C. 【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定. 4.C 解析:C 【分析】由同底数幂的乘法可判断A,由幂的乘方运算可判断B,由同底数幂的除法运算可判断C,由积的乘方运算可判断D,从而可得答案. 【详解】解:a2•a3=a5,故A不符合题意; (a3)2=a6,故B不符合题意; a5÷a5=1,故C符合题意; (ab)3=a3b3,故D不符合题意; 故选C 【点睛】本题主要考查了同底数幂的乘除法以及幂的乘方与积的乘方,熟记幂的运算性质是解答本题的关键. 5.D 解析:D 【分析】根据分式有意义的条件是分母不为0分析求解即可. 【详解】A.当x=﹣0.5时,分母2x+1=0,分式无意义; B.当x=0.5时,分母2x-1=0,分式无意义; C.当x=0时,分母x2=0,分式无意义; D.不论x取什么值,分母2x2+1>0,分式有意义. 故选D. 【点睛】本题考查了分式有意义的条件,熟记分母不为0时是分式有意义的条件是解本题的关键. 6.D 解析:D 【分析】根据分解因式的定义逐个判断即可. 【详解】解:A.等式的右边不是几个整式的积的形式,不是分解因式,故本选项不符合题意; B.从左到右的变形是整式乘法运算,不是因式分解,故本选项不符合题意; C.等式的右边不是几个整式的积的形式,不是分解因式,故本选项不符合题意; D.从左到右的变形属于分解因式,故本选项符合题意; 故选:D. 【点睛】本题考查了分解因式的定义,能熟记分解因式的定义是解此题的关键,注意:把一个多项式化成几个整式的积的形式,叫因式分解,也叫分解因式. 7.D 解析:D 【分析】根据分式的值为0的条件判断A;根据分式的基本性质判断B、C;根据最简分式的定义判断D. 【详解】解:A.分式的值为0,则的值为2,故本选项说法错误,不符合题意; B.根据分式的基本性质,当时,可以变形为,故本选项说法错误,不符合题意; C.分式中的,都扩大3倍,分式的值扩大3倍,故本选项说法错误,不符合题意; D.分式是最简分式,故本选项说法正确,符合题意; 故选:D. 【点睛】本题考查了分式的值为0的条件,分式的基本性质,最简分式的定义,解题的关键是掌握定义与性质,一个分式的分子与分母没有公因式时,叫最简分式.分式值为零的条件是分子等于零且分母不等于零.分式的分子和分母都乘以(或除以)同一个不为零的整式,分式的值不变. 8.D 解析:D 【分析】利用三角形全等的判定方法对各选项进行判断即可. 【详解】解:∵∠ABD=∠CBD,BD=BD, ∴当添加∠A=∠C时,可根据“AAS”判断△ABD≌△CBD; 当添加∠BDA=∠BDC时,可根据“ASA”判断△ABD≌△CBD; 当添加AB=CB时,可根据“SAS”判断△ABD≌△CBD; 当添加AD=CD时,不能判断△ABD≌△CBD; 故选:D. 【点睛】本题考查了全等三角形的判定,熟练掌握全等三角形的判定方法是解题的关键. 9.C 解析:C 【分析】先化分式方程为整式方程,令分母x-1=0,代入整式方程计算m的值. 【详解】因为, 所以, 因为x-1=0, 所以m-2=0, 解得m=2, 故选C. 【点睛】本题考查了分式方程的增根问题,熟练掌握增根的计算问题是解题的关键. 10.C 解析:C 【分析】先根据翻折性质和等腰三角形的性质以及三角形的外角性质得到∠CDF=2∠A,∠CFD=∠B+∠BCF,∠CDF=∠CFD,再利用直角三角形的两锐角互余得到2∠A=90°-∠A+90°-2∠A,然后解方程求解即可. 【详解】解:由翻折性质得:∠ACD=∠DCE, ∵AD=CD=CF, ∴∠A=∠ACD,∠CDF=∠CFD, ∴∠CDF=∠A+∠ACD=2∠A,∠CFD=∠B+∠BCF, ∵∠ACB=90°, ∴∠B=90°-∠A,∠BCF=90°-2∠A, ∵∠CDF=∠CFD, ∴2∠A=90°-∠A+90°-2∠A, 解得:∠A=36°, 故选:C. 【点睛】本题考查翻折性质、等腰三角形的性质、三角形的外角性质、直角三角形的两锐角互余等知识,熟练掌握相关知识的联系与运用是解答的关键. 11.B 解析:B 【分析】根据题意,∠ABC=∠ABD,AB是公共边,结合选项,逐个验证得出. 【详解】解:A、补充BC=BD,先证出△BPC≌△BPD,后能推出△APC≌△APD,故正确,不符合题意; B、补充AC=AD,不能推出△APC≌△APD,故错误,符合题意; C、补充∠ACB=∠ADB,先证出△ABC≌△ABD,后能推出△APC≌△APD,故正确,不符合题意; D、补充∠CAB=∠DAB,先证出△ABC≌△ABD,后能推出△APC≌△APD,故正确,不符合题意. 故选B. 【点睛】本题考查了三角形全等判定,解题的关键是知道有AAS,SSS,ASA,SAS.注意SSA是不能证明三角形全等的,做题时要逐个验证,排除错误的选项. 二、填空题 12.-3 【分析】当x+3=0,且2x-5≠0时,分式的值为零. 【详解】∵分式的值为零, ∴x+3=0,且2x-5≠0, ∴x= -3, 故答案为:-3. 【点睛】本题考查了分式的值为零的条件,熟记分子等于零,且分母不等于零是解题的关键. 13.(-4,-3) 【分析】直接利用关于y轴的对称点的坐标特点:横坐标互为相反数,纵坐标不变,进而得出答案. 【详解】解:∵点P关于y轴的对称点P′的坐标是(4,-3), ∴点P的坐标是:(-4,-3). 故答案为:(-4,-3) 【点睛】此题主要考查了关于y轴的对称点的坐标,正确记忆横纵坐标的符号关系是解题关键. 14. 【分析】根据条件,可得出,所以.将式子展开化简可得:.将代入,则原式,故答案为. 【详解】解:, , , , 把代入得:原式, 故答案为. 【点睛】. 本题主要考查知识点为:分式的加减,完全平方公式.熟练掌握分式的加减方法和完全平方公式是解决此题的关键. 15. 【分析】先根据幂的乘方求出,再根据同底数幂的除法的逆运算法则求解即可. 【详解】解:∵, ∴, ∴, 故答案为:. 【点睛】本题主要考查了幂的乘方,同底数幂除法的逆运算,熟知相关计算法则是解题的关键. 16.6 【分析】在上取点,使,过点C作,垂足为H,连接、,交于,得出.根据E、F分别是和上的动点,三角形三边的关系和垂线段最短得出,求出的长即可得出的最小值. 【详解】解:如图所示,在上取点,使,过 解析:6 【分析】在上取点,使,过点C作,垂足为H,连接、,交于,得出.根据E、F分别是和上的动点,三角形三边的关系和垂线段最短得出,求出的长即可得出的最小值. 【详解】解:如图所示,在上取点,使,过点C作,垂足为H,连接、,交于,. ∵的面积为24,的长为8, ∴, ∴, ∵平分, ∴ 又∵,, ∴≌(SAS), ∴, ∴, ∵E、F分别是和上的动点, ∴, ∴ ∴当C、E、共线且点与点H重合时,即,这时的值最小, ∴最小值为6. 故答案为:6. 【点睛】本题考查轴对称—最短路线问题.灵活应用角平分线性质、三角形三边的关系、垂线段最短,将所求最小值转化为求的长是解题的关键. 17.4或-4 【分析】根据平方项确定出这两个数,再根据乘积二倍项列式即可确定出k值. 【详解】解:∵, ∴, 解得:k=±4. 故答案为:4和−4. 【点睛】本题主要考查了完全平方式,根据乘 解析:4或-4 【分析】根据平方项确定出这两个数,再根据乘积二倍项列式即可确定出k值. 【详解】解:∵, ∴, 解得:k=±4. 故答案为:4和−4. 【点睛】本题主要考查了完全平方式,根据乘积二倍项确定出这两个数是解题的关键. 18.110 【分析】首先根据完全平方公式的变式可得,再把a+b及ab的值代入,即可得出答案. 【详解】解:∵a+b=10,ab=−5, ∴. 故答案为:110. 【点睛】本题考查了利用完全平方 解析:110 【分析】首先根据完全平方公式的变式可得,再把a+b及ab的值代入,即可得出答案. 【详解】解:∵a+b=10,ab=−5, ∴. 故答案为:110. 【点睛】本题考查了利用完全平方公式的变式求值问题,熟练掌握和运用完全平方公式及其变式是解决本题的关键. 19.或或或或 【分析】分三种情形:当点Q在AC上时,当点Q在BC上时,有两种情形,CQ=AP或BQ=PA满足条件,当点Q在BA上时,Q与P重合或AP=QB满足条件,分别构建方程求解即可. 【详解】解 解析:或或或或 【分析】分三种情形:当点Q在AC上时,当点Q在BC上时,有两种情形,CQ=AP或BQ=PA满足条件,当点Q在BA上时,Q与P重合或AP=QB满足条件,分别构建方程求解即可. 【详解】解:当点Q在AC上时,CQ=PA时,△BCQ≌△CAP,AP=t,AQ=4t,CQ=1-4t; 此时t=1﹣4t,解得t=. 当点Q在BC上时,有两种情形,CQ=AP时,△ACQ≌△CAP,AP=t, CQ=4t -1, BQ=2-4t; ∴4t﹣1=t,解得 t=; BQ=PA时,△ABQ≌△CAP, ∴2﹣4t=t, 解得t=, 当点Q在BA上时,有两种情形,Q与P重合,△ACQ≌△ACP,AP=t,AQ=3-4t,BQ=4t -2; ∴t=3-4t,解得t=; AP=QB时,△ACP≌△BCQ, t=4t﹣2, 解得t=, 综上所述,满足条件的t的值为或或或或, 故答案为:或或或或. 【点睛】本题考查全等三角形的判定,等边三角形的性质等知识,解题的关键是学会用分类讨论的思想思考问题,属于中考填空题中的压轴题. 三、解答题 20.(1) (2) 【分析】(1)利用平方差公式分解即可. (2)先提公因式,利用完全平方公式继续分解. (1)解:原式=. (2)解:原式=. 【点睛】本题考查了提公因式法和公式法及十字相 解析:(1) (2) 【分析】(1)利用平方差公式分解即可. (2)先提公因式,利用完全平方公式继续分解. (1)解:原式=. (2)解:原式=. 【点睛】本题考查了提公因式法和公式法及十字相乘法的综合运用,解题的关键是一定要注意如果多项式的各项含有公因式,必须先提取公因式. 21.,2 【分析】根据分式的加减运算以及乘除运算法则进行化简,然后将x的值代入原式即可求出答案. 【详解】解: = = = ∵ ∴ ∴原式= 【点睛】本题考查分式的化简求值,解 解析:,2 【分析】根据分式的加减运算以及乘除运算法则进行化简,然后将x的值代入原式即可求出答案. 【详解】解: = = = ∵ ∴ ∴原式= 【点睛】本题考查分式的化简求值,解题的关键是熟练运用分式的加减运算法则以及乘除运算法则. 22.(1)见解析;(2)见解析 【分析】(1)由平行得出,根据SAS即可证明; (2)利用全等三角形的性质即可证明; 【详解】证明:(1)∵, ∴, ∵, ∴, 即, 在和中, , 解析:(1)见解析;(2)见解析 【分析】(1)由平行得出,根据SAS即可证明; (2)利用全等三角形的性质即可证明; 【详解】证明:(1)∵, ∴, ∵, ∴, 即, 在和中, , ∴. (2)∵, ∴, ∴. 【点睛】本题考查全等三角形的判定和性质,平行线的判定等知识,解题的关键是灵活运用全等三角形的判定和性质定理进行证明推理. 23.(1)270 (2)220 (3) (4),理由见解析 【分析】(1)利用三角形的外角定理及直角三角形的性质求解; (2)利用三角形的外角等于与它不相邻的两个内角和求解; (3)根据(1 解析:(1)270 (2)220 (3) (4),理由见解析 【分析】(1)利用三角形的外角定理及直角三角形的性质求解; (2)利用三角形的外角等于与它不相邻的两个内角和求解; (3)根据(1)、(2)中思路即可求解; (4)根据折叠对应角相等,得到,,进而求出,,最后利用即可求解. (1) 解:如下图所示: 在△AEF中,由外角性质可知:∠1=∠A+∠EFA=90°+∠EFA,∠2=∠A+∠AEF=90°+∠AEF, ∴∠1+∠2=(90°+∠EFA)+( 90°+∠AEF)=180°+∠EFA+∠AEF, ∵△ABC为直角三角形, ∴∠A=90°,∠EFA+∠AEF=180°-∠A=90°, ∴∠1+∠2=180°+90°=270°. (2) 解:如下图所示: 在△AEF中,由外角性质可知:∠1=∠A+∠EFA,∠2=∠A+∠AEF, ∴∠1+∠2=(∠A+∠EFA)+( ∠A+∠AEF)=(∠A +∠EFA+∠AEF)+∠A=180°+40°=220°. (3) 解:由(1)、(2)中思路,由三角形外角性质可知: ∠1=∠A+∠EFA,∠2=∠A+∠AEF, ∴∠1+∠2=(∠A+∠EFA)+( ∠A+∠AEF)=(∠A +∠EFA+∠AEF)+∠A=180°+∠A, ∴与的关系是:∠1+∠2=180°+∠A. (4) 解:与的关系为:,理由如下: 如图, ∵是由折叠得到的, ∴,, ∴,, ∴, 又∵, ∴, ∴与的关系. 【点睛】主要考查了折叠的性质及三角形的内角和外角之间的关系:三角形的外角等于与它不相邻的两个内角和、三角形的内角和是180度.求角的度数常常要用到“三角形的内角和是180°”这一隐含的条件. 24.(1)足球的单价是60元,篮球的单价是90元 (2)120个 【分析】(1)设足球的单价是元,则篮球的单价是元,由题意:用1200元购买足球的数量是用900元购买篮球数量的2倍,列出分式方程,解 解析:(1)足球的单价是60元,篮球的单价是90元 (2)120个 【分析】(1)设足球的单价是元,则篮球的单价是元,由题意:用1200元购买足球的数量是用900元购买篮球数量的2倍,列出分式方程,解方程即可; (2)设学校可以购买篮球,则可以购买个足球,由总价单价数量,且购买足球和篮球的总费用不超过15600元,列出一元一次不等式,解不等式即可. (1) 解:设足球的单价是元,则篮球的单价是元, 依题意得:, 解得:, 经检验,是原方程的解,且符合题意, . 答:足球的单价是60元,篮球的单价是90元. (2) 设学校可以购买个篮球,则可以购买个足球, 依题意得:, 解得:, 答:学校最多可以购买120个篮球. 【点睛】本题考查了分式方程的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)根据各数量之间的关系,正确列出一元一次不等式. 25.问题情境 :(x+1)2 ,(3x-5)2,(2x+6)2;归纳猜想:=4ac;验证结论:(答案不唯一)如:+4x+4, 验证:见解析;解决问题:m=2 【分析】问题情景:可用完全平方公式进行 解析:问题情境 :(x+1)2 ,(3x-5)2,(2x+6)2;归纳猜想:=4ac;验证结论:(答案不唯一)如:+4x+4, 验证:见解析;解决问题:m=2 【分析】问题情景:可用完全平方公式进行分解因式; 归纳猜想:根据问题情境,式子中的系数关系,可猜想b2=4ac; 验证结论:可用完全平方公式进行验证; 解决问题:多项式ax2+bx+c(a>0)是完全平方式,则系数a,b,c存在的关系为b2=4ac,可列[-(2m+8)]2=4(m+2)(m+7),进而求出m的值. 【详解】问题情境 :(x+1)2 ,(3x-5)2,(2x+6)2 归纳猜想: =4ac 验证结论:(答案不唯一)如:+4x+4, 验证:因为==16,4ac=4×1×4=16. 所以=4ac 解决问题:根据题意,得 2=4(m+2)(m+7) 4+32m+64=4(+9m+14) 4+32m+64=4+36m+56 m=2 【点睛】本题考查了学生的归纳总结能力和完全平方公式的综合应用,以及对因式分解的理解和应用,综合性较强. 26.(1)见解析;(2)见解析;(3)不变,理由见解析 【分析】(1)先根据非负数的性质求出、的值,作于点,由定理得出,根据全等三角形的性质即可得出结论; (2)先根据,得出,再由定理即可得出; 解析:(1)见解析;(2)见解析;(3)不变,理由见解析 【分析】(1)先根据非负数的性质求出、的值,作于点,由定理得出,根据全等三角形的性质即可得出结论; (2)先根据,得出,再由定理即可得出; (3)设,由全等三角形的性质可得出,故为定值,再由,可知的长度不变,故可得出结论. 【详解】解:(1)证明:, ,解得, ,, 作于点, ,, ,, 在与中, , , ; (2)证明:, ,即, 在与中, , ; (3)点在轴上的位置不发生改变. 理由:设, 由(2)知,, , ,为定值,, 长度不变, 点在轴上的位置不发生改变. 【点睛】本题考查的是全等三角形的判定与性质,熟知全等三角形的判定定理是解答此题的关键. 27.(1)见解析;(2)∠P=23º;(3)∠P=26º;(4)∠P=;(5)∠P=. 【分析】(1)根据三角形内角和定理即可证明; (2)如图2,根据角平分线的性质得到∠1=∠2,∠3=∠4,列方 解析:(1)见解析;(2)∠P=23º;(3)∠P=26º;(4)∠P=;(5)∠P=. 【分析】(1)根据三角形内角和定理即可证明; (2)如图2,根据角平分线的性质得到∠1=∠2,∠3=∠4,列方程组即可得到结论; (3)由AP平分∠BAD的外角∠FAD,CP平分∠BCD的外角∠BCE,推出∠1=∠2,∠3=∠4,推出∠PAD=180°-∠2,∠PCD=180°-∠3,由∠P+(180°-∠1)=∠D+(180°-∠3),∠P+∠1=∠B+∠4,推出2∠P=∠B+∠D,即可解决问题; (4)根据题意得出∠B+∠CAB=∠C+∠BDC,再结合∠CAP=∠CAB,∠CDP=∠CDB,得到y+(∠CAB-∠CAB)=∠P+(∠BDC-∠CDB),从而可得∠P=y+∠CAB-∠CAB-∠CDB+∠CDB=; (5)根据题意得出∠B+∠BAD=∠D+∠BCD,∠DAP+∠P=∠PCD+∠D,再结合AP平分∠BAD,CP平分∠BCD的外角∠BCE,得到∠BAD+∠P=[∠BCD+(180°-∠BCD)]+∠D,所以∠P=90°+∠BCD-∠BAD +∠D=. 【详解】解:(1)证明:在△AOB中,∠A+∠B+∠AOB=180°, 在△COD中,∠C+∠D+∠COD=180°, ∵∠AOB=∠COD, ∴∠A+∠B=∠C+∠D; (2)解:如图2,∵AP、CP分别平分∠BAD,∠BCD, ∴∠1=∠2,∠3=∠4, 由(1)的结论得:, ①+②,得2∠P+∠2+∠3=∠1+∠4+∠B+∠D, ∴∠P=(∠B+∠D)=23°; (3)解:如图3, ∵AP平分∠BAD的外角∠FAD,CP平分∠BCD的外角∠BCE, ∴∠1=∠2,∠3=∠4, ∴∠PAD=180°-∠2,∠PCD=180°-∠3, ∵∠P+(180°-∠1)=∠D+(180°-∠3), ∠P+∠1=∠B+∠4, ∴2∠P=∠B+∠D, ∴∠P=(∠B+∠D)=×(36°+16°)=26°; 故答案为:26°; (4)由题意可得:∠B+∠CAB=∠C+∠BDC, 即y+∠CAB=x+∠BDC,即∠CAB-∠BDC=x-y, ∠B+∠BAP=∠P+∠PDB, 即y+∠BAP=∠P+∠PDB, 即y+(∠CAB-∠CAP)=∠P+(∠BDC-∠CDP), 即y+(∠CAB-∠CAB)=∠P+(∠BDC-∠CDB), ∴∠P=y+∠CAB-∠CAB-∠CDB+∠CDB = y+(∠CAB-∠CDB) =y+(x-y) = 故答案为:∠P=; (5)由题意可得:∠B+∠BAD=∠D+∠BCD, ∠DAP+∠P=∠PCD+∠D, ∴∠B-∠D=∠BCD-∠BAD, ∵AP平分∠BAD,CP平分∠BCD的外角∠BCE, ∴∠BAP=∠DAP,∠PCE=∠PCB, ∴∠BAD+∠P=(∠BCD+∠BCE)+∠D, ∴∠BAD+∠P=[∠BCD+(180°-∠BCD)]+∠D, ∴∠P=90°+∠BCD-∠BAD +∠D =90°+(∠BCD-∠BAD)+∠D =90°+(∠B-∠D)+∠D =, 故答案为:∠P=. 【点睛】本题考查三角形内角和,三角形的外角的性质、多边形的内角和等知识,解题的关键是学会用方程组的思想思考问题,属于中考常考题型.- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 人教版 初二 上册 期末 强化 数学 质量 检测 试卷 解析
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【w****g】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【w****g】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【w****g】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【w****g】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文