第六章-抽样分布及总体平均数的推断.ppt
《第六章-抽样分布及总体平均数的推断.ppt》由会员分享,可在线阅读,更多相关《第六章-抽样分布及总体平均数的推断.ppt(69页珍藏版)》请在咨信网上搜索。
1、第六章抽样分布及总体平均数的推断.第一节 抽样分布区分三种不同性质的分布:总体分布:总体内个体数值的频数分布总体分布:总体内个体数值的频数分布样本分布:样本内个体数值的频数分布样本分布:样本内个体数值的频数分布抽样分布:某一种统计量的概率分布抽样分布:某一种统计量的概率分布.一、抽样分布的概念抽样分布抽样分布是从同一总体内是从同一总体内抽取的不同抽取的不同样本的统计量样本的统计量的概的概率分布。率分布。抽样分布是一个理论的概抽样分布是一个理论的概率分布,是统计推断的依据率分布,是统计推断的依据。.二、平均数抽样分布的几个定理 从总体中随机抽出容量为从总体中随机抽出容量为n n的一切可能的一切可
2、能样本的平均数之平均数等于总体的平均数。样本的平均数之平均数等于总体的平均数。容量为容量为n n的平均数在抽样分布上的标准的平均数在抽样分布上的标准差(即平均数的标准误),等于总体标准差除以差(即平均数的标准误),等于总体标准差除以n n的平方根。的平方根。(81)(82).从正态总体中,随机抽从正态总体中,随机抽取的容量为取的容量为n n的一切可能样本平的一切可能样本平均数的分布也呈正态分布。均数的分布也呈正态分布。虽然总体不呈正态分布,虽然总体不呈正态分布,如果样本容量较大,反映总体如果样本容量较大,反映总体和和的样本平均数的抽样分布,的样本平均数的抽样分布,也接近于正态分布。也接近于正态
3、分布。.三、标准误及其计算某种统计量在抽样分布上的标准差,称为某种统计量在抽样分布上的标准差,称为标准误。标准误。标准误标准误用来衡量用来衡量抽样误差抽样误差。标准误。标准误越小,表明样本统计量与总体参数的值越接越小,表明样本统计量与总体参数的值越接近,样本对总体越有代表性,用样本统计量近,样本对总体越有代表性,用样本统计量推断总体参数的可靠度越大。因此,标准误推断总体参数的可靠度越大。因此,标准误是统计推断是统计推断可靠性可靠性的指标。的指标。.平均数标准误的计算(1)总体正态,已知(不管样本容量大小),或总体非正态,已知,大样本平均数的标准误为:平均数的标准误为:.平均数标准误的计算(2
4、2)总体正态,)总体正态,未知(不管样本容量大小),未知(不管样本容量大小),或总体非正态,或总体非正态,未知,大样本未知,大样本平均数标准误的估计值为平均数标准误的估计值为(8).四、平均数离差统计量的分布由样本的平均数对总体由样本的平均数对总体平均数进行估计,首先要了平均数进行估计,首先要了解平均数离差统计量的分布,解平均数离差统计量的分布,才能根据一定的概率,由样才能根据一定的概率,由样本的平均数对总体的平均数本的平均数对总体的平均数做出估计。做出估计。.1.1.总体正态,总体正态,已知(不管样本容量大小)已知(不管样本容量大小),或总体非正态,或总体非正态,已知,大样本已知,大样本平均
5、数离差的的抽样分布呈正态分布平均数离差的的抽样分布呈正态分布(84).2.2.总体正态,总体正态,未知(不管样本容量大小)未知(不管样本容量大小),或总体非正态,或总体非正态,未知,大样本未知,大样本平均数离差的的抽样分布呈平均数离差的的抽样分布呈t t分布分布(85).t分布的特点形状与正态分布曲线相似形状与正态分布曲线相似t t分布曲线随自由度不同而有一簇曲线分布曲线随自由度不同而有一簇曲线自由度的计算:自由度的计算:自由度是指能够独立变化的数据个数。自由度是指能够独立变化的数据个数。查查t t分布表时,需根据自由度及相应的显分布表时,需根据自由度及相应的显著性水平,并要注意是单侧数据还是
6、双侧。著性水平,并要注意是单侧数据还是双侧。.3.3.总体总体未知,大样本时的近似处理未知,大样本时的近似处理样本容量增大后,平均数的抽样分布接样本容量增大后,平均数的抽样分布接近于正态分布,可用正态分布近似处理:近于正态分布,可用正态分布近似处理:(86).第二节 总体平均数的估计.一、总体参数估计的基本原理根据样本统计量对相应总体参数所作的估根据样本统计量对相应总体参数所作的估计叫作总体参数估计。计叫作总体参数估计。总体参数估计分为点估计和区间估计。总体参数估计分为点估计和区间估计。由样本的标准差估计总体的标准差即为点由样本的标准差估计总体的标准差即为点估计;而由样本的平均数估计总体平均数
7、的估计;而由样本的平均数估计总体平均数的取值范围则为区间估计。取值范围则为区间估计。.1.点估计良好的点估计量应具备的条件:无偏性无偏性 如果一切可能个样本统计量的值与总体参数值偏差如果一切可能个样本统计量的值与总体参数值偏差的平均值为的平均值为0 0,这种统计量就是总体参数的无偏估计量。,这种统计量就是总体参数的无偏估计量。有效性有效性 当总体参数不止有一种无偏估计量时,某一种估计当总体参数不止有一种无偏估计量时,某一种估计量的一切可能样本值的方差小者为有效性高,方差大者量的一切可能样本值的方差小者为有效性高,方差大者为有效性低。为有效性低。.一致性一致性当样本容量无限增大时,估计量的值能越
8、来当样本容量无限增大时,估计量的值能越来越接近它所估计的总体参数值,这种估计是总体越接近它所估计的总体参数值,这种估计是总体参数一致性估计量。参数一致性估计量。充分性充分性一个容量为一个容量为n n的样本统计量的样本统计量,应能充分地反映应能充分地反映全部全部n n个数据所反映的总体的信息。个数据所反映的总体的信息。.2.区间估计以样本统计量的抽样分布(概率分布)为以样本统计量的抽样分布(概率分布)为理论依据,按一定概率的要求,由样本统计理论依据,按一定概率的要求,由样本统计量的值估计总体参数值的所在范围,称为总量的值估计总体参数值的所在范围,称为总体参数的体参数的区间估计。对总体参数值进行区
9、间估计,就是要在一对总体参数值进行区间估计,就是要在一定可靠度上求出总体参数的定可靠度上求出总体参数的置信区间的上下的上下限。限。.二总体平均数的区间估计1总体平均数区间估计的基本步骤根据样本的数据,计算样本的平均数和标准差;根据样本的数据,计算样本的平均数和标准差;计算平均数抽样分布的标准误;计算平均数抽样分布的标准误;确定置信概率或显著性水平;确定置信概率或显著性水平;根据样本平均数的抽样分布确定查何种统计表;根据样本平均数的抽样分布确定查何种统计表;计算置信区间;计算置信区间;解释总体平均数的置信区间。解释总体平均数的置信区间。.2平均数区间估计的计算总体正态,总体正态,已知(不管样本容
10、量大小),已知(不管样本容量大小),或总体非正态,或总体非正态,已知,大样本已知,大样本平均数离差的的抽样分布呈正态,平均数的置平均数离差的的抽样分布呈正态,平均数的置信区间为:信区间为:(91).例题例题1 1:某小学:某小学1010岁全体女童岁全体女童身高历年来标准差为身高历年来标准差为6.256.25厘米,厘米,现从该校随机抽现从该校随机抽2727名名1010岁女童,岁女童,测得平均身高为测得平均身高为134.2134.2厘米,试厘米,试估计该校估计该校1010岁全体女童平均身高岁全体女童平均身高的的9595和和9999置信区间。置信区间。.解:解:1010岁女童的身高假定是从正态总岁女
11、童的身高假定是从正态总体中抽出的随机样本,并已知总体标准差体中抽出的随机样本,并已知总体标准差为为=6.25=6.25。无论样本容量大小,一切样本。无论样本容量大小,一切样本平均数的标准分数呈正态分布。于是可用平均数的标准分数呈正态分布。于是可用正态分布来估计该校正态分布来估计该校1010岁女童身高总体平岁女童身高总体平均数均数9595和和9999的置信区间。的置信区间。.其标准误为其标准误为当当0.950.95时,时,1.961.96因此,该校因此,该校1010岁女童平均身高岁女童平均身高9595的置信区间为:的置信区间为:.当当0.990.99时,时,2.582.58因此,该校因此,该校1
12、010岁女童平均身高岁女童平均身高9999的置信区间为:的置信区间为:.总体正态,未知(不管样本容量大小),或总体非正态,未知,大样本平均数离差的抽样分布为平均数离差的抽样分布为t t分布,平均分布,平均数的置信区间为:数的置信区间为:(92).例题例题2 2:从某小学三年级随机:从某小学三年级随机抽取抽取1212名学生,其阅读能力得分名学生,其阅读能力得分为为2828,3232,3636,2222,3434,3030,3333,2525,3131,3333,2929,2626。试估计。试估计该校三年级学生阅读能力总体平该校三年级学生阅读能力总体平均数均数9595和和9999的置信区间。的置信
13、区间。.解:解:1212名学生阅读能力的得分假定是从正名学生阅读能力的得分假定是从正态总体中抽出的随机样本,而总体标准差态总体中抽出的随机样本,而总体标准差未未知,样本的容量较小(知,样本的容量较小(=1230=1230n=12030),),t t分布接近于正态分布,分布接近于正态分布,因此可用正态分布近似处理。因此可用正态分布近似处理。.其标准误为其标准误为当0.95时,1.96因此,该年全部考生作文成绩因此,该年全部考生作文成绩9595的置信区间为:的置信区间为:.当0.99时,2.58因此,该年全部考生作文成绩因此,该年全部考生作文成绩9999的置信区间为:的置信区间为:.总体非正态,小
14、样本 不能进行参数估计,参数估计,即不能根据样本分布对即不能根据样本分布对总体平均数进行估计总体平均数进行估计。.第三节 假设检验的基本原理 利用样本信息,根据一利用样本信息,根据一定概率,对总体参数或分布定概率,对总体参数或分布的某一假设作出拒绝或保留的某一假设作出拒绝或保留的决断,称为假设检验。的决断,称为假设检验。.一、假设假设检验一般有两互相对立的假设。假设检验一般有两互相对立的假设。H H0 0:零假设,或称原假设、虚无假设(:零假设,或称原假设、虚无假设(null null hypothesishypothesis)、解消假设;是要检验的对象之间没)、解消假设;是要检验的对象之间没
15、有差异的假设。有差异的假设。H H1 1:备择假设(:备择假设(alternative hypothesisalternative hypothesis),),或称研究假设、对立假设;是与零假设相对立的假或称研究假设、对立假设;是与零假设相对立的假设,即存在差异的假设。设,即存在差异的假设。.进行假设检验时,一般是从零假设出进行假设检验时,一般是从零假设出发,以样本与总体无差异的条件计算统计发,以样本与总体无差异的条件计算统计量的值,并分析计算结果在抽样分布上的量的值,并分析计算结果在抽样分布上的概率,根据相应的概率判断应接受零假设、概率,根据相应的概率判断应接受零假设、拒绝研究假设还是拒绝零
16、假设、接受研究拒绝研究假设还是拒绝零假设、接受研究假设。假设。.二、小概率事件样本统计量的值在其抽样分布上出样本统计量的值在其抽样分布上出现的概率小于或等于事先规定的水平,现的概率小于或等于事先规定的水平,这时就认为小概率事件发生了。把这时就认为小概率事件发生了。把出现出现概率很小的随机事件概率很小的随机事件称为小概率事件。称为小概率事件。.当概率足够小时,可以作为从实际可当概率足够小时,可以作为从实际可能性上,把零假设加以否定的理由。因为能性上,把零假设加以否定的理由。因为根据这个原理认为:在随机抽样的条件下,根据这个原理认为:在随机抽样的条件下,一次实验竟然抽到与总体参数值有这么大一次实验
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 第六 抽样 分布 总体 平均数 推断
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【天****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【天****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。