人教版中学七年级下册数学期末质量检测卷含解析.doc
《人教版中学七年级下册数学期末质量检测卷含解析.doc》由会员分享,可在线阅读,更多相关《人教版中学七年级下册数学期末质量检测卷含解析.doc(24页珍藏版)》请在咨信网上搜索。
人教版中学七年级下册数学期末质量检测卷含解析 一、选择题 1.如图,直线a,b,c被射线l和m所截,则下列关系正确的是( ) A.∠1与∠2是对顶角 B.∠1与∠3是同旁内角 C.∠3与∠4是同位角 D.∠2与∠3是内错角 2.下列四幅图案中,通过平移能得到图案E的是( ) A.A B.B C.C D.D 3.点(﹣4,2)所在的象限是( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限 4.下列命题中是假命题的是( ) A.对顶角相等 B.在同一平面内,垂直于同一条直线的两条直线平行 C.同旁内角互补 D.平行于同一条直线的两条直线平行 5.如图,直线,被直线,所截,若,,则的度数是( ) A. B. C. D. 6.下列说法正确的是( ) A.是分数 B.互为相反数的数的立方根也互为相反数 C.的系数是 D.的平方根是 7.如图,已知,点在上,连接,作平分交于点,,则的度数为( ). A. B. C. D. 8.如图,动点P从点出发,沿所示方向运动,每当碰到长方形OABC的边时反弹,反弹后的路径与长方形的边的夹角为45°,第1次碰到长方形边上的点的坐标为……第2021次碰到长方形边上的坐标为( ) A. B. C. D. 九、填空题 9.计算:﹣=_____. 十、填空题 10.点A关于x轴的对称点的坐标为____________. 十一、填空题 11.如图,已知AD是ABC的角平分线,CE是ABC的高,∠BAC=60°,∠BCE=40°,则∠ADB=_____. 十二、填空题 12.如图,己知AB∥CD.OE平分∠AOC,OE⊥OF,∠C=50°,则∠AOF的度数为___. 十三、填空题 13.如图,将ABC沿着AC边翻折得到AB1C,连接BB1交AC于点E,过点B1作B1DAC交BC延长线于点D,交BA延长线于点F,连接DA,若∠CBE=45°,BD=6cm,则ADB1的面积为_________. 十四、填空题 14.已知实数a、b互为相反数,c、d互为倒数,e是的整数部分,f是的小数部分,求代数式﹣+e﹣f=__. 十五、填空题 15.在平面直角坐标系中,若点在第二象限,则的取值范围为_______. 十六、填空题 16.如图,每一个小正方形的边长为1个单位长,一只蚂蚁从格点.A出发,沿着A→B→C→D→A→B→...路径循环爬行,当爬行路径长为2020个单位长时,蚂蚁所在格点坐标为___. 十七、解答题 17.计算: (1)利用平方根意义求x值: (2) 十八、解答题 18.求下列各式中的x值: (1) (2) 十九、解答题 19.如图.已知∠1=∠2,∠C=∠D,求证:∠A=∠F. (1)请把下面证明过程中序号对应的空白内容补充完整. 证明:∴∠1=∠2(已知) 又∵∠1=∠DMN( ) ∵∠2=∠DMN(等量代换) ∴DB∥EC( ) ∴∠DBC+∠C=180°( ). ∵∠C=∠D(已知), ∴∠DBC+( )=180°(等量代换) ∴DF∥AC( ) ∴∠A=∠F( ) (2)在(1)的基础上,小明进一步探究得到∠DBC=∠DEC,请帮他写出推理过程. 二十、解答题 20.如图,在平面直角坐标系中,A(﹣1,﹣2),B(﹣2,﹣4),C(﹣4,﹣1).△ABC中任意一点P(x0,y0)经平移后对应点为P1(x0+2,y0+4),将△ABC作同样的平移得到△A1B1C1. (1)请画出△A1B1C1并写出点A1,B1,C1的坐标; (2)求△A1B1C1的面积; 二十一、解答题 21.阅读下面文字,然后回答问题. 给出定义:一个实数的整数部分是不大于这个数的最大数,这个实数的小数部分为这个数与它的整数部分的差的绝对值.例如:2.4的整数部分为2,小数部分为;的整数部分为1,小数部分可用表示;再如,﹣2.6的整数部分为﹣3,小数部分为.由此我们得到一个真命题:如果,其中是整数,且,那么,. (1)如果,其中是整数,且,那么______,_______; (2)如果,其中是整数,且,那么______,______; (3)已知,其中是整数,且,求的值; (4)在上述条件下,求的立方根. 二十二、解答题 22.已知在的正方形网格中,每个小正方形的边长为1. (1)计算图①中正方形的面积与边长. (2)利用图②中的正方形网格,作出面积为8的正方形,并在此基础上建立适当的数轴,在数轴上表示实数和. 二十三、解答题 23.已知,如图:射线分别与直线、相交于、两点,的角平分线与直线相交于点,射线交于点,设,且. (1)________,________;直线与的位置关系是______; (2)如图,若点是射线上任意一点,且,试找出与之间存在一个什么确定的数量关系?并证明你的结论. (3)若将图中的射线绕着端点逆时针方向旋转(如图)分别与、相交于点和点时,作的角平分线与射线相交于点,问在旋转的过程中的值变不变?若不变,请求出其值;若变化,请说明理由. 二十四、解答题 24.如图,,平分,设为,点E是射线上的一个动点. (1)若时,且,求的度数; (2)若点E运动到上方,且满足,,求的值; (3)若,求的度数(用含n和的代数式表示). 二十五、解答题 25.小明在学习过程中,对教材中的一个有趣问题做如下探究: (习题回顾)已知:如图1,在中,,是角平分线,是高,、相交于点.求证:; (变式思考)如图2,在中,,是边上的高,若的外角的平分线交的延长线于点,其反向延长线与边的延长线交于点,则与还相等吗?说明理由; (探究延伸)如图3,在中,上存在一点,使得,的平分线交于点.的外角的平分线所在直线与的延长线交于点.直接写出与的数量关系. 【参考答案】 一、选择题 1.C 解析:C 【分析】 根据对顶角、邻补角、同位角、内错角的定义分别分析即可. 【详解】 解:A、∠1与∠2是邻补角,故原题说法错误; B、∠1与∠3不是同旁内角,故原题说法错误; C、∠3与∠4是同位角,故原题说法正确; D、∠2与∠3不是内错角,故原题说法错误; 故选:C. 【点睛】 此题主要考查了对顶角、邻补角、内错角和同位角,解题的关键是掌握对顶角、邻补角、内错角和同位角的定义. 2.B 【分析】 根据平移的特征分析各图特点,只要符合“图形的形状、大小和方向都不改变”即为答案. 【详解】 根据平移不改变图形的形状、大小和方向,将题图所示的图案通过平移后可以得到的图案是E,满足条件 解析:B 【分析】 根据平移的特征分析各图特点,只要符合“图形的形状、大小和方向都不改变”即为答案. 【详解】 根据平移不改变图形的形状、大小和方向,将题图所示的图案通过平移后可以得到的图案是E,满足条件的原图是B; A,D选项改变了方向,故错误, C选项中,三角形和四边形位置不对,故C错误 故选:B 【点睛】 在平面内,把一个图形整体沿某一个方向移动,这种图形的平行移动,叫做平移变换,简称平移.平移是指图形的平行移动,平移时图形中所有点移动的方向一致,并且移动的距离相等.确定一个图形平移的方向和距离,只需确定其中一个点平移的方向和距离. 3.B 【分析】 根据第二象限的点的横坐标是负数,纵坐标是正数解答. 【详解】 解:点(-4,2)所在的象限是第二象限. 故选:B. 【点睛】 本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-). 4.C 【分析】 利用对顶角相等、平行线的判定与性质进行判断选择即可. 【详解】 解:A、对顶角相等,是真命题,不符合题意; B、在同一平面内,垂直于同一条直线的两条直线平行,是真命题,不符合题意; C、同旁内角互补,是假命题,符合题意; D、平行于同一条直线的两条直线平行,真命题,不符合题意, 故选:C. 【点睛】 本题考查判断命题的真假,解答的关键是熟练掌握对顶角相等、平行线的判定与性质等知识,难度不大. 5.C 【分析】 首先证明a∥b,推出∠4=∠5,求出∠5即可. 【详解】 解:∵∠1=∠2, ∴a∥b, ∴∠4=∠5, ∵∠5=180°﹣∠3=55°, ∴∠4=55°, 故选:C. 【点睛】 本题考查平行线的判定和性质,解题的关键是熟练掌握基本知识,属于中考常考题型. 6.B 【分析】 根据分数的定义,立方根的性质,单项式的系数的定义,平方根的定义,即可得到答案. 【详解】 ∵是无理数, ∴A错误, ∵互为相反数的数的立方根也互为相反数, ∴B正确, ∵的系数是, ∴C错误, ∵的平方根是±8, ∴D错误, 故选B. 【点睛】 本题主要考查分数的定义,立方根的性质,单项式的系数的定义,平方根的定义,掌握上述定义和性质,是解题的关键. 7.A 【分析】 由平行线的性质可得,再由角平分线性质可得,利用邻补角可求的度数. 【详解】 解:,, , 平分交于点, , . 故选:A. 【点睛】 本题主要考查平行线的性质及角平分线的定义,解答的关键是熟记并灵活运用平行线的性质. 8.A 【分析】 该题属于找规律题型,只要把运动周期找出来即可解决. 【详解】 由反弹线前后对称规律,得出第1-6次碰到长方形的边的点的坐标依次为:(0,3)(1,4)(5,0)(8,3)(7,4)(3 解析:A 【分析】 该题属于找规律题型,只要把运动周期找出来即可解决. 【详解】 由反弹线前后对称规律,得出第1-6次碰到长方形的边的点的坐标依次为:(0,3)(1,4)(5,0)(8,3)(7,4)(3,0)由此可以得出运动周期为6次一循环, 2021÷6=366……5, 第2021次碰到长方形的边的点的坐标为(7,4), 故选:A. 【点睛】 本题主要考查了规律性,图形的变化,解题关键是明确反弹前后特征,发现点的变化周期,利用变化周期循环规律解答. 九、填空题 9.﹣3. 【详解】 试题分析:根据算术平方根的定义﹣=﹣3. 故答案是﹣3. 考点:算术平方根. 解析:﹣3. 【详解】 试题分析:根据算术平方根的定义﹣=﹣3. 故答案是﹣3. 考点:算术平方根. 十、填空题 10.(2,4) 【分析】 直接利用关于x轴对称点的坐标特点:横坐标不变,纵坐标互为相反数,即点P(x,y)关于x轴的对称点P′的坐标是(x,-y),进而得出答案. 【详解】 解:点A(2,-4)关于x轴 解析:(2,4) 【分析】 直接利用关于x轴对称点的坐标特点:横坐标不变,纵坐标互为相反数,即点P(x,y)关于x轴的对称点P′的坐标是(x,-y),进而得出答案. 【详解】 解:点A(2,-4)关于x轴对称点A1的坐标为:(2,4). 故答案为:(2,4). 【点睛】 此题主要考查了关于x轴对称点的性质,正确把握横纵坐标的关系是解题关键. 十一、填空题 11.100° 【分析】 根据AD是ABC的角平分线,CE是ABC的高,∠BAC=60°,可得∠BAD和∠CAD相等,都为30°,∠CEA=90°,从而求得∠ACE的度数,又因为∠BCE=40°,∠ADB 解析:100° 【分析】 根据AD是ABC的角平分线,CE是ABC的高,∠BAC=60°,可得∠BAD和∠CAD相等,都为30°,∠CEA=90°,从而求得∠ACE的度数,又因为∠BCE=40°,∠ADB=∠BCE+∠ACE+∠CAD,从而求得∠ADB的度数. 【详解】 解:∵AD是ABC的角平分线,∠BAC=60°. ∴∠BAD=∠CAD=∠BAC=30°, ∵CE是ABC的高, ∴∠CEA=90°. ∵∠CEA+∠BAC+∠ACE=180°. ∴∠ACE=30°. ∵∠ADB=∠BCE+∠ACE+∠CAD,∠BCE=40°. ∴∠ADB=40°+30°+30°=100°. 故答案为:100°. 【点睛】 本题考查三角形的内角和、角的平分线、三角形的一个外角等于和它不相邻的内角的和,关键是根据具体目中的信息,灵活变化,求出相应的问题的答案. 十二、填空题 12.115° 【分析】 要求∠AOF的度数,结合已知条件只需要求出∠AOE的度数,根据角平分线的定义可以得到∠AOE=∠AOC,再利用平行线的性质得到∠C=∠AOC即可求解. 【详解】 解:∵AB∥CD 解析:115° 【分析】 要求∠AOF的度数,结合已知条件只需要求出∠AOE的度数,根据角平分线的定义可以得到∠AOE=∠AOC,再利用平行线的性质得到∠C=∠AOC即可求解. 【详解】 解:∵AB∥CD,∠C=50°, ∴∠C=∠AOC=50°, ∵OE平分∠AOC, ∴25°, ∵OE⊥OF, ∴∠EOF=90°, ∴∠AOF=∠AOE+∠EOF=115°, 故答案为:115°. 【点睛】 本题主要考查了平行线的性质,角平分线的性质,垂直的定义,解题的关键在于能够熟练掌握相关知识进行求解. 十三、填空题 13.cm² 【分析】 根据翻折变换的性质可知AC垂直平分BB1,且B1D平行AC,得到AC为三角形ADB中位线,从而求解. 【详解】 解:根据翻折变换的性质可知AC垂直平分BB1, ∵B1D∥AC, ∴ 解析:cm² 【分析】 根据翻折变换的性质可知AC垂直平分BB1,且B1D平行AC,得到AC为三角形ADB中位线,从而求解. 【详解】 解:根据翻折变换的性质可知AC垂直平分BB1, ∵B1D∥AC, ∴AC为三角形ADB中位线, ∴BC=CD=BD=3cm, 在Rt△BCE中,∠CBE=45°,BC=3cm, ∴CE2+BE2=BC2, 解得BE=CE=cm. ∴EB1=BE=, ∵CE为△BDB1中位线, ∴DB1=2CE=3cm, △ADB1的高与EB1相等, ∴S△ADB1=×DB1×EB1=××3=cm², 故答案为:cm². 【点睛】 本题主要考查了翻折变换的性质、三角形面积的求法,解题关键是能够明确AC为△ADB的中位线从而得出答案. 十四、填空题 14.【分析】 根据互为相反数、互为倒数、无理数的整数部分、小数部分的意义求解即可. 【详解】 解:∵实数a、b互为相反数, ∴a+b=0, ∵c、d互为倒数, ∴cd=1, ∵3<<4, ∴的整数部分 解析: 【分析】 根据互为相反数、互为倒数、无理数的整数部分、小数部分的意义求解即可. 【详解】 解:∵实数a、b互为相反数, ∴a+b=0, ∵c、d互为倒数, ∴cd=1, ∵3<<4, ∴的整数部分为3,e=3, ∵2<<3, ∴的小数部分为﹣2,即f=﹣2, ∴-+e﹣f = =4- 故答案为:4-. 【点睛】 本题考查相反数、倒数、无理数的估算,掌握相反数、倒数的意义,以及无理数的整数部分、小数部分的表示方法是解决问题的关键. 十五、填空题 15.-1<a<3 【分析】 根据第二象限内点的横坐标是负数,纵坐标是正数列出不等式组,然后求解即可. 【详解】 解:∵点P(a-3,a+1)在第二象限, ∴, 解不等式①得,a<3, 解不等式②得,a> 解析:-1<a<3 【分析】 根据第二象限内点的横坐标是负数,纵坐标是正数列出不等式组,然后求解即可. 【详解】 解:∵点P(a-3,a+1)在第二象限, ∴, 解不等式①得,a<3, 解不等式②得,a>-1, ∴-1<a<3. 故答案为:-1<a<3. 【点睛】 本题考查了各象限内点的坐标的符号特征以及解不等式组,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-). 十六、填空题 16.(2,2) 【分析】 由格点确定点A、B、C的坐标,从而得出AB、BC的长度,从而可找出爬行一圈的长度,再根据2020=126×16+4,即可得出当蚂蚁爬了2020个单位时,它所处位置的坐标. 【详 解析:(2,2) 【分析】 由格点确定点A、B、C的坐标,从而得出AB、BC的长度,从而可找出爬行一圈的长度,再根据2020=126×16+4,即可得出当蚂蚁爬了2020个单位时,它所处位置的坐标. 【详解】 解:∵A点坐标为(−2,2),B点坐标为(3,2),C点坐标为(3,−1), ∴AB=3−(−2)=5,BC=2−(−1)=3, ∴从A→B→C→D→A→B→…一圈的长度为2(AB+BC)=16. ∵2020=126×16+4, ∴当蚂蚁爬了2020个单位时,它所处位置在点A右边4个单位长度处,即(2,2). 故答案为:(2,2). 【点睛】 本题考查了规律型中点的坐标以及矩形的性质,根据蚂蚁的运动规律找出蚂蚁每运动16个单位长度是一圈. 十七、解答题 17.(1)或 (2) 【分析】 (1)由平方根的定义可得答案, (2)先化简二次根式,求解立方根与绝对值,再合并即可得到答案. 【详解】 解:(1) , 是的平方根, 或 (2) 【点睛 解析:(1)或 (2) 【分析】 (1)由平方根的定义可得答案, (2)先化简二次根式,求解立方根与绝对值,再合并即可得到答案. 【详解】 解:(1) , 是的平方根, 或 (2) 【点睛】 本题考查的是平方根的定义,实数的运算,求解算术平方根,立方根,绝对值的化简,掌握以上知识是解题的关键. 十八、解答题 18.(1)x=-15;(2)x=8或x=-4 【分析】 (1)利用直接开立方法求得x的值; (3)利用直接开平方法求得x的值. 【详解】 解:(1), ∴, ∴, 解得:x=-15; (2), ∴, ∴ 解析:(1)x=-15;(2)x=8或x=-4 【分析】 (1)利用直接开立方法求得x的值; (3)利用直接开平方法求得x的值. 【详解】 解:(1), ∴, ∴, 解得:x=-15; (2), ∴, ∴, 解得:x=8或x=-4. 【点睛】 本题考查了立方根和平方根.正数的立方根是正数,0的立方根是0,负数的立方根是负数.即任意数都有立方根. 十九、解答题 19.(1)见解析;(2)见解析 【分析】 (1)由对顶角相等及等量代换得到∠2=∠DMN,由此判定DB∥EC,由平行线的性质及等量代换得出∠DBC+∠D=180°即可判定DF∥AC,再根据平行线的性质即 解析:(1)见解析;(2)见解析 【分析】 (1)由对顶角相等及等量代换得到∠2=∠DMN,由此判定DB∥EC,由平行线的性质及等量代换得出∠DBC+∠D=180°即可判定DF∥AC,再根据平行线的性质即可得解; (2)由平行线的性质及等量代换即可得解. 【详解】 解:(1)证明:∵∠1=∠2(已知), 又∵∠1=∠DMN(对顶角相等), ∴∠2=∠DMN(等量代换), ∴DB∥EC(同位角相等,两直线平行 ), ∴∠DBC+∠C=180°( 两直线平行,同旁内角互补), ∵∠C=∠D(已知), ∵∠DBC+(∠D)=180°(等量代换), ∴DF∥AC( 同旁内角互补,两直线平行), ∴∠A=∠F(两直线平行,内错角相等 ). (2)∵DB∥EC, ∴∠DBC+∠C=180°,∠DEC+∠D=180°, ∵∠C=∠D, ∴∠DBC=∠DEC. 【点睛】 此题考查了平行线的判定与性质,熟练掌握平行线的判定定理与性质定理是解题的关键. 二十、解答题 20.(1)画图见解析,A1(1,2),B1(0,0),C1(-2,3);(2) 【分析】 (1)分别作出A,B,C的对应点A1,B1,C1,从而可得坐标. (2)利用分割法求解即可. 【详解】 解:(1 解析:(1)画图见解析,A1(1,2),B1(0,0),C1(-2,3);(2) 【分析】 (1)分别作出A,B,C的对应点A1,B1,C1,从而可得坐标. (2)利用分割法求解即可. 【详解】 解:(1)如图,A1B1C1并写即为所求作,A1(1,2),B1(0,0),C1(-2,3). (2)△A1B1C1的面积=3×3-×3×2-×1×2-×1×3=. 【点睛】 本题考查作图-平移变换,三角形的面积等知识,解题的关键是理解题意,灵活运用所学知识解决问题. 二十一、解答题 21.(1)2,;(2)﹣3,;(3);(4)3 【分析】 (1)先估算的大小,再依据定义分别取整数部分和小数部分即可; (2)先估算的大小,再依据定义分别取整数部分和小数部分即可; (3)先估算的大小, 解析:(1)2,;(2)﹣3,;(3);(4)3 【分析】 (1)先估算的大小,再依据定义分别取整数部分和小数部分即可; (2)先估算的大小,再依据定义分别取整数部分和小数部分即可; (3)先估算的大小,分别求得的值,再代入绝对值中计算即可; (4)根据前三问的结果,代入代数式求值,最后求立方根即可. 【详解】 (1), , , , 故答案为:2,,; (2) , , , 故答案为:﹣3,; (3), , , , ,, ; (4), , 27的立方根为3, 即的立方根为3. 【点睛】 本题考查了实数的运算,无理数的估算,绝对值计算,立方根,理解题意是解题的关键. 二十二、解答题 22.(1)正方形的面积为10,正方形的边长为;(2)见解析 【分析】 (1)利用正方形的面积减去4个直角三角形的面积即可求出正方形的面积,然后根据算术平方根的意义即可求出边长; (2)根据(1)的方法画 解析:(1)正方形的面积为10,正方形的边长为;(2)见解析 【分析】 (1)利用正方形的面积减去4个直角三角形的面积即可求出正方形的面积,然后根据算术平方根的意义即可求出边长; (2)根据(1)的方法画出图形,然后建立数轴,根据算术平方根的意义即可表示出结论. 【详解】 解:(1)正方形的面积为4×4-4××3×1=10 则正方形的边长为; (2)如下图所示,正方形的面积为4×4-4××2×2=8,所以该正方形即为所求,如图建立数轴,以数轴的原点为圆心,正方形的边长为半径作弧,分别交数轴于两点 ∴正方形的边长为 ∴弧与数轴的左边交点为,右边交点为,实数和在数轴上如图所示. 【点睛】 此题考查的是求网格中图形的面积和实数与数轴,掌握算术平方根的意义和利用数轴表示无理数是解题关键. 二十三、解答题 23.(1)35,35,平行;(2)∠FMN+∠GHF=180°,证明见解析;(3)不变,2 【分析】 (1)根据(α-35)2+|β-α|=0,即可计算α和β的值,再根据内错角相等可证AB∥CD; (2 解析:(1)35,35,平行;(2)∠FMN+∠GHF=180°,证明见解析;(3)不变,2 【分析】 (1)根据(α-35)2+|β-α|=0,即可计算α和β的值,再根据内错角相等可证AB∥CD; (2)先根据内错角相等证GH∥PN,再根据同旁内角互补和等量代换得出∠FMN+∠GHF=180°; (3)作∠PEM1的平分线交M1Q的延长线于R,先根据同位角相等证ER∥FQ,得∠FQM1=∠R,设∠PER=∠REB=x,∠PM1R=∠RM1B=y,得出∠EPM1=2∠R,即可得=2. 【详解】 解:(1)∵(α-35)2+|β-α|=0, ∴α=β=35, ∴∠PFM=∠MFN=35°,∠EMF=35°, ∴∠EMF=∠MFN, ∴AB∥CD; (2)∠FMN+∠GHF=180°; 理由:由(1)得AB∥CD, ∴∠MNF=∠PME, ∵∠MGH=∠MNF, ∴∠PME=∠MGH, ∴GH∥PN, ∴∠GHM=∠FMN, ∵∠GHF+∠GHM=180°, ∴∠FMN+∠GHF=180°; (3)的值不变,为2, 理由:如图3中,作∠PEM1的平分线交M1Q的延长线于R, ∵AB∥CD, ∴∠PEM1=∠PFN, ∵∠PER=∠PEM1,∠PFQ=∠PFN, ∴∠PER=∠PFQ, ∴ER∥FQ, ∴∠FQM1=∠R, 设∠PER=∠REB=x,∠PM1R=∠RM1B=y, 则有:, 可得∠EPM1=2∠R, ∴∠EPM1=2∠FQM1, ∴==2. 【点睛】 本题主要考查平行线的判定与性质,熟练掌握内错角相等证平行,平行线同旁内角互补等知识是解题的关键. 二十四、解答题 24.(1)60°;(2)50°;(3)或 【分析】 (1)根据平行线的性质可得的度数,再根据角平分线的性质可得的度数,应用三角形内角和计算的度数,由已知条件,可计算出的度数; (2)根据题意画出图形,先 解析:(1)60°;(2)50°;(3)或 【分析】 (1)根据平行线的性质可得的度数,再根据角平分线的性质可得的度数,应用三角形内角和计算的度数,由已知条件,可计算出的度数; (2)根据题意画出图形,先根据可计算出的度数,由可计算出的度数,再根据平行线的性质和角平分线的性质,计算出的度数,即可得出结论; (3)根据题意可分两种情况,①若点运动到上方,根据平行线的性质由可计算出的度数,再根据角平分线的性质和平行线的性质,计算出的度数,再,,列出等量关系求解即可等处结论;②若点运动到下方,根据平行线的性质由可计算出的度数,再根据角平分线的性质和平行线的性质,计算出的度数,再,列出等量关系求解即可等处结论. 【详解】 解:(1),, , 平分, , , 又, ; (2)根据题意画图,如图1所示, ,, , , , , 又平分, , ; (3)①如图2所示, , , 平分, , , 又, , , 解得; ②如图3所示, , , 平分, , , 又, , , 解得. 综上的度数为或. 【点睛】 本题主要考查平行线的性质和角平分线的性质,两直线平行,同位角相等.两直线平行,同旁内角互补. 两直线平行,内错角相等.合理应用平行线的性质是解决本题的关键. 二十五、解答题 25.[习题回顾]证明见解析;[变式思考] 相等,证明见解析;[探究延伸] ∠M+∠CFE=90°,证明见解析. 【分析】 [习题回顾]根据同角的余角相等可证明∠B=∠ACD,再根据三角形的外角的性质即可 解析:[习题回顾]证明见解析;[变式思考] 相等,证明见解析;[探究延伸] ∠M+∠CFE=90°,证明见解析. 【分析】 [习题回顾]根据同角的余角相等可证明∠B=∠ACD,再根据三角形的外角的性质即可证明; [变式思考]根据角平分线的定义和对顶角相等可得∠CAE=∠DAF、再根据直角三角形的性质和等角的余角相等即可得出=; [探究延伸]根据角平分线的定义可得∠EAN=90°,根据直角三角形两锐角互余可得∠M+∠CEF=90°,再根据三角形外角的性质可得∠CEF=∠CFE,由此可证∠M+∠CFE=90°. 【详解】 [习题回顾]证明:∵∠ACB=90°,CD是高, ∴∠B+∠CAB=90°,∠ACD+∠CAB=90°, ∴∠B=∠ACD, ∵AE是角平分线, ∴∠CAF=∠DAF, ∵∠CFE=∠CAF+∠ACD,∠CEF=∠DAF+∠B, ∴∠CEF=∠CFE; [变式思考]相等,理由如下: 证明:∵AF为∠BAG的角平分线, ∴∠GAF=∠DAF, ∵∠CAE=∠GAF, ∴∠CAE=∠DAF, ∵CD为AB边上的高,∠ACB=90°, ∴∠ADC=90°, ∴∠ADF=∠ACE=90°, ∴∠DAF+∠F=90°,∠E+∠CAE=90°, ∴∠CEF=∠CFE; [探究延伸]∠M+∠CFE=90°, 证明:∵C、A、G三点共线 AE、AN为角平分线, ∴∠EAN=90°, 又∵∠GAN=∠CAM, ∴∠M+∠CEF=90°, ∵∠CEF=∠EAB+∠B,∠CFE=∠EAC+∠ACD,∠ACD=∠B, ∴∠CEF=∠CFE, ∴∠M+∠CFE=90°. 【点睛】 本题考查三角形的外角的性质,直角三角形两锐角互余,角平分线的有关证明,等角或同角的余角相等.在本题中用的比较多的是利用等角或同角的余角相等证明角相等和三角形一个外角等于与它不相邻的两个内角之和,理解并掌握是解决此题的关键.- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 人教版 中学 年级 下册 数学 期末 质量 检测 解析
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【a199****6536】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【a199****6536】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【a199****6536】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【a199****6536】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文