人教版七年级数学下册期末测试题(及答案).doc
《人教版七年级数学下册期末测试题(及答案).doc》由会员分享,可在线阅读,更多相关《人教版七年级数学下册期末测试题(及答案).doc(24页珍藏版)》请在咨信网上搜索。
人教版七年级数学下册期末测试题(及答案) 一、选择题 1.如图,下列说法不正确的是( ) A.∠1与∠3是对顶角 B.∠2与∠6是同位角 C.∠3与∠4是内错角 D.∠3与∠5是同旁内角 2.在如图所示的四个汽车标识图案中,能用平移变换来分析其形成过程的是( ) A. B. C. D. 3.如果在第三象限,那么点在( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限 4.给出下列命题:①等边三角形是等腰三角形;②三角形的重心是三角形三条中线的交点;③三角形的外角等于两个内角的和;④三角形的角平分线是射线;⑤三角形相邻两边组成的角叫三角形的内角;⑥三角形的高所在的直线交于一点,这一点不在三角形内就在三角形外.其中正确命题的个数有( ) A.1个 B.2个 C.3个 D.4个 5.一副直角三角板如图放置,其中∠F=∠ACB=90°,∠D=45°,∠B=60°,AB//DC,则∠CAE的度数为( ) A.25° B.20° C.15° D.10° 6.下列说法中,正确的是( ) A.(﹣2)3的立方根是﹣2 B.0.4的算术平方根是0.2 C.的立方根是4 D.16的平方根是4 7.如图,在中,∠AEC=50°,平分,则的度数为( ) A.25° B.30° C.35° D.40° 8.如图,在平面直角坐标系中,,,,,把一条长为个单位长度且没有弹性的细线(线的粗细忽略不计)的一端固定在点处,并按…的规律绕在四边形的边上,则细线另一端所在位置的点的坐标是( ) A. B. C. D. 九、填空题 9.若,则的值为 十、填空题 10.若与关于轴对称,则______. 十一、填空题 11.若在第一、三象限的角平分线上,与的关系是_________. 十二、填空题 12.如图,已知AB∥CD,如果∠1=100°,∠2=120°,那么∠3=_____度. 十三、填空题 13.如图,在中,,点D是的中点,点E在上,将沿折叠,若点B的落点在射线上,则与所夹锐角的度数是________. 十四、填空题 14.按下面的程序计算: 若输入n=100,输出结果是501;若输入n=25,输出结果是631,若开始输入的n值为正整数,最后输出的结果为656,则开始输入的n值可以是________. 十五、填空题 15.若点P(2x,x-3)到两坐标轴的距离之和为5,则x的值为____________. 十六、填空题 16.如图,在平面直角坐标系中,横坐标和纵坐标都为整数的点称为整点.观察图中每个正方形(实线)四条边上的整点的个数,假如按图规律继续画正方形(实线),请你猜测由里向外第15个正方形(实线)的四条边上的整点共有________个. 十七、解答题 17.计算: (1) (2) (3) (4) 十八、解答题 18.求下列各式中的值: (1);(2);(3). 十九、解答题 19.请补全推理依据:如图,已知:,,求证:. 证明: ∵(已知) ∴( ) ∴( ) 又∵(已知) ∴( ) ∴( ) ∴( ) 二十、解答题 20.在平面直角坐标系中,△ABC三个顶点的坐标分别是A(﹣2,2)、B(2,0),C(﹣4,﹣2). (1)在平面直角坐标系中画出△ABC; (2)若将(1)中的△ABC平移,使点B的对应点B′坐标为(6,2),画出平移后的△A′B′C′; (3)求△A′B′C′的面积. 二十一、解答题 21.已知的整数部分是a,小数部分是b,求a+ 的值。 的整数部分是2,所以的小数部分是 −2,所以a=2,b=−2, a+, 请根据以上解题提示,解答下题: 已知9+ 与9−的小数部分分别为a,b,求ab−4a+3b−2的值. 二十二、解答题 22.(1)小丽计划在母亲节那天送份礼物妈妈,特设计一个表面积为12dm2的正方体纸盒,则这个正方体的棱长是 . (2)为了增加小区的绿化面积,幸福公园准备修建一个面积121πm2的草坪,草坪周围用篱笆围绕.现从对称美的角度考虑有甲,乙两种方案,甲方案:建成正方形;乙方案:建成圆形的.如果从节省篱笆费用的角度考虑,你会选择哪种方案?请说明理由; (3)在(2)的方案中,审批时发现修如此大的草坪,目的是亲近自然,若按上方案就没达到目的,因此建议用如图的设计方案:正方形里修三条小路,三条小路的宽度是一样,这样草坪的实际面积就减少了21πm2,请你根据此方案求出各小路的宽度(π取整数). 二十三、解答题 23.已知,AB∥CD.点M在AB上,点N在CD上. (1)如图1中,∠BME、∠E、∠END的数量关系为: ;(不需要证明) 如图2中,∠BMF、∠F、∠FND的数量关系为: ;(不需要证明) (2)如图3中,NE平分∠FND,MB平分∠FME,且2∠E+∠F=180°,求∠FME的度数; (3)如图4中,∠BME=60°,EF平分∠MEN,NP平分∠END,且EQ∥NP,则∠FEQ的大小是否发生变化,若变化,请说明理由,若不变化,求出∠FEQ的度数. 二十四、解答题 24.已知点A,B,O在一条直线上,以点O为端点在直线AB的同一侧作射线,,使. (1)如图①,若平分,求的度数; (2)如图②,将绕点O按逆时针方向转动到某个位置时,使得所在射线把分成两个角. ①若,求的度数; ②若(n为正整数),直接用含n的代数式表示. 二十五、解答题 25.在△ABC中,射线AG平分∠BAC交BC于点G,点D在BC边上运动(不与点G重合),过点D作DE∥AC交AB于点E. (1)如图1,点D在线段CG上运动时,DF平分∠EDB ①若∠BAC=100°,∠C=30°,则∠AFD= ;若∠B=40°,则∠AFD= ; ②试探究∠AFD与∠B之间的数量关系?请说明理由; (2)点D在线段BG上运动时,∠BDE的角平分线所在直线与射线AG交于点F试探究∠AFD与∠B之间的数量关系,并说明理由 【参考答案】 一、选择题 1.B 解析:B 【分析】 根据对顶角定义:如果一个角的两边分别是另一个角两边的反向延长线,且这两个角有公共顶点,那么这两个角是对顶角;内错角定义:两条直线被第三条直线所截,两个角分别在截线的两侧,且夹在两条被截直线之间,具有这样位置关系的一对角叫做内错角;同位角定义:两条直线被第三条直线所截,两个角分别在两条被截线同一方,并且都在截线的同侧,具有这样位置关系的一对角叫做同位角;同旁内角定义:两条直线被第三条直线所截,若两个角都在两直线之间,并且在截线的同侧,则这样的一对角叫做同旁内角;进行分析判断即可. 【详解】 解答:解:A、∠1与∠3是对顶角, 故原题说法正确,不符合题意; B、∠2与∠6不是同位角, 故原题说法错误,符合题意; C、∠3与∠4是内错角, 故原题说法正确,不符合题意; D、∠3与∠5是同旁内角, 故原题说法正确,不符合题意; 故选:B. 【点睛】 此题主要考查了对顶角、内错角、同位角、同旁内角,关键是掌握这几种角的定义. 2.D 【分析】 根据平移作图是一个基本图案按照一定的方向平移一定的距离,连续作图设计出的图案进行分析即可. 【详解】 解:A、不能用平移变换来分析其形成过程,故此选项错误; B、不能用平移变换来分析其 解析:D 【分析】 根据平移作图是一个基本图案按照一定的方向平移一定的距离,连续作图设计出的图案进行分析即可. 【详解】 解:A、不能用平移变换来分析其形成过程,故此选项错误; B、不能用平移变换来分析其形成过程,故此选项错误; C、不能用平移变换来分析其形成过程,故此选项正确; D、能用平移变换来分析其形成过程,故此选项错误; 故选:D. 【点睛】 本题考查利用平移设计图案,解题关键是掌握图形的平移只改变图形的位置,而不改变图形的形状、大小和方向. 3.B 【分析】 根据第三象限内点的横坐标是负数,纵坐标是负数确定出a、b的正负情况,再求出a+b,ab的正负情况,然后确定出点Q所在的象限,即可得解. 【详解】 解:∵点P(a,b)在第三象限, ∴a<0,b<0, ∴a+b<0,ab>0, ∴点Q(a+b,ab)在第二象限. 故选:B. 【点睛】 本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-). 4.B 【分析】 根据等边三角形的性质可以判断①,根据三角形重心的定义可判断②,根据三角形内角和定理可判断③,根据三角形角平分线的定义可以判断④,根据三角形的内角的定义可以判断⑤,根据三角形的高的定义以及直角三角形的高可以判断⑥. 【详解】 ①等边三角形是等腰三角形,①正确; ②三角形的重心是三角形三条中线的交点,②正确; ③三角形的外角等于不相邻的两个内角的和,故③不正确; ④三角形的角平分线是线段,故④不正确; ⑤三角形相邻两边组成的角且位于三角形内部的角,叫三角形的内角,⑤错误; ⑥三角形的高所在的直线交于一点,这一点可以在三角形内或在三角形外或者在三角形的边上. 正确的有①②,共计2个, 故选B 【点睛】 本题考查了命题的判断,等边三角形的性质,三角形的重心,三角形的内角和定理,三角形的角平分线,三角形的内角的定义,三角形垂心的位置,掌握相关性质定理是解题的关键. 5.C 【分析】 利用平行线的性质和给出的已知数据即可求出的度数. 【详解】 解:,, , ,, , , , , 故选:C. 【点睛】 本题考查了平行线的性质,解题的关键是熟记平行线的性质. 6.A 【分析】 根据立方根的定义及平方根的定义依次判断即可得到答案. 【详解】 解:A.(﹣2)3的立方根是﹣2,故本选项符合题意; B.0.04的算术平方根是0.2,故本选项不符合题意; C. 的立方根是2,故本选项不符合题意; D.16的平方根是±4,故本选项不符合题意; 故选:A. 【点睛】 此题考查立方根的定义及平方根的定义,熟记定义是解题的关键. 7.A 【分析】 根据平行线的性质得到∠ABC=∠BCD,∠ECD=∠AEC=50°再根据角平分线的定义得到∠BCE=∠BCD =∠ECD=25°,由此即可求解. 【详解】 解:∵AB∥CD, ∴∠ABC=∠BCD,∠ECD=∠AEC=50° ∵CB平分∠DCE, ∴∠BCE=∠BCD =∠ECD=25° ∠ABC=∠BCD=25° 故选A. 【点睛】 本题考查了平行线的性质,角平分线的定义,掌握平行线的性质:两直线平行,内错角相等是解题的关键. 8.C 【分析】 先求出四边形ABCD的周长为10,得到2018÷10的余数为8,由此即可解决问题. 【详解】 解:∵A(1,1),B(−1,1),C(−1,−2),D(1,−2), ∴AB=1−(−1 解析:C 【分析】 先求出四边形ABCD的周长为10,得到2018÷10的余数为8,由此即可解决问题. 【详解】 解:∵A(1,1),B(−1,1),C(−1,−2),D(1,−2), ∴AB=1−(−1)=2,BC=1−(−2)=3,CD=1−(−1)=2,DA=1−(−2)=3, ∴绕四边形ABCD一周的细线长度为2+3+2+3=10, 2018÷10=201…8, ∴细线另一端在绕四边形第202圈的第8个单位长度的位置, 即细线另一端所在位置的点在D处上面1个单位的位置,坐标为(1,−1). 故选:C. 【点睛】 本题利用点的坐标考查了数字变化规律,根据点的坐标求出四边形ABCD一周的长度,从而确定2018个单位长度的细线的另一端落在第几圈第几个单位长度的位置是解题的关键. 九、填空题 9.-1 【解析】 解:有题意得,,,,则 解析:-1 【解析】 解:有题意得,,,,则 十、填空题 10.【分析】 根据关于y轴对称的点的坐标特征,即可求出m的值. 【详解】 解:∵A(m,-3)与B(4,-3)关于y轴对称, ∴m=-4, 故答案为:-4. 【点睛】 本题主要考查了关于y轴对称点的坐 解析: 【分析】 根据关于y轴对称的点的坐标特征,即可求出m的值. 【详解】 解:∵A(m,-3)与B(4,-3)关于y轴对称, ∴m=-4, 故答案为:-4. 【点睛】 本题主要考查了关于y轴对称点的坐标,解题的关键在于能够熟练掌握,如果两点关于y轴对称,那么这两个点的横坐标互为相反数,纵坐标相等. 十一、填空题 11.a=b. 【详解】 根据第一、三象限的角平分线上的点的坐标特征,易得a=b. 解析:a=b. 【详解】 根据第一、三象限的角平分线上的点的坐标特征,易得a=b. 十二、填空题 12.40 【分析】 过作平行于,由与平行,得到与平行,利用两直线平行同位角相等,同旁内角互补,得到,,即可确定出的度数. 【详解】 解:如图:过作平行于, , , , ,即, . 故答案为:40. 【 解析:40 【分析】 过作平行于,由与平行,得到与平行,利用两直线平行同位角相等,同旁内角互补,得到,,即可确定出的度数. 【详解】 解:如图:过作平行于, , , , ,即, . 故答案为:40. 【点睛】 此题考查了平行线的性质,熟练掌握平行线的性质是解本题的关键. 十三、填空题 13.. 【分析】 根据折叠可得三角形全等,根据全等三角形的性质以及中点的性质可得, ,由等腰三角形性质以及三角形外角定理求得度数,在中根据内角和即可求得与所夹锐角的度数. 【详解】 如下图,连接DE,与 解析:. 【分析】 根据折叠可得三角形全等,根据全等三角形的性质以及中点的性质可得, ,由等腰三角形性质以及三角形外角定理求得度数,在中根据内角和即可求得与所夹锐角的度数. 【详解】 如下图,连接DE,与相交于点O, 将 △BDE 沿 DE 折叠, , , 又∵D为BC的中点,, , , , , 即与所夹锐角的度数是. 故答案为:. 【点睛】 本题考察了轴对称的性质、全等三角形的性质、中点的性质、三角形的外角以及内角和定理,综合运用以上性质定理是解题的关键. 十四、填空题 14.131或26或5. 【解析】 试题解析:由题意得,5n+1=656, 解得n=131, 5n+1=131, 解得n=26, 5n+1=26, 解得n=5. 解析:131或26或5. 【解析】 试题解析:由题意得,5n+1=656, 解得n=131, 5n+1=131, 解得n=26, 5n+1=26, 解得n=5. 十五、填空题 15.或 【详解】 【分析】分x<0,0≤x<3,x≥3三种情况分别讨论即可得. 【详解】当x<0时,2x<0,x-3<0,由题意则有-2x-(x-3)=5,解得:x=, 当0≤x<3时,2x≥0,x-3 解析:或 【详解】 【分析】分x<0,0≤x<3,x≥3三种情况分别讨论即可得. 【详解】当x<0时,2x<0,x-3<0,由题意则有-2x-(x-3)=5,解得:x=, 当0≤x<3时,2x≥0,x-3<0,由题意则有2x-(x-3)=5,解得:x=2, 当x≥3时,2x>0,x-3≥0,由题意则有2x+x-3=5,解得:x=<3(不合题意,舍去), 综上,x的值为2或, 故答案为2或. 【点睛】本题考查了坐标与图形的性质,根据x的取值范围分情况进行讨论是解题的关键. 十六、填空题 16.60 【分析】 运用从特殊到一般的推理归纳的思想,利用正方形为中心对称图形,分析其一条边上的整点个数,进而推断整个正方形的四条边上的整点. 【详解】 解:①第1个正方形,对于其中1条边,除去该边的一 解析:60 【分析】 运用从特殊到一般的推理归纳的思想,利用正方形为中心对称图形,分析其一条边上的整点个数,进而推断整个正方形的四条边上的整点. 【详解】 解:①第1个正方形,对于其中1条边,除去该边的一个端点,这条边有1个整点.根据正方形是中心对称图形,则四条边共有41=4个整点, ②第2个正方形,对于其中1条边,除去该边的一个端点,这条边有2个整点.根据正方形是中心对称图形,则四条边共有42=8个整点, ③第3个正方形,对于其中1条边,除去该边的一个端点,这条边共有3个整点.根据正方形是中心对称图形,则四条边共有43=12个整点, ④第4个正方形,对于其中1条边,除去该边的一个端点,这条边共有4个整点.根据正方形是中心对称图形,则四条边共有44=16个整点, ⑤第5个正方形,对于其中1条边,除去该边的一个端点,这条边共有5个整点.根据正方形是中心对称图形,则四条边共有45=20个整点, ... 以此类推,第15个正方形,四条边上的整点共有415=60个. 故答案为:60. 【点睛】 本题主要考查了坐标与图形的性质,图形中的数字的变化规律.准确找出每一个正方形(实线)四条边上的整点的个数与正方形序号的关系是解题的关键. 十七、解答题 17.(1)6;(2)-4;(3);(4). 【分析】 (1)利用算术平方根和立方根、绝对值化简,再进一步计算即可; (2)利用算术平方根和立方根化简,再进一步计算即可; (3)类比单项式乘多项式展开计算 解析:(1)6;(2)-4;(3);(4). 【分析】 (1)利用算术平方根和立方根、绝对值化简,再进一步计算即可; (2)利用算术平方根和立方根化简,再进一步计算即可; (3)类比单项式乘多项式展开计算; (4)利用绝对值的性质化简,再进一步合并同类二次根式. 【详解】 解:(1) =3+2+1 =6; (2) =2-3-3 =-4; (3) = ; (4) = =. 故答案为(1)6;(2)-4;(3);(4). 【点睛】 本题考查立方根和算术平方根,实数的混合运算,先化简,再进一步计算,注意选择合适的方法简算. 十八、解答题 18.(1);(2);(3) 【分析】 直接根据平方根的定义逐个解答即可. 【详解】 解:(1)∵, ∴; (2)∵, ∴, ∴; (3)∵, ∴, ∴. 【点睛】 此题主要考查了平方根的定义,熟练掌握平 解析:(1);(2);(3) 【分析】 直接根据平方根的定义逐个解答即可. 【详解】 解:(1)∵, ∴; (2)∵, ∴, ∴; (3)∵, ∴, ∴. 【点睛】 此题主要考查了平方根的定义,熟练掌握平方根的定义是解题关键. 十九、解答题 19.同旁内角互补,两直线平行;两直线平行,同位角相等;等量代换;内错角相等,两直线平行;两直线平行,内错角相等 【分析】 根据平行线的判定定理以及性质定理证明即可. 【详解】 证明:∵∠1+∠2=180 解析:同旁内角互补,两直线平行;两直线平行,同位角相等;等量代换;内错角相等,两直线平行;两直线平行,内错角相等 【分析】 根据平行线的判定定理以及性质定理证明即可. 【详解】 证明:∵∠1+∠2=180°(已知), ∴AD∥EF(同旁内角互补,两直线平行), ∴∠3=∠D(两直线平行,同位角相等), 又∵∠3=∠A(已知), ∴∠D=∠A(等量代换),, ∴AB∥CD(内错角相等,两直线平行), ∴∠B=∠C(两直线平行,内错角相等). 故答案为:同旁内角互补,两直线平行;两直线平行,同位角相等;等量代换;内错角相等,两直线平行;两直线平行,内错角相等. 【点睛】 本题主要考查了平行线的判定与性质,熟记平行线的判定定理与性质定理是解本题的关键. 二十、解答题 20.(1)见解析;(2)见解析;(3)10 【分析】 (1)根据点A、B、C的坐标描点,从而可得到△ABC; (2)利用点B和B′的坐标关系可判断△ABC先向右平移4个单位,再向上平移2个单位得到△A′ 解析:(1)见解析;(2)见解析;(3)10 【分析】 (1)根据点A、B、C的坐标描点,从而可得到△ABC; (2)利用点B和B′的坐标关系可判断△ABC先向右平移4个单位,再向上平移2个单位得到△A′B′C′,利用此平移规律写出A′、C′的坐标,然后描点即可得到△A′B′C′; (3)用一个矩形的面积分别减去三个三角形的面积去计算△A′B′C′的面积. 【详解】 解:(1)如图,△ABC为所作; (2)如图,△A′B′C′为所作; (3)△A′B′C′的面积=. 【点睛】 本题考查了平移变换:确定平移后图形的基本要素有两个:平移方向、平移距离.作图时要先找到图形的关键点,分别把这几个关键点按照平移的方向和距离确定对应点后,再顺次连接对应点即可得到平移后的图形. 二十一、解答题 21.-3. 【解析】 【分析】 根据题意可以分别求得a、b的值,然后代入ab-4a+3b-2,即可解答本题. 【详解】 ∵9+ 与9−的小数部分分别为a,b, ∴a=9+−12=−3,b=9−−5=4− 解析:-3. 【解析】 【分析】 根据题意可以分别求得a、b的值,然后代入ab-4a+3b-2,即可解答本题. 【详解】 ∵9+ 与9−的小数部分分别为a,b, ∴a=9+−12=−3,b=9−−5=4−, ∴ab−4a+3b−2=(−3)(4−)−4(−3)+3(4-)-2=7-13-12-4+12+12-3-2=-3. 【点睛】 此题考查估算无理数的大小,解题关键在于分别求得a、b的值. 二十二、解答题 22.(1)dm;(2)从节省篱笆费用的角度考虑,选择乙方案建成圆形;(3)根据此方案求出小路的宽度为 【分析】 (1)先求得正方体的一个面的面积,然后依据算术平方根的定义求解即可; (2)根据正方形的周 解析:(1)dm;(2)从节省篱笆费用的角度考虑,选择乙方案建成圆形;(3)根据此方案求出小路的宽度为 【分析】 (1)先求得正方体的一个面的面积,然后依据算术平方根的定义求解即可; (2)根据正方形的周长公式以及圆形的周长公式即可求出答案; (3)根据图形的平移求解. 【详解】 解:(1)∵正方体有6个面且每个面都相等, ∴正方体的一个面的面积=2 dm2. ∴正方形的棱长=dm; 故答案为: dm ; (2)甲方案:设正方形的边长为xm,则x2 =121 ∴x =11 ∴正方形的周长为:4x=44m 乙方案: 设圆的半径rm为,则r2==121 ∴r =11 ∴圆的周长为:2= 22m ∴ 442222(2- ∵ 4> ∴ 2 ∴ ∴正方形的周长比圆的周长大 故从节省篱笆费用的角度考虑,选择乙方案建成圆形; (3)依题意可进行如图所示的平移,设小路的宽度为ym ,则 (11 –y)2=12121 ∴11 –y =10 ∴ y= ∵ 取整数 ∴ y = 答:根据此方案求出小路的宽度为; 【点睛】 本题主要考查的是算术平方根的定义,熟练掌握正方形的性质以及平移的性质是解题的关键; 二十三、解答题 23.(1)∠BME=∠MEN﹣∠END;∠BMF=∠MFN+∠FND;(2)120°;(3)不变,30° 【分析】 (1)过E作EH∥AB,易得EH∥AB∥CD,根据平行线的性质可求解;过F作FH∥AB 解析:(1)∠BME=∠MEN﹣∠END;∠BMF=∠MFN+∠FND;(2)120°;(3)不变,30° 【分析】 (1)过E作EH∥AB,易得EH∥AB∥CD,根据平行线的性质可求解;过F作FH∥AB,易得FH∥AB∥CD,根据平行线的性质可求解; (2)根据(1)的结论及角平分线的定义可得2(∠BME+∠END)+∠BMF-∠FND=180°,可求解∠BMF=60°,进而可求解; (3)根据平行线的性质及角平分线的定义可推知∠FEQ=∠BME,进而可求解. 【详解】 解:(1)过E作EH∥AB,如图1, ∴∠BME=∠MEH, ∵AB∥CD, ∴HE∥CD, ∴∠END=∠HEN, ∴∠MEN=∠MEH+∠HEN=∠BME+∠END, 即∠BME=∠MEN﹣∠END. 如图2,过F作FH∥AB, ∴∠BMF=∠MFK, ∵AB∥CD, ∴FH∥CD, ∴∠FND=∠KFN, ∴∠MFN=∠MFK﹣∠KFN=∠BMF﹣∠FND, 即:∠BMF=∠MFN+∠FND. 故答案为∠BME=∠MEN﹣∠END;∠BMF=∠MFN+∠FND. (2)由(1)得∠BME=∠MEN﹣∠END;∠BMF=∠MFN+∠FND. ∵NE平分∠FND,MB平分∠FME, ∴∠FME=∠BME+∠BMF,∠FND=∠FNE+∠END, ∵2∠MEN+∠MFN=180°, ∴2(∠BME+∠END)+∠BMF﹣∠FND=180°, ∴2∠BME+2∠END+∠BMF﹣∠FND=180°, 即2∠BMF+∠FND+∠BMF﹣∠FND=180°, 解得∠BMF=60°, ∴∠FME=2∠BMF=120°; (3)∠FEQ的大小没发生变化,∠FEQ=30°. 由(1)知:∠MEN=∠BME+∠END, ∵EF平分∠MEN,NP平分∠END, ∴∠FEN=∠MEN=(∠BME+∠END),∠ENP=∠END, ∵EQ∥NP, ∴∠NEQ=∠ENP, ∴∠FEQ=∠FEN﹣∠NEQ=(∠BME+∠END)﹣∠END=∠BME, ∵∠BME=60°, ∴∠FEQ=×60°=30°. 【点睛】 本题主要考查平行线的性质及角平分线的定义,作平行线的辅助线是解题的关键. 二十四、解答题 24.(1);(2)①;②. 【分析】 (1)依据角平分线的定义可求得,再依据角的和差依次可求得和,根据邻补角的性质可求得结论; (2)①根据角相等和角的和差可得∠EOC=∠BOD,再根据比例关系可得,最 解析:(1);(2)①;②. 【分析】 (1)依据角平分线的定义可求得,再依据角的和差依次可求得和,根据邻补角的性质可求得结论; (2)①根据角相等和角的和差可得∠EOC=∠BOD,再根据比例关系可得,最后依据角的和差和邻补角的性质可求得结论; ②根据角相等和角的和差可得∠EOC=∠BOD,再根据比例关系可得,最后依据角的和差和邻补角的性质可求得结论. 【详解】 解:(1)∵平分,, ∴, ∴, ∴, ∴; (2)①∵, ∴∠EOC+∠COD=∠BOD+∠COD, ∴∠EOC=∠BOD, ∵,, ∴, ∴, ∴, ∴; ②∵, ∴∠EOC+∠COD=∠BOD+∠COD, ∴∠EOC=∠BOD, ∵,, ∴, ∴, ∴, ∴. 【点睛】 本题考查邻补角的计算,角的和差,角平分线的有关计算.能正确识图,利用角的和差求得相应角的度数是解题关键. 二十五、解答题 25.(1)①115°;110°;②;理由见解析;(2);理由见解析 【分析】 (1)①若∠BAC=100°,∠C=30°,由三角形内角和定理求出∠B=50°,由平行线的性质得出∠EDB=∠C=30°,由 解析:(1)①115°;110°;②;理由见解析;(2);理由见解析 【分析】 (1)①若∠BAC=100°,∠C=30°,由三角形内角和定理求出∠B=50°,由平行线的性质得出∠EDB=∠C=30°,由角平分线定义得出,,由三角形的外角性质得出∠DGF=100°,再由三角形的外角性质即可得出结果;若∠B=40°,则∠BAC+∠C=180°-40°=140°,由角平分线定义得出,,由三角形的外角性质即可得出结果; ②由①得:∠EDB=∠C,,,由三角形的外角性质得出∠DGF=∠B+∠BAG,再由三角形的外角性质即可得出结论; (2)由(1)得:∠EDB=∠C,,,由三角形的外角性质和三角形内角和定理即可得出结论. 【详解】 (1)①若∠BAC=100°,∠C=30°, 则∠B=180°-100°-30°=50°, ∵DE∥AC, ∴∠EDB=∠C=30°, ∵AG平分∠BAC,DF平分∠EDB, ∴,, ∴∠DGF=∠B+∠BAG=50°+50°=100°, ∴∠AFD=∠DGF+∠FDG=100°+15°=115°; 若∠B=40°,则∠BAC+∠C=180°-40°=140°, ∵AG平分∠BAC,DF平分∠EDB, ∴,, ∵∠DGF=∠B+∠BAG, ∴∠AFD=∠DGF+∠FDG=∠B+∠BAG+∠FDG = 故答案为:115°;110°; ②; 理由如下:由①得:∠EDB=∠C,,, ∵∠DGF=∠B+∠BAG, ∴∠AFD=∠DGF+∠FDG =∠B+∠BAG+∠FDG = ; (2)如图2所示:; 理由如下: 由(1)得:∠EDB=∠C,,, ∵∠AHF=∠B+∠BDH, ∴∠AFD=180°-∠BAG-∠AHF . 【点睛】 本题考查了三角形内角和定理、三角形的外角性质、平行线的性质等知识;熟练掌握三角形内角和定理和三角形的外角性质是解题的关键.- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 人教版 七年 级数 下册 期末 测试 答案
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【快乐****生活】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【快乐****生活】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【快乐****生活】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【快乐****生活】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文