2024年人教版中学七7年级下册数学期末解答题压轴题试卷含答案(1).doc
《2024年人教版中学七7年级下册数学期末解答题压轴题试卷含答案(1).doc》由会员分享,可在线阅读,更多相关《2024年人教版中学七7年级下册数学期末解答题压轴题试卷含答案(1).doc(33页珍藏版)》请在咨信网上搜索。
2024年人教版中学七7年级下册数学期末解答题压轴题试卷含答案(1) 一、解答题 1.(1)若一圆的面积与这个正方形的面积都是,设圆的周长为,正方形的周长为,则______.(填“=”或“<”或“>”号) (2)如图,若正方形的面积为,李明同学想沿这块正方形边的方向裁出一块面积为的长方形纸片,使它的长和宽之比为3:2,他能裁出吗?请说明理由. 2.已知足球场的形状是一个长方形,而国际标准球场的长度和宽度(单位:米)的取值范围分别是,.若某球场的宽与长的比是1:1.5,面积为7350平方米,请判断该球场是否符合国际标准球场的长宽标准,并说明理由. 3.如图是一块正方形纸片. (1)如图1,若正方形纸片的面积为1dm2,则此正方形的对角线AC的长为 dm. (2)若一圆的面积与这个正方形的面积都是2πcm2,设圆的周长为C圆,正方形的周长为C正,则C圆 C正(填“=”或“<”或“>”号) (3)如图2,若正方形的面积为16cm2,李明同学想沿这块正方形边的方向裁出一块面积为12cm2的长方形纸片,使它的长和宽之比为3:2,他能裁出吗?请说明理由? 4.有一块面积为100cm2的正方形纸片. (1)该正方形纸片的边长为 cm(直接写出结果); (2)小丽想沿着该纸片边的方向裁剪出一块面积为90cm2的长方形纸片,使它的长宽之比为4:3.小丽能用这块纸片裁剪出符合要求的纸片吗? 5.如图,用两个边长为15的小正方形拼成一个大的正方形, (1)求大正方形的边长? (2)若沿此大正方形边的方向剪出一个长方形,能否使剪出的长方形纸片的长宽之比为4:3,且面积为720cm2? 二、解答题 6.如图1,已知直线m∥n,AB 是一个平面镜,光线从直线m上的点O射出,在平面镜AB上经点P反射后,到达直线n上的点Q.我们称OP为入射光线,PQ为反射光线,镜面反射有如下性质:入射光线与平面镜的夹角等于反射光线与平面镜的夹角,即∠OPA=∠QPB. (1)如图1,若∠OPQ=82°,求∠OPA的度数; (2)如图2,若∠AOP=43°,∠BQP=49°,求∠OPA的度数; (3)如图3,再放置3块平面镜,其中两块平面镜在直线m和n上,另一块在两直线之间,四块平面镜构成四边形ABCD,光线从点O以适当的角度射出后,其传播路径为 O→P→Q→R→O→P→…试判断∠OPQ和∠ORQ的数量关系,并说明理由. 7.已知,AB∥CD,点E为射线FG上一点. (1)如图1,若∠EAF=25°,∠EDG=45°,则∠AED= . (2)如图2,当点E在FG延长线上时,此时CD与AE交于点H,则∠AED、∠EAF、∠EDG之间满足怎样的关系,请说明你的结论; (3)如图3,当点E在FG延长线上时,DP平分∠EDC,∠AED=32°,∠P=30°,求∠EKD的度数. 8.如图1,点在直线上,点在直线上,点在,之间,且满足. (1)证明:; (2)如图2,若,,点在线段上,连接,且,试判断与的数量关系,并说明理由; (3)如图3,若(为大于等于的整数),点在线段上,连接,若,则______. 9.已知:AB∥CD,截线MN分别交AB、CD于点M、N. (1)如图①,点B在线段MN上,设∠EBM=α°,∠DNM=β°,且满足+(β﹣60)2=0,求∠BEM的度数; (2)如图②,在(1)的条件下,射线DF平分∠CDE,且交线段BE的延长线于点F;请写出∠DEF与∠CDF之间的数量关系,并说明理由; (3)如图③,当点P在射线NT上运动时,∠DCP与∠BMT的平分线交于点Q,则∠Q与∠CPM的比值为 (直接写出答案). 10.已知,点在与之间. (1)图1中,试说明:; (2)图2中,的平分线与的平分线相交于点,请利用(1)的结论说明:. (3)图3中,的平分线与的平分线相交于点,请直接写出与之间的数量关系. 三、解答题 11.已知,直角的边与直线a分别相交于O、G两点,与直线b分别交于E,F点,且. (1)将直角如图1位置摆放,如果,则________; (2)将直角如图2位置摆放,N为上一点,,请写出与之间的等量关系,并说明理由; (3)将直角如图3位置摆放,若,延长交直线b于点Q,点P是射线上一动点,探究与的数量关系,请直接写出结论. 12.已知直线,M,N分别为直线,上的两点且,P为直线上的一个动点.类似于平面镜成像,点N关于镜面所成的镜像为点Q,此时. (1)当点P在N右侧时: ①若镜像Q点刚好落在直线上(如图1),判断直线与直线的位置关系,并说明理由; ②若镜像Q点落在直线与之间(如图2),直接写出与之间的数量关系; (2)若镜像,求的度数. 13.已知:如图1,,点,分别为,上一点. (1)在,之间有一点(点不在线段上),连接,,探究,,之间有怎样的数量关系,请补全图形,并在图形下面写出相应的数量关系,选其中一个进行证明. (2)如图2,在,之两点,,连接,,,请选择一个图形写出,,,存在的数量关系(不需证明). 14.综合与探究 综合与实践课上,同学们以“一个含角的直角三角尺和两条平行线”为背景开展数学活动,如图,已知两直线,,且,三角形是直角三角形,,, 操作发现: (1)如图1.,求的度数; (2)如图2.创新小组的同学把直线向上平移,并把的位置改变,发现,请说明理由. 实践探究: (3)填密小组在创新小组发现的结论的基础上,将图2中的图形继续变化得到图3,平分,此时发现与又存在新的数量关系,请写出与的数量关系并说明理由. 15.如图1,在平面直角坐标系中,,且满足,过作轴于 (1)求三角形的面积. (2)发过作交轴于,且分别平分,如图2,若,求的度数. (3)在轴上是否存在点,使得三角形和三角形的面积相等?若存在,求出点坐标;若不存在;请说明理由. 四、解答题 16.如图,在中,是高,是角平分线,,. ()求、和的度数. ()若图形发生了变化,已知的两个角度数改为:当,,则__________. 当,时,则__________. 当,时,则__________. 当,时,则__________. ()若和的度数改为用字母和来表示,你能找到与和之间的关系吗?请直接写出你发现的结论. 17.如图①,将一副直角三角板放在同一条直线AB上,其中∠ONM=30°,∠OCD=45°. (1)将图①中的三角板OMN沿BA的方向平移至图②的位置,MN与CD相交于点E,求∠CEN的度数; (2)将图①中的三角板OMN绕点O按逆时针方向旋转,使∠BON=30°,如图③,MN与CD相交于点E,求∠CEN的度数; (3)将图①中的三角板OMN绕点O按每秒30°的速度按逆时针方向旋转一周,在旋转的过程中,在第____________秒时,直线MN恰好与直线CD垂直.(直接写出结果) 18.如图①,平分,⊥,∠B=450,∠C=730. (1) 求的度数; (2) 如图②,若把“⊥”变成“点F在DA的延长线上,”,其它条件不变,求 的度数; (3) 如图③,若把“⊥”变成“平分”,其它条件不变,的大小是否变化,并请说明理由. 19.操作示例:如图1,在△ABC中,AD为BC边上的中线,△ABD的面积记为S1,△ADC的面积记为S2.则S1=S2. 解决问题:在图2中,点D、E分别是边AB、BC的中点,若△BDE的面积为2,则四边形ADEC的面积为 . 拓展延伸: (1)如图3,在△ABC中,点D在边BC上,且BD=2CD,△ABD的面积记为S1,△ADC的面积记为S2.则S1与S2之间的数量关系为 . (2)如图4,在△ABC中,点D、E分别在边AB、AC上,连接BE、CD交于点O,且BO=2EO,CO=DO,若△BOC的面积为3,则四边形ADOE的面积为 . 20.已知在中,,点在上,边在上,在中,边在直线上,; (1)如图1,求的度数; (2)如图2,将沿射线的方向平移,当点在上时,求度数; (3)将在直线上平移,当以为顶点的三角形是直角三角形时,直接写出度数. 【参考答案】 一、解答题 1.(1)<;(2)不能,理由见解析 【分析】 (1)分别根据圆的面积和正方形的面积得出其半径或边长,再分别求得其周长,根据实数大小比较的方法,可得答案; (2)设裁出的长方形的长为,宽为,由题意得关于 解析:(1)<;(2)不能,理由见解析 【分析】 (1)分别根据圆的面积和正方形的面积得出其半径或边长,再分别求得其周长,根据实数大小比较的方法,可得答案; (2)设裁出的长方形的长为,宽为,由题意得关于的方程,解得的值,从而可得长方形的长和宽,将其与正方形的边长比较,可得答案. 【详解】 解:(1)圆的面积与正方形的面积都是, 圆的半径为,正方形的边长为, ,, , , . (2)不能裁出长和宽之比为的长方形,理由如下: 设裁出的长方形的长为,宽为,由题意得: , 解得或(不合题意,舍去), 长为,宽为, 正方形的面积为, 正方形的边长为, , 不能裁出长和宽之比为的长方形. 【点睛】 本题考查了算术平方根在正方形和圆的面积及周长计算中的简单应用,熟练掌握相关计算公式是解题的关键. 2.符合,理由见解析 【分析】 根据宽与长的比是1:1.5,面积为7350平方米,列方程求出长和宽,比较得出答案. 【详解】 解:符合,理由如下: 设宽为b米,则长为1.5b米,由题意得, 1.5b×b 解析:符合,理由见解析 【分析】 根据宽与长的比是1:1.5,面积为7350平方米,列方程求出长和宽,比较得出答案. 【详解】 解:符合,理由如下: 设宽为b米,则长为1.5b米,由题意得, 1.5b×b=7350, ∴b=70,或b=-70(舍去), 即宽为70米,长为1.5×70=105米, ∵100≤105≤110,64≤70≤75, ∴符合国际标准球场的长宽标准. 【点睛】 本题考查算术平方根的意义,列出方程求出长和宽是得出正确答案的前提. 3.(1);(2)<;(3)不能;理由见解析. 【分析】 (1)由正方形面积,易求得正方形边长,再由勾股定理求对角线长; (2)由圆面积公式,和正方形面积可求周长,比较两数大小可以采用比商法; (3)采 解析:(1);(2)<;(3)不能;理由见解析. 【分析】 (1)由正方形面积,易求得正方形边长,再由勾股定理求对角线长; (2)由圆面积公式,和正方形面积可求周长,比较两数大小可以采用比商法; (3)采用方程思想求出长方形的长边,与正方形边长比较大小即可. 【详解】 解:(1)由已知AB2=1,则AB=1, 由勾股定理,AC=; 故答案为:. (2)由圆面积公式,可得圆半径为,周长为,正方形周长为4. ;即C圆<C正; 故答案为:< (3)不能; 由已知设长方形长和宽为3xcm和2xcm ∴长方形面积为:2x•3x=12 解得x= ∴长方形长边为3>4 ∴他不能裁出. 【点睛】 本题主要考查了算术平方根在正方形、圆、长方形面积中的应用,灵活的进行算术平方根的计算与无理数大小比较是解题的关键. 4.(1)10;(2)小丽不能用这块纸片裁出符合要求的纸片. 【分析】 (1)根据算术平方根的定义直接得出; (2)直接利用算术平方根的定义长方形纸片的长与宽,进而得出答案. 【详解】 解:(1)根据算 解析:(1)10;(2)小丽不能用这块纸片裁出符合要求的纸片. 【分析】 (1)根据算术平方根的定义直接得出; (2)直接利用算术平方根的定义长方形纸片的长与宽,进而得出答案. 【详解】 解:(1)根据算术平方根定义可得,该正方形纸片的边长为10cm; 故答案为:10; (2)∵长方形纸片的长宽之比为4:3, ∴设长方形纸片的长为4xcm,则宽为3xcm, 则4x•3x=90, ∴12x2=90, ∴x2=, 解得:x=或x=-(负值不符合题意,舍去), ∴长方形纸片的长为2cm, ∵5<<6, ∴10<2, ∴小丽不能用这块纸片裁出符合要求的纸片. 【点睛】 本题考查了算术平方根.解题的关键是掌握算术平方根的定义:一个正数的正的平方根叫这个数的算术平方根;0的算术平方根为0.也考查了估算无理数的大小. 5.(1)30;(2)不能. 【解析】 【分析】 (1)根据已知正方形的面积求出大正方形的面积,即可求出边长; (2)先求出长方形的边长,再判断即可. 【详解】 解:(1)∵大正方形的面积是: ∴大正 解析:(1)30;(2)不能. 【解析】 【分析】 (1)根据已知正方形的面积求出大正方形的面积,即可求出边长; (2)先求出长方形的边长,再判断即可. 【详解】 解:(1)∵大正方形的面积是: ∴大正方形的边长是: =30; (2)设长方形纸片的长为4xcm,宽为3xcm, 则4x•3x=720, 解得:x= , 4x= = >30, 所以沿此大正方形边的方向剪出一个长方形,不能使剪出的长方形纸片的长宽之比为4:3,且面积为720cm2. 故答案为(1)30;(2)不能. 【点睛】 本题考查算术平方根,解题的关键是能根据题意列出算式. 二、解答题 6.(1)49°,(2)44°,(3)∠OPQ=∠ORQ 【分析】 (1)根据∠OPA=∠QPB.可求出∠OPA的度数; (2)由∠AOP=43°,∠BQP=49°可求出∠OPQ的度数,转化为(1)来解 解析:(1)49°,(2)44°,(3)∠OPQ=∠ORQ 【分析】 (1)根据∠OPA=∠QPB.可求出∠OPA的度数; (2)由∠AOP=43°,∠BQP=49°可求出∠OPQ的度数,转化为(1)来解决问题; (3)由(2)推理可知:∠OPQ=∠AOP+∠BQP,∠ORQ=∠DOR+∠RQC,从而∠OPQ=∠ORQ. 【详解】 解:(1)∵∠OPA=∠QPB,∠OPQ=82°, ∴∠OPA=(180°-∠OPQ)×=(180°-82°)×=49°, (2)作PC∥m, ∵m∥n, ∴m∥PC∥n, ∴∠AOP=∠OPC=43°, ∠BQP=∠QPC=49°, ∴∠OPQ=∠OPC+∠QPC=43°+49°=92°, ∴∠OPA=(180°-∠OPQ)×=(180°-92°)×44°, (3)∠OPQ=∠ORQ. 理由如下:由(2)可知:∠OPQ=∠AOP+∠BQP,∠ORQ=∠DOR+∠RQC, ∵入射光线与平面镜的夹角等于反射光线与平面镜的夹角, ∴∠AOP=∠DOR,∠BQP=∠RQC, ∴∠OPQ=∠ORQ. 【点睛】 本题主要考查了平行线的性质和入射角等于反射角的规定,解决本题的关键是注意问题的设置环环相扣、前为后用的设置目的. 7.(1)70°;(2),证明见解析;(3)122° 【分析】 (1)过作,根据平行线的性质得到,,即可求得; (2)过过作,根据平行线的性质得到,,即; (3)设,则,通过三角形内角和得到,由角平分线 解析:(1)70°;(2),证明见解析;(3)122° 【分析】 (1)过作,根据平行线的性质得到,,即可求得; (2)过过作,根据平行线的性质得到,,即; (3)设,则,通过三角形内角和得到,由角平分线定义及得到,求出的值再通过三角形内角和求. 【详解】 解:(1)过作, , , ,, , 故答案为:; (2). 理由如下: 过作, , , ,, ,, ; (3), 设,则, ,, 又,, , 平分, , , , 即,解得, , . 【点睛】 本题主要考查了平行线的性质和判定,正确做出辅助线是解决问题的关键. 8.(1)见解析;(2)见解析;(3)n-1 【分析】 (1)连接AB,根据已知证明∠MAB+∠SBA=180°,即可得证; (2)作CF∥ST,设∠CBT=α,表示出∠CAN,∠ACF,∠BCF,根据 解析:(1)见解析;(2)见解析;(3)n-1 【分析】 (1)连接AB,根据已知证明∠MAB+∠SBA=180°,即可得证; (2)作CF∥ST,设∠CBT=α,表示出∠CAN,∠ACF,∠BCF,根据AD∥BC,得到∠DAC=120°,求出∠CAE即可得到结论; (3)作CF∥ST,设∠CBT=β,得到∠CBT=∠BCF=β,分别表示出∠CAN和∠CAE,即可得到比值. 【详解】 解:(1)如图,连接, , , , , (2), 理由:作,则 如图, 设,则. ,, ,, . 即. (3)作,则 如图,设,则. , , , , , 故答案为. 【点睛】 本题主要考查平行线的性质和判定,解题关键是角度的灵活转换,构建数量关系式. 9.(1)30°;(2)∠DEF+2∠CDF=150°,理由见解析;(3) 【分析】 (1)由非负性可求α,β的值,由平行线的性质和外角性质可求解; (2)过点E作直线EH∥AB,由角平分线的性质和平行 解析:(1)30°;(2)∠DEF+2∠CDF=150°,理由见解析;(3) 【分析】 (1)由非负性可求α,β的值,由平行线的性质和外角性质可求解; (2)过点E作直线EH∥AB,由角平分线的性质和平行线的性质可求∠DEF=180°﹣30°﹣2x°=150°﹣2x°,由角的数量可求解; (3)由平行线的性质和外角性质可求∠PMB=2∠Q+∠PCD,∠CPM=2∠Q,即可求解. 【详解】 解:(1)∵+(β﹣60)2=0, ∴α=30,β=60, ∵AB∥CD, ∴∠AMN=∠MND=60°, ∵∠AMN=∠B+∠BEM=60°, ∴∠BEM=60°﹣30°=30°; (2)∠DEF+2∠CDF=150°. 理由如下:过点E作直线EH∥AB, ∵DF平分∠CDE, ∴设∠CDF=∠EDF=x°; ∵EH∥AB, ∴∠DEH=∠EDC=2x°, ∴∠DEF=180°﹣30°﹣2x°=150°﹣2x°; ∴∠DEF=150°﹣2∠CDF, 即∠DEF+2∠CDF=150°; (3)如图3,设MQ与CD交于点E, ∵MQ平分∠BMT,QC平分∠DCP, ∴∠BMT=2∠PMQ,∠DCP=2∠DCQ, ∵AB∥CD, ∴∠BME=∠MEC,∠BMP=∠PND, ∵∠MEC=∠Q+∠DCQ, ∴2∠MEC=2∠Q+2∠DCQ, ∴∠PMB=2∠Q+∠PCD, ∵∠PND=∠PCD+∠CPM=∠PMB, ∴∠CPM=2∠Q, ∴∠Q与∠CPM的比值为, 故答案为:. 【点睛】 本题主要考查了平行线的性质、角平分线的性质,准确计算是解题的关键. 10.(1)说明过程请看解答;(2)说明过程请看解答;(3)∠BED=360°-2∠BFD. 【分析】 (1)图1中,过点E作EG∥AB,则∠BEG=∠ABE,根据AB∥CD,EG∥AB,所以CD∥EG, 解析:(1)说明过程请看解答;(2)说明过程请看解答;(3)∠BED=360°-2∠BFD. 【分析】 (1)图1中,过点E作EG∥AB,则∠BEG=∠ABE,根据AB∥CD,EG∥AB,所以CD∥EG,所以∠DEG=∠CDE,进而可得∠BED=∠ABE+∠CDE; (2)图2中,根据∠ABE的平分线与∠CDE的平分线相交于点F,结合(1)的结论即可说明:∠BED=2∠BFD; (3)图3中,根据∠ABE的平分线与∠CDE的平分线相交于点F,过点E作EG∥AB,则∠BEG+∠ABE=180°,因为AB∥CD,EG∥AB,所以CD∥EG,所以∠DEG+∠CDE=180°,再结合(1)的结论即可说明∠BED与∠BFD之间的数量关系. 【详解】 解:(1)如图1中,过点E作EG∥AB, 则∠BEG=∠ABE, 因为AB∥CD,EG∥AB, 所以CD∥EG, 所以∠DEG=∠CDE, 所以∠BEG+∠DEG=∠ABE+∠CDE, 即∠BED=∠ABE+∠CDE; (2)图2中,因为BF平分∠ABE, 所以∠ABE=2∠ABF, 因为DF平分∠CDE, 所以∠CDE=2∠CDF, 所以∠ABE+∠CDE=2∠ABF+2∠CDF=2(∠ABF+∠CDF), 由(1)得:因为AB∥CD, 所以∠BED=∠ABE+∠CDE, ∠BFD=∠ABF+∠CDF, 所以∠BED=2∠BFD. (3)∠BED=360°-2∠BFD. 图3中,过点E作EG∥AB, 则∠BEG+∠ABE=180°, 因为AB∥CD,EG∥AB, 所以CD∥EG, 所以∠DEG+∠CDE=180°, 所以∠BEG+∠DEG=360°-(∠ABE+∠CDE), 即∠BED=360°-(∠ABE+∠CDE), 因为BF平分∠ABE, 所以∠ABE=2∠ABF, 因为DF平分∠CDE, 所以∠CDE=2∠CDF, ∠BED=360°-2(∠ABF+∠CDF), 由(1)得:因为AB∥CD, 所以∠BFD=∠ABF+∠CDF, 所以∠BED=360°-2∠BFD. 【点睛】 本题考查了平行线的性质,解决本题的关键是掌握平行线的性质. 三、解答题 11.(1)146°;(2)∠AOG+∠NEF=90°;(3)见解析 【分析】 (1)作CP//a,则CP//a//b,根据平行线的性质求解. (2)作CP//a,由平行线的性质及等量代换得∠AOG+∠N 解析:(1)146°;(2)∠AOG+∠NEF=90°;(3)见解析 【分析】 (1)作CP//a,则CP//a//b,根据平行线的性质求解. (2)作CP//a,由平行线的性质及等量代换得∠AOG+∠NEF=∠ACP+∠PCB=90°. (3)分类讨论点P在线段GF上或线段GF延长线上两种情况,过点P作a,b的平行线求解. 【详解】 解:(1)如图,作CP//a, ∵a//b,CP//a, ∴CP//a//b, ∴∠AOG=∠ACP=56°,∠BCP+∠CEF=180°, ∴∠BCP=180°-∠CEF, ∵∠ACP+∠BCP=90°, ∴∠AOG+180°-∠CEF=90°, ∴∠CEF=180°-90°+∠AOG=146°. (2)∠AOG+∠NEF=90°.理由如下: 如图,作CP//a,则CP//a//b, ∴∠AOG=∠ACP,∠BCP+∠CEF=180°, ∵∠NEF+∠CEF=180°, ∴∠BCP=∠NEF, ∵∠ACP+∠BCP=90°, ∴∠AOG+∠NEF=90°. (3)如图,当点P在GF上时,作PN//a,连接PQ,OP,则PN//a//b, ∴∠GOP=∠OPN,∠PQF=∠NPQ, ∴∠OPQ=∠OPN+∠NPQ=∠GOP+∠PQF, ∵∠GOC=∠GOP+∠POQ=135°, ∴∠GOP=135°-∠POQ, ∴∠OPQ=135°-∠POQ+∠PQF. 如图,当点P在GF延长线上时,作PN//a,连接PQ,OP,则PN//a//b, ∴∠GOP=∠OPN,∠PQF=∠NPQ, ∵∠OPN=∠OPQ+∠QPN, ∴∠GOP=∠OPQ+∠PQF, ∴135°-∠POQ=∠OPQ+∠PQF. 【点睛】 本题考查平行线的性质的应用,解题关键是熟练掌握平行线的性质,通过添加辅助线及分类讨论的方法求解. 12.(1)①,证明见解析,②,(2)或. 【分析】 (1) ①根据和镜像证出,即可判断直线与直线的位置关系,②过点Q作QF∥CD,根据平行线的性质证即可; (2)过点Q作QF∥CD,根据点P的位置不同, 解析:(1)①,证明见解析,②,(2)或. 【分析】 (1) ①根据和镜像证出,即可判断直线与直线的位置关系,②过点Q作QF∥CD,根据平行线的性质证即可; (2)过点Q作QF∥CD,根据点P的位置不同,分类讨论,依据平行线的性质求解即可. 【详解】 (1)①, 证明:∵, ∴, ∵, ∴, ∴; ②过点Q作QF∥CD, ∵, ∴, ∴,, ∴, ∵, ∴; (2)如图,当点P在N右侧时,过点Q作QF∥CD, 同(1)得,, ∴,, ∵, ∴, ∴, ∵, ∴, ∴, 如图,当点P在N左侧时,过点Q作QF∥CD,同(1)得,, 同理可得,, ∵, ∴, ∴, ∵, ∴, ∴; 综上,的度数为或. 【点睛】 本题考查了平行线的性质与判定,解题关键是恰当的作辅助线,熟练利用平行线的性质推导角之间的关系. 13.(1)见解析;(2)见解析 【分析】 (1)过点M作MP∥AB.根据平行线的性质即可得到结论; (2)根据平行线的性质即可得到结论. 【详解】 解:(1)∠EMF=∠AEM+∠MFC.∠AEM+∠E 解析:(1)见解析;(2)见解析 【分析】 (1)过点M作MP∥AB.根据平行线的性质即可得到结论; (2)根据平行线的性质即可得到结论. 【详解】 解:(1)∠EMF=∠AEM+∠MFC.∠AEM+∠EMF+∠MFC=360°. 证明:过点M作MP∥AB. ∵AB∥CD, ∴MP∥CD. ∴∠4=∠3. ∵MP∥AB, ∴∠1=∠2. ∵∠EMF=∠2+∠3, ∴∠EMF=∠1+∠4. ∴∠EMF=∠AEM+∠MFC; 证明:过点M作MQ∥AB. ∵AB∥CD, ∴MQ∥CD. ∴∠CFM+∠1=180°; ∵MQ∥AB, ∴∠AEM+∠2=180°. ∴∠CFM+∠1+∠AEM+∠2=360°. ∵∠EMF=∠1+∠2, ∴∠AEM+∠EMF+∠MFC=360°; (2)如图2第一个图:∠EMN+∠MNF-∠AEM-∠NFC=180°; 过点M作MP∥AB,过点N作NQ∥AB, ∴∠AEM=∠1,∠CFN=∠4,MP∥NQ, ∴∠2+∠3=180°, ∵∠EMN=∠1+∠2,∠MNF=∠3+∠4, ∴∠EMN+∠MNF=∠1+∠2+∠3+∠4,∠AEM+∠CFN=∠1+∠4, ∴∠EMN+∠MNF-∠AEM-∠NFC =∠1+∠2+∠3+∠4-∠1-∠4 =∠2+∠3 =180°; 如图2第二个图:∠EMN-∠MNF+∠AEM+∠NFC=180°. 过点M作MP∥AB,过点N作NQ∥AB, ∴∠AEM+∠1=180°,∠CFN=∠4,MP∥NQ, ∴∠2=∠3, ∵∠EMN=∠1+∠2,∠MNF=∠3+∠4, ∴∠EMN-∠MNF=∠1+∠2-∠3-∠4,∠AEM+∠CFN=180°-∠1+∠4, ∴∠EMN-∠MNF+∠AEM+∠NFC =∠1+∠2-∠3-∠4+180°-∠1+∠4 =180°. 【点睛】 本题考查了平行线的性质,熟练掌握平行线的性质是解题的关键. 14.(1);(2)理由见解析;(3),理由见解析. 【分析】 (1)由平角定义求出∠3=42°,再由平行线的性质即可得出答案; (2)过点B作BD∥a.由平行线的性质得∠2+∠ABD=180°,∠1=∠ 解析:(1);(2)理由见解析;(3),理由见解析. 【分析】 (1)由平角定义求出∠3=42°,再由平行线的性质即可得出答案; (2)过点B作BD∥a.由平行线的性质得∠2+∠ABD=180°,∠1=∠DBC,则∠ABD=∠ABC−∠DBC=60°−∠1,进而得出结论; (3)过点C 作CP∥a,由角平分线定义得∠CAM=∠BAC=30°,∠BAM=2∠BAC=60°,由平行线的性质得∠1=∠BAM=60°,∠PCA=∠CAM=30°,∠2=∠BCP=60°,即可得出结论. 【详解】 解:(1)如图1 ,, , , ; 图1 (2)理由如下:如图2. 过点作, 图2 , , , , , , ; (3), 图3 理由如下:如图3,过点作, 平分, , , 又, , , , , 又 , , . 【点睛】 本题是三角形综合题目,考查了平移的性质、直角三角形的性质、平行线的判定与性质、角平分线定义、平角的定义等知识;本题综合性强,熟练掌握平移的性质和平行线的性质是解题的关键. 15.(1)4;(2)45°;(3)P(0,-1)或(0,3) 【分析】 (1)根据非负数的性质得到a=−b,a−b+4=0,解得a=−2,b=2,则A(−2,0),B(2,0),C(2,2),即可计算出 解析:(1)4;(2)45°;(3)P(0,-1)或(0,3) 【分析】 (1)根据非负数的性质得到a=−b,a−b+4=0,解得a=−2,b=2,则A(−2,0),B(2,0),C(2,2),即可计算出三角形ABC的面积=4; (2)由于CB∥y轴,BD∥AC,则∠CAB=∠ABD,即∠3+∠4+∠5+∠6=90°,过E作EF∥AC,则BD∥AC∥EF,然后利用角平分线的定义可得到∠3=∠4=∠1,∠5=∠6=∠2,所以∠AED=∠1+∠2=×90°=45°; (3)先根据待定系数法确定直线AC的解析式为y=x+1,则G点坐标为(0,1),然后利用S△PAC=S△APG+S△CPG进行计算. 【详解】 解:(1)由题意知:a=−b,a−b+4=0, 解得:a=−2,b=2, ∴ A(−2,0),B(2,0),C(2,2), ∴S△ABC=; (2)∵CB∥y轴,BD∥AC, ∴∠CAB=∠ABD, ∴∠3+∠4+∠5+∠6=90°, 过E作EF∥AC, ∵BD∥AC, ∴BD∥AC∥EF, ∵AE,DE分别平分∠CAB,∠ODB, ∴∠3=∠4=∠1,∠5=∠6=∠2, ∴∠AED=∠1+∠2=×90°=45°; (3)存在.理由如下: 设P点坐标为(0,t),直线AC的解析式为y=kx+b, 把A(−2,0)、C(2,2)代入得: ,解得, ∴直线AC的解析式为y=x+1, ∴G点坐标为(0,1), ∴S△PAC=S△APG+S△CPG=|t−1|•2+|t−1|•2=4,解得t=3或−1, ∴P点坐标为(0,3)或(0,−1). 【点睛】 本题考查了绝对值、平方的非负性,平行线的判定与性质:内错角相等,两直线平行;同旁内角互补,两直线平行;两直线平行,内错角相等. 四、解答题 16.(1)30°,70°,20°;(2)15°,5°,0°,5°;(3)当时,;当时,. 【分析】 (1)先利用三角形内角和定理求出的度数,再根据角平分线和高的性质分别得出和的度数,进而可求和的度数; 解析:(1)30°,70°,20°;(2)15°,5°,0°,5°;(3)当时,;当时,. 【分析】 (1)先利用三角形内角和定理求出的度数,再根据角平分线和高的性质分别得出和的度数,进而可求和的度数; (2)先利用三角形内角和定理求出的度数,再根据角平分线和高的性质分别得出和的度数,则前三问利用即可得出答案,第4问利用即可得出答案; (3)按照(2)的方法,将相应的数换成字母即可得出答案. 【详解】 (1)∵,, ∴ . ∵平分, ∴. ∵是高, , , , . (2)当,时, ∵,, ∴. ∵平分, ∴. ∵是高, , , ; 当,时, ∵,, ∴ . ∵平分, ∴. ∵是高, , , ; 当,时, ∵,, ∴. ∵平分, ∴. ∵是高, , , ; 当,时, ∵,, ∴. ∵平分, ∴. ∵是高, , , . (3)当 时,即时, ∵,, ∴ . ∵平分, ∴. ∵是高, , , ; 当 时,即时, ∵,, ∴ . ∵平分, ∴. ∵是高, , , ; 综上所述,当时,;当时,. 【点睛】 本题主要考查三角形内角和定理和三角形的角平分线,高,掌握三角形内角和定理和直角三角形两锐角互余是解题的关键. 17.(1)105°;(2)135°;(3)5.5或11.5. 【分析】 (1)在△CEN中,用三角形内角和定理即可求出; (2)由∠BON=30°,∠N=30°可得MN∥CB,再根据两直线平行,同旁内角 解析:(1)105°;(2)135°;(3)5.5或11.5. 【分析】 (1)在△CEN中,用三角形内角和定理即可求出; (2)由∠BON=30°,∠N=30°可得MN∥CB,再根据两直线平行,同旁内角互补即可求出∠CEN的度数. (3)画出图形,求出在MN⊥CD时的旋转角,再除以30°即得结果. 【详解】 解:(1)在△CEN中,∠CEN=180°-∠ECN-∠CNE=180°-45°-30°=105°; (2)∵∠BON=30°,∠N=30°, ∴∠BON=∠N, ∴MN∥CB. ∴∠OCD+∠CEN=180°, ∵∠OCD=45° ∴∠CEN=180°-45°=135°; (3)如图,MN⊥CD时,旋转角为360°-90°-45°-60°=165°,或360°-(60°-45°)=345°,所以在第165°÷30°=5.5或345°÷30°=11.5秒时,直线MN恰好与直线CD垂直. 【点睛】 本题以学生熟悉的三角板为载体,考查了三角形的内角和、平行线的判定和性质、垂直的定义和旋转的性质,前两小题难度不大,难点是第(3)小题,解题的关键是画出适合题意的几何图形,弄清求旋转角的思路和方法,本题的第一种情况是将旋转角∠DOM放在四边形DOMF中,用四边形内角和求解,第二种情况是用周角减去∠DOM的度数. 18.(1)∠DAE =14°;(2)∠DFE =14°;(3)∠DAE 的大小不变,∠DAE =14°,证明详见解析. 【分析】 (1)求出∠ADE的度数,利用∠DAE=90°-∠ADE即可求出∠DAE 解析:(1)∠DAE =14°;(2)∠DFE =14°;(3)∠DAE 的大小不变,∠DAE =14°,证明详见解析. 【分析】 (1)求出∠ADE的度数,利用∠DAE=90°-∠ADE即可求出∠DAE的度数. (2)求出∠ADE的度数,利用∠DFE=90°-∠ADE即可求出∠DAE的度数. (3)利用AE平分∠BEC,AD平分∠BAC,求出∠DFE=15°即是最好的证明. 【详解】 (1)∵∠B=45°,∠C=73°, ∴∠BAC=62°, ∵AD平分∠BAC, ∴∠BAD=∠CAD=31°, ∴∠ADE=∠B+∠BAD=45°+31°=76°, ∵AE⊥BC, ∴∠AEB=90°, ∴∠DAE=90°-∠ADE=14°. (2)同(1),可得,∠ADE=76°, ∵FE⊥BC, ∴∠FEB=90°, ∴∠DFE=90°-∠ADE=14°. (3)的大小不变.=14° 理由:∵ AD平分∠ BAC,AE平分∠BEC ∴∠BAC=2∠BAD,∠BEC=2∠AEB- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2024 年人教版 中学 年级 下册 数学 期末 解答 压轴 试卷 答案
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【精****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【精****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【精****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【精****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文