初二数学上册期末模拟检测试卷解析(一).doc
《初二数学上册期末模拟检测试卷解析(一).doc》由会员分享,可在线阅读,更多相关《初二数学上册期末模拟检测试卷解析(一).doc(20页珍藏版)》请在咨信网上搜索。
初二数学上册期末模拟检测试卷解析(一) 一、选择题 1.下列是我们一生活中常见的安全标识,其中不是轴对称图形的是( ) A. B. C. D. 2.中科院发现“绿色”光刻胶,精度可达0.00000000014米,数字0.00000000014用科学记数法可表示为( ) A. B. C. D. 3.下列运算不正确的是( ) A. B. C. D. 4.要使式子在实数范围内有意义,则x的取值范围是( ) A.x<2 B.x≥2 C.x≤2 D.x≠2 5.下列由左边到右边的变形是因式分解的是( ) A. B. C. D. 6.下列式子从左到右的变形一定正确的是( ) A. B. C. D. 7.如图,,点D、E分别在AB、AC上,补充一个条件后,仍不能判定△ABE与△ACD全等的是( ) A. B. C. D. 8.已知关于的分式方程有增根,则k=( ). A.-3 B.-2 C.2 D.3 9.如图,在△ABC中,AC=DC=DB,,则的大小为( ) A.15° B.20° C.25° D.30° 10.如图, 为线段上一动点(不与点、重合),在同侧分别作正三角形和正三角形,与交于点,与交于点,与交于点,连接,以下五个结论:①,②,③,④,⑤,一定成立的是( ) A.①②③④ B.①②④⑤ C.①②③⑤ D.①③④⑤ 二、填空题 11.若分式的值为0,则______. 12.已知点与点关于轴对称,则________. 13.式子称为二阶行列式,规定它的运算法则为,则二阶行列式 ___________ . 14.计算:(-0.2)100×5101=_______. 15.AD为等腰△ABC底边BC上的高,且AD=8,腰AB的垂直平分线EF交AC于F,M为线段EF上一动点,则BM+DM的最小值为 _____. 16.若关于x的二次三项式4x2+3mx+9是完全平方式,则m的值是 _____. 17.如图,∠1+∠2+∠3+∠4+∠5的度数是 ___. 18.如图,直线PQ经过Rt△ABC的直角顶点C,△ABC的边上有两个动点D、E,点D以1cm/s的速度从点A出发,沿AC→CB移动到点B,点E以3cm/s的速度从点B出发,沿BC→CA移动到点A,两动点中有一个点到达终点后另一个点继续移动到终点.过点D、E分别作DM⊥PQ,EN⊥PQ,垂足分别为点M、N,若AC=6cm,BC=8cm,设运动时间为t,则当t=__________ s时,以点D、M、C为顶点的三角形与以点E、N、C为顶点的三角形全等. 三、解答题 19.(1)计算: (2)分解因式: 20.先化简,再求值:÷-(+1),其中,x=. 21.如图,AC平分∠BAD,AB=AD.求证:BC=DC. 22.如图1,已知∠ACD是ABC的一个外角,我们容易证明∠ACD=∠A+∠B,即:三角形的一个外角等于与它不相邻的两个内角的和.那么,三角形的一个内角与它不相邻的两个外角的和之间存在怎样的数量关系呢? (1)尝试探究:如图2,已知:∠DBC与∠ECB分别为ABC的两个外角,则∠DBC+∠ECB-∠A 180°.(横线上填<、=或>) 23.端午节是我国的传统节日,人们素有吃粽子的习俗.某商场在端午节来临之际,用元采购种粽子与元采购种粽子的个数相同.已知种粽子的单价比种粽子单价多元. (1)求,两种粽子的单价; (2)商场计划用不超过元的资金采购,两种粽子共个,已知,两种粽子的进价不变.求种粽子最多能采购多少个? 24.【阅读理解,自主探究】把代数式通过配凑等手段,得到完全平方式,再运用完全平方式是非负数这一性质增加问题的条件,这种解题方法叫做配方法,配方法在代数式求值,解方程,最值问题等都有着广泛的应用. 例1 用配方法因式分解:a2+6a+8. 原式= a2+6a+9-1=(a+3)2-1=(a+3-1)(a+3+1)=(a+2)(a+4). 例2若M=a2-2ab+2b2-2b+2,利用配方法求M的最小值; a2-2ab+2b2-2b+2=a2-2ab+b2+b2-2b+1+1=(a-b)2+(b-1)2+1; ∵(a-b)2≥0,(b-1)2≥0, ∴当a=b=1时,M有最小值1. 请根据上述自主学习材料解决下列问题: (1)在横线上添上一个常数项使之成为完全平方式:a2+10a+________; (2)用配方法因式分解:a2-12a+35. (3)若M=a2-3a+1,则M的最小值为________; (4)已知a2+2b2+c2-2ab+4b-6c+13=0,则a+b+c的值为________; 25.在△ABC中,AB=AC,点D是直线BC上一点(不与B、C重合),以AD为一边在AD的右侧作△ADE,使AD=AE,∠DAE =∠BAC,连接CE. (1)如图1,当点D在线段BC上,如果∠BAC=90°,则∠BCE=________度; (2)设,. ①如图2,当点在线段BC上移动,则,之间有怎样的数量关系?请说明理由; ②当点在直线BC上移动,则,之间有怎样的数量关系?请直接写出你的结论. 26.若整式A只含有字母x,且A的次数不超过3次,令,其中a,b,c,d为整数,在平面直角坐标系中,我们定义:M为整式A的关联点,我们规定次数超过3次的整式没有关联点.例如,若整式,则a=0,b=2,c=-5,d=4,故A的关联点为(-5,-11). (1)若,试求出A的关联点坐标; (2)若整式B是只含有字母x的整式,整式C是B与的乘积,若整式C的关联点为(6,15),求整式B的表达式. (3)若整式D=x-2,整式E是只含有字母x的一次多项式,整式F是整式D与整式E的平方的乘积,若整式F的关联点为(-32,0),请直接写出整式E的表达式. 【参考答案】 一、选择题 2.B 解析:B 【分析】根据如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析即可. 【详解】解:A、B、D选项中的图形都能找到这样的一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以不是轴对称图形; C选项中的图形能找到这样的一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以是轴对称图形; 故选:C. 【点睛】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合. 3.D 解析:D 【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定. 【详解】解:0.000 000 000 14用科学记数法可表示为1.4×10﹣10, 故选:D. 【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定. 4.D 解析:D 【分析】结合选项分别进行幂的乘方和积的乘方、同底数幂的乘除法等运算,然后选择错误选项. 【详解】解:A、x2•x3=x5,计算正确,故本选项不合题意; B、(x2)3=x6,计算正确,故本选项不合题意; C、(-2x)3=-8x3,计算正确,故本选项不合题意; D、x6÷x2=x4,计算错误,故本选项符合题意. 故选:D. 【点睛】本题考查了幂的乘方和积的乘方、同底数幂的乘除法等知识,掌握运算法则是解答本题的关键. 5.A 解析:A 【分析】根据二次根式和分式有意义的条件,即可求解. 【详解】解:由题意得2﹣x≥0且2﹣x≠0, 解得x<2, 故选:A. 【点睛】本题考查的是分式有意义的条件,掌握二次根式的被开方数是非负数、分母不为0解题的关键. 6.D 解析:D 【分析】把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做分解因式.根据定义即可进行判断. 【详解】解:A.等式的右边不是几个整式的积的形式,不是因式分解,故此选项不符合题意; B.等式左右两边不相等,不是因式分解,故此选项不符合题意; C.原变形是整式乘法,不是因式分解,故此选项不符合题意; D.把一个多项式化为几个整式的积的形式,原变形是因式分解,故此选项符合题意; 故选:D 【点睛】本题主要考查了因式分解的定义.解题的关键是掌握因式分解的定义,要注意因式分解是整式的变形,并且因式分解与整式的乘法互为逆运算. 7.A 解析:A 【分析】根据分式的基本性质即可求出答案. 【详解】解:A、,故A符合题意. B、当c=0时,此时没有意义,故B不符合题意. C、不一定等于,故C不符合题意. D、不一定等于,故D不符合题意. 故选:A. 【点睛】本题考查分式的基本性质,解题的关键是熟练运用分式的基本性质. 8.C 解析:C 【分析】按照补充后的条件,利用全等三角形的判定方法逐个分析即可求解. 【详解】解:A、添加后,△ABE与△ACD中,,,,利用ASA可以证明△ABE与△ACD全等; B、添加后,△ABE与△ACD中,,,,利用SAS可以证明△ABE与△ACD全等; C、添加后,△ABE与△ACD中,一组角相等,且非夹角的两边相等,不能证明△ABE与△ACD全等; D、添加后,△ABE与△ACD中, ,,,利用AAS可以证明△ABE与△ACD全等; 故答案为:C. 【点睛】本题考查全等三角形的判定方法,需要注意:SSA不能判定两个三角形全等. 9.A 解析:A 【分析】先化成整式方程,把代入整式方程,确定的值即可. 【详解】∵, ∴, ∵关于x的分式方程有增根, ∴, ∴, 故选:A. 【点睛】本题考查了解分式方程,熟练掌握分式方程的增根的意义是解题的关键. 10.C 解析:C 【分析】根据边相等的角相等,用∠B表示出∠CDA,然后就可以表示出∠ACB,求解方程即可. 【详解】解:设∠B=x ∵AC=DC=DB ∴∠CAD=∠CDA=2x ∴∠ACB=180°-2x -x=105° 解得x=25°. 故选:C. 【点睛】本题主要考查了三角形的内角和外角之间的关系以及等腰三角形的性质,(1)三角形的外角等于与它不相邻的两个内角和;(2)三角形的内角和是180°,求角的度数常常要用到“三角形的内角和是180°”这一隐含的条件. 11.B 解析:B 【分析】根据等边三角形的性质可以得出E△ACE≌△DCB,就可以得出∠CAE=∠CDB,∠AEC=∠DBC,通过证明△CEG≌△CBH就可以得出CG=CH,GE=HB,可以得出△GCH是等边三角形,就可以得出∠GHC=60°,就可以得出GH//AB,由∠DCH≠∠DHC就可以得出CD≠DH,就可以得出AD≠DH,根据∠AFD=∠EAB+∠CBD=∠CDB+∠CBD=∠ACD=60°,进而得出结论. 【详解】解:∵△ACD和△BCE是等边三角形, ∴AD=AC=CD,CE=CB=BE,∠ACD=∠BCE=60°. ∵∠ACB=180°, ∴∠DCE=60°. ∴∠DCE=∠BCE. ∴∠ACD+∠DCE=∠BCE+∠DCE, ∴∠ACE=∠DCB. 在△ACE和△DCB中, , ∴△ACE≌△DCB(SAS), ∴AE=BD,∠CAE=∠CDB,∠AEC=∠DBC. 在△CEG和△CBH中, , ∴△CEG≌△CBH(ASA), ∴CG=CH,GE=HB, ∴△CGH为等边三角形, ∴∠GHC=60°, ∴∠GHC=∠BCH, ∴GH//AB. ∵∠AFD=∠EAB+∠CBD, ∴∠AFD=∠CDB+∠CBD=∠ACD=60°. ∵∠DHC=∠HCB+∠HBC=60°+∠HBC,∠DCH=60° ∴∠DCH≠∠DHC, ∴CD≠DH, ∴AD≠DH. 综上所述,正确的有:①②④⑤. 故选B. 【点睛】本题考查了等边三角形的判定与性质的运用,全等三角形的判定及性质的运用,三角形的外角与内角之间的关系的运用,平行线的判定的运用,解答时证明三角形全等是关键. 二、填空题 12.-1 【分析】根据分式的值为零的条件即可求出x的值. 【详解】解:由题意可知:|x|-1=0且x-1≠0, 解得x=-1. 故答案为:-1. 【点睛】本题考查了分式的值为零的条件,分式值为零的条件是分子等于零且分母不等于零. 13.-8 【分析】直接利用关于y轴对称点的性质“纵坐标相等,横坐标互为相反数”得出a,b的值,再利用有理数的加减运算法则求出答案. 【详解】解:∵点M(a,3)与点N(5,b)关于y轴对称, ∴a=-5,b=3, 则a-b=-5-3=-8. 故答案为:-8. 【点睛】此题主要考查了关于y轴对称点的性质,正确得出a,b的值是解题关键. 14. 【分析】根据二阶行列式的定义及分式的运算可直接进行求解. 【详解】解:由题意得: ; 故答案为. 【点睛】本题主要考查分式的运算,熟练掌握分式的运算是解题的关键. 15.5 【分析】直接利用积的乘方运算法则即可得到答案. 【详解】解: = = = =5 故答案为:5. 【点睛】此题考查了积的乘方运算,正确掌握相关运算法则是解题关键. 16.8 【分析】根据EF是线段AB的垂直平分线可知,点B关于直线EF的对称点为点A,故AD的长为BM+MD的最小值,由此即可得出结论. 【详解】解:∵EF是线段AB的垂直平分线, ∴点B关于直线E 解析:8 【分析】根据EF是线段AB的垂直平分线可知,点B关于直线EF的对称点为点A,故AD的长为BM+MD的最小值,由此即可得出结论. 【详解】解:∵EF是线段AB的垂直平分线, ∴点B关于直线EF的对称点为点A, ∴AD的长为BM+MD的最小值, ∴BM+DM最小值为8, 故答案为:8. 【点睛】本题考查最短路径问题,解题的关键是熟知线段垂直平分线的性质. 17.±4##4或-4 【分析】根据完全平方公式的结构特征列式解答. 【详解】解:由题意得, 4x2+3mx+9= 或 故答案为:±4. 【点睛】本题考查完全平方公式,是基础考点,掌握相关 解析:±4##4或-4 【分析】根据完全平方公式的结构特征列式解答. 【详解】解:由题意得, 4x2+3mx+9= 或 故答案为:±4. 【点睛】本题考查完全平方公式,是基础考点,掌握相关知识是解题关键. 18.540° 【分析】多边形内角和定理:(n−2)•180°(n≥3)且n为整数),依此即可求解. 【详解】解:(n−2)•180° =(5−2)×180° =3×180° =540°. 故 解析:540° 【分析】多边形内角和定理:(n−2)•180°(n≥3)且n为整数),依此即可求解. 【详解】解:(n−2)•180° =(5−2)×180° =3×180° =540°. 故∠1+∠2+∠3+∠4+∠5=540°. 故答案为:540°. 【点睛】考查了多边形内角和定理,关键是熟练掌握多边形内角和定理:(n−2)•180 (n≥3)且n为整数). 19.1或或12 【分析】由以点D、M、C为顶点的三角形与以点E、N、C为顶点的三角形全等.可知CE=CD,而CE,CD的表示由E,D的位置决定,故需要对E,D的位置分当E在BC上,D在AC上时或当E在 解析:1或或12 【分析】由以点D、M、C为顶点的三角形与以点E、N、C为顶点的三角形全等.可知CE=CD,而CE,CD的表示由E,D的位置决定,故需要对E,D的位置分当E在BC上,D在AC上时或当E在AC上,D在AC上时,或当E到达A,D在BC上时,分别讨论. 【详解】解:当E在BC上,D在AC上,即0<t≤时, CE=(8-3t)cm,CD=(6-t)cm, ∵以点D、M、C为顶点的三角形与以点E、N、C为顶点的三角形全等. ∴CD=CE, ∴8-3t=6-t, ∴t=1s, 当E在AC上,D在AC上,即<t<时, CE=(3t-8)cm,CD=(6-t)cm, ∴3t-8=6-t, ∴t=s, 当E到达A,D在BC上,即≤t≤14时, CE=6cm,CD=(t-6)cm, ∴6=t-6, ∴t=12s, 故答案为:1或或12. 【点睛】本题主要考查了三角形全等的性质,解决问题的关键是对动点所在的位置进行分类,分别表示出每种情况下CD和CE的长. 三、解答题 20.(1);(2) 【分析】(1)先用平方差和单项式乘多项式进行计算,再合并; (2)先提取公因式,再用平方差公式分解. 【详解】(1)解:原式 . (2)解:原式 . 【点睛】本题考查了 解析:(1);(2) 【分析】(1)先用平方差和单项式乘多项式进行计算,再合并; (2)先提取公因式,再用平方差公式分解. 【详解】(1)解:原式 . (2)解:原式 . 【点睛】本题考查了整式的混合运算和因式分解,解题关键是熟练掌握乘法公式和整式乘法法则,会运用提取公因式和公式法分解因式. 21., 【分析】先根据分式的混合运算的顺序,化简分式,再代入x值计算. 【详解】解: = = = =, 当x=时,原式=. 【点睛】本题考查了分式的化简求值,先化简后代入计算是解决 解析:, 【分析】先根据分式的混合运算的顺序,化简分式,再代入x值计算. 【详解】解: = = = =, 当x=时,原式=. 【点睛】本题考查了分式的化简求值,先化简后代入计算是解决此题的关键. 22.证明见解析. 【分析】先根据角平分线的定义可得,再根据三角形全等的判定定理证出,然后全等三角形的性质即可得证. 【详解】证明:平分, , 在和中,, , . 【点睛】本题考查了角平分线 解析:证明见解析. 【分析】先根据角平分线的定义可得,再根据三角形全等的判定定理证出,然后全等三角形的性质即可得证. 【详解】证明:平分, , 在和中,, , . 【点睛】本题考查了角平分线的定义、三角形全等的判定定理与性质,熟练掌握三角形全等的判定方法是解题关键. 23.(2)初步应用:如图3,在ABC中,BP、CP分别平分外角∠DBC、∠ECB,∠P与∠A有何数量关系?请利用上面的结论直接写出∠P= . (3)解决问题:如图4,在四边形ABCD中,BP 解析:(2)初步应用:如图3,在ABC中,BP、CP分别平分外角∠DBC、∠ECB,∠P与∠A有何数量关系?请利用上面的结论直接写出∠P= . (3)解决问题:如图4,在四边形ABCD中,BP、CP分别平分外角∠EBC、∠FCB,请利用上面的结论探究∠P与∠BAD、∠CDA的数量关系. (1)= (2)∠P=90°-∠A (3)∠P=180°-∠BAD-∠CDA,探究见解析 【分析】(1)根据三角形外角的性质得:∠DBC=∠A+∠ACB,∠ECB=∠A+∠ABC,两式相加可得结论; (2)根据角平分线的定义得:∠CBP=∠DBC,∠BCP=∠ECB,根据三角形内角和可得:∠P的式子,代入(1)中得的结论:∠DBC+∠ECB=180°+∠A,可得:∠P=90°−∠A; (3)根据平角的定义得:∠EBC=180°-∠1,∠FCB=180°-∠2,由角平分线得:∠3=∠EBC=90°−∠1,∠4=∠FCB=90°−∠2,相加可得:∠3+∠4=180°−(∠1+∠2),再由四边形的内角和与三角形的内角和可得结论. (1) ∠DBC+∠ECB-∠A=180°, 理由是:∵∠DBC=∠A+∠ACB,∠ECB=∠A+∠ABC, ∴∠DBC+∠ECB=2∠A+∠ACB+∠ABC=180°+∠A, ∴∠DBC+∠ECB-∠A=180°, 故答案为:=; (2) ∠P=90°-∠A, 理由是:∵BP平分∠DBC,CP平分∠ECB, ∴∠CBP=∠DBC,∠BCP=∠ECB, ∵△BPC中,∠P=180°-∠CBP-∠BCP=180°-(∠DBC+∠ECB), ∵∠DBC+∠ECB=180°+∠A, ∴∠P=180°-(180°+∠A)=90°-∠A. 故答案为:∠P=90°-∠A, (3) ∠P=180°-∠BAD-∠CDA, 理由是:如图, ∵∠EBC=180°-∠1,∠FCB=180°-∠2, ∵BP平分∠EBC,CP平分∠FCB, ∴∠3=∠EBC=90°-∠1,∠4=∠FCB=90°-∠2, ∴∠3+∠4=180°-(∠1+∠2), ∵四边形ABCD中,∠1+∠2=360°-(∠BAD+∠CDA), 又∵△PBC中,∠P=180°-(∠3+∠4)=(∠1+∠2), ∴∠P=×[360°-(∠BAD+∠CDA)]=180°-(∠BAD+∠CDA)=180°-∠BAD-∠CDA. 【点睛】本题是四边形和三角形的综合问题,考查了三角形和四边形的内角和定理、三角形外角的性质、角平分线的定义等知识,熟练掌握三角形外角的性质是关键. 24.(1)种粽子单价为元,种粽子单价为元 (2)种粽子最多能购进个 【分析】(1)设种粽子单价为元,则种粽子单价为元,由题意:用元采购种粽子与元采购种粽子的个数相同.列出分式方程,解方程即可; ( 解析:(1)种粽子单价为元,种粽子单价为元 (2)种粽子最多能购进个 【分析】(1)设种粽子单价为元,则种粽子单价为元,由题意:用元采购种粽子与元采购种粽子的个数相同.列出分式方程,解方程即可; (2)设种粽子能采购个,则种粽子能采购个,由题意:商场计划用不超过元的资金采购,两种粽子,列出一元一次不等式,解不等式即可. (1)解:设种粽子单价为元,则种粽子单价为元,根据题意,得:,解得:,经检验,是原方程的解,且符合题意,.答:种粽子单价为元,种粽子单价为元. (2)解:设种粽子能采购个,则种粽子能采购个,依题意,得:,解得:,答:种粽子最多能购进个. 【点睛】本题考查了分式方程的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)根据各数量之间的关系,正确列出一元一次不等式. 25.(1)25; (2); (3); (4). 【分析】(1)利用完全平方公式的结构特征判断即可; (2)原式常数项35分为,利用完全平方公式化简,再利用平方差公式分求解即可; (3)配方后 解析:(1)25; (2); (3); (4). 【分析】(1)利用完全平方公式的结构特征判断即可; (2)原式常数项35分为,利用完全平方公式化简,再利用平方差公式分求解即可; (3)配方后,利用非负数的性质确定出最小值即可; (4)将已知等式利用完全平方公式配方后,再根据非负数的性质求出,,的值,代入原式计算即可. (1) 解:; 故答案为:25; (2) 解: ; (3) 解: , 当,即时,取最小值,最小值为; 故答案为:; (4) 解:, , 即, ,,, ,,, 解得:,, 则. 故答案为:. 【点睛】本题考查了整式的混合运算,非负数的性质:偶次方,完全平方式,以及因式分解分组分解法,解题的关键是熟练掌握各自的运算法则及公式. 26.(1)90;(2)①,理由见解析;②当点D在射线BC.上时,a+β=180°,当点D在射线BC的反向延长线上时,a=β. 【分析】(1)可以证明△BAD≌△CAE,得到∠B=∠ACE,证明∠ACB 解析:(1)90;(2)①,理由见解析;②当点D在射线BC.上时,a+β=180°,当点D在射线BC的反向延长线上时,a=β. 【分析】(1)可以证明△BAD≌△CAE,得到∠B=∠ACE,证明∠ACB=45°,即可解决问题; (2)①证明△BAD≌△CAE,得到∠B=∠ACE,β=∠B+∠ACB,即可解决问题; ②证明△BAD≌△CAE,得到∠ABD=∠ACE,借助三角形外角性质即可解决问题. 【详解】解:(1)∵AB=AC,∠BAC=90°, ∴∠ABC=∠ACB=45°, ∵∠DAE=∠BAC, ∴∠BAD=∠CAE, ∵AB=AC,AD=AE, ∴△BAD≌△CAE(SAS) ∴∠ABC=∠ACE=45°, ∴∠BCE=∠ACB+∠ACE=90°, 故答案为:; (2)①. 理由:∵, ∴. 即. 又, ∴. ∴. ∴. ∴. ∵, ∴. ②如图:当点D在射线BC上时,α+β=180°,连接CE, ∵∠BAC=∠DAE, ∴∠BAD=∠CAE, 在△ABD和△ACE中, , ∴△ABD≌△ACE(SAS), ∴∠ABD=∠ACE, 在△ABC中,∠BAC+∠B+∠ACB=180°, ∴∠BAC+∠ACE+∠ACB=∠BAC+∠BCE=180°, 即:∠BCE+∠BAC=180°, ∴α+β=180°, 如图:当点D在射线BC的反向延长线上时,α=β.连接BE, ∵∠BAC=∠DAE, ∴∠BAD=∠CAE, 又∵AB=AC,AD=AE, ∴△ABD≌△ACE(SAS), ∴∠ABD=∠ACE, ∴∠ABD=∠ACE=∠ACB+∠BCE, ∴∠ABD+∠ABC=∠ACE+∠ABC=∠ACB+∠BCE+∠ABC=180°, ∵∠BAC=180°-∠ABC-∠ACB, ∴∠BAC=∠BCE. ∴α=β; 综上所述:点D在直线BC上移动,α+β=180°或α=β. 【点睛】该题主要考查了等腰直角三角形的性质、全等三角形的判定及其性质等几何知识点及其应用问题;应牢固掌握等腰直角三角形的性质、全等三角形的判定及其性质等几何知识点. 27.(1) (2) (3)或 【分析】(1)根据整式得出,,,,根据关联点的定义得出,,即可得出的关联点坐标; (2)根据题意得出中的次数为次,设 ,计算出,进而表达出,,,的值,再根据的关 解析:(1) (2) (3)或 【分析】(1)根据整式得出,,,,根据关联点的定义得出,,即可得出的关联点坐标; (2)根据题意得出中的次数为次,设 ,计算出,进而表达出,,,的值,再根据的关联点为,列出关于 , 的等式,解出、的值即可; (3)设,根据题意求出,进而表达出,,,的值,再根据的关联点为,列出关于,的等式,解出、的值即可. (1) 解:(1), ,,,, ,, 的关联点坐标为:, 故笞案为:; (2) 整式是只含有字母的整式,整式是与的乘积, 是二次多项式,且的次数不能超过次, 中的次数为次, 设 , , ,,,, 整式的关联点为, ,, 解得:,, ; (3) 根据题意:设, , ,,,, 整式 的关联点为, ,, ,, , 把代入得: , 解得: , 或, 或. 【点睛】本题主要考查整式的乘法,掌握整式的乘法是解决问题的关键.- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 初二 数学 上册 期末 模拟 检测 试卷 解析
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【w****g】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【w****g】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【w****g】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【w****g】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文