2024年人教版中学七7年级下册数学期末测试(含解析).doc
《2024年人教版中学七7年级下册数学期末测试(含解析).doc》由会员分享,可在线阅读,更多相关《2024年人教版中学七7年级下册数学期末测试(含解析).doc(23页珍藏版)》请在咨信网上搜索。
2024年人教版中学七7年级下册数学期末测试(含解析) 一、选择题 1.4的算术平方根是() A.2 B.4 C. D. 2.下列现象属于平移的是() A.投篮时的篮球运动 B.随风飘动的树叶在空中的运动 C.刹车时汽车在地面上的滑动 D.冷水加热过程中小气泡变成大气泡 3.在平面直角坐标系中,点位于( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限 4.下列给出四个命题:①如果两个角相等,那么它们是对顶角;②如果两个角互为邻补角,那么它们的平分线互相垂直;③如果两条直线垂直于同一条直线,那么这两条直线平行;④如果两条直线平行于同一条直线,那么这两条直线平行.其中为假命题的是( ) A.① B.①② C.①③ D.①②③④ 5.将一副三角板按如图放置,如果,则有是( ) A.15° B.30° C.45° D.60° 6.给出下列四个说法:①一个数的平方等于1,那么这个数就是1;②4是8的算术平方根;③平方根等于它本身的数只有0;④8的立方根是±2.其中,正确的是( ) A.①② B.①②③ C.②③ D.③ 7.如图,直线a∥b,直角三角板ABC的直角顶点C在直线b上,若∠1=54°,则∠2的度数为( ) A.36° B.44° C.46° D.54° 8.已知点,,点,,点,是线段的中点,则,.在平面直角坐标系中有三个点A(1,),B(,),C(0,1),点P(0,2)关于点A的对称点(即,,三点共线,且,关于点的对称点,关于点的对称点,按此规律继续以,,三点为对称点重复前面的操作.依次得到点,,,则点的坐标是( ) A.(0,0) B.(0,2) C.(2,) D.(,2) 九、填空题 9.计算_______________. 十、填空题 10.点关于轴的对称点的坐标为,则的值是______. 十一、填空题 11.如图,在中,.三角形的外角和的角平分线交于点E,则_____度. 十二、填空题 12.如图,∠B=∠C,∠A=∠D,有下列结论:①ABCD;②AEDF;③AE⊥BC;④∠AMC=∠BND.其中正确的有_____.(只填序号) 十三、填空题 13.如图,在中,若将沿折叠,使点与点重合,若的周长为的周长为,则_______. 十四、填空题 14.规定运算:,其中为实数,则____ 十五、填空题 15.若点P(2x,x-3)到两坐标轴的距离之和为5,则x的值为____________. 十六、填空题 16.如图,在平面直角坐标系中,将正方形①依次平移后得到正方形②,③,④…;相应地,顶点A依次平移得到A1,A2,A3,…,其中A点坐标为(1,0),A1坐标为(0,1),则A20的坐标为__________. 十七、解答题 17.计算下列各题: (1)+- (2). 十八、解答题 18.求下列各式中x的值 (1)81x2 =16 (2) 十九、解答题 19.填空并完成以下过程: 已知:点P在直线CD上,∠BAP+∠APD=180°,∠1=∠2. 请你说明:∠E=∠F. 解:∵∠BAP +∠APD=180°,(_______) ∴AB∥_______,(___________) ∴∠BAP=________,(__________) 又∵∠1=∠2,(已知) ∠3=________-∠1, ∠4=_______-∠2, ∴∠3=________,(等式的性质) ∴AE∥PF,(____________) ∴∠E=∠F.(___________) 二十、解答题 20.如图,在平面直角坐标系中,三角形三个顶点的坐标分别为.点P是三角形的边上任意一点,三角形经过平移后得到三角形,已知点的对应点. (1)在图中画出平移后的三角形,并写出点的坐标; (2)求三角形的面积. 二十一、解答题 21.阅读下面的文字,解答问题: 大家知道是无理数,而无理数是无限不循环小数,因此的小数部分我们不可能全部地写出来,于是小明用来表示的小数部分,你同意小明的表示方法吗?事实上,小明的表示方法是有道理的.因为的整数部分是,将这个数减去其整数部分,差就是小数部分. 根据以上内容,请解答: 已知,其中是整数,,求的值. 二十二、解答题 22.张华想用一块面积为400cm2的正方形纸片,沿着边的方向剪出一块面积为300cm2的长方形纸片,使它的长宽之比为3:2.他不知能否裁得出来,正在发愁.李明见了说:“别发愁,一定能用一块面积大的纸片裁出一块面积小的纸片.”你同意李明的说法吗?张华能用这块纸片裁出符合要求的纸片吗? 二十三、解答题 23.已知,AB∥CD,点E在CD上,点G,F在AB上,点H在AB,CD之间,连接FE,EH,HG,∠AGH=∠FED,FE⊥HE,垂足为E. (1)如图1,求证:HG⊥HE; (2)如图2,GM平分∠HGB,EM平分∠HED,GM,EM交于点M,求证:∠GHE=2∠GME; (3)如图3,在(2)的条件下,FK平分∠AFE交CD于点K,若∠KFE:∠MGH=13:5,求∠HED的度数. 二十四、解答题 24.为了安全起见在某段铁路两旁安置了两座可旋转探照灯.如图1所示,灯射线从开始顺时针旋转至便立即回转,灯射线从开始顺时针旋转至便立即回转,两灯不停交又照射巡视.若灯转动的速度是每秒2度,灯转动的速度是每秒1度.假定主道路是平行的,即,且. (1)填空:_________; (2)若灯射线先转动30秒,灯射线才开始转动,在灯射线到达之前,灯转动几秒,两灯的光束互相平行? (3)如图2,若两灯同时转动,在灯射线到达之前.若射出的光束交于点,过作交于点,且,则在转动过程中,请探究与的数量关系是否发生变化?若不变,请求出其数量关系;若改变,请说明理由. 二十五、解答题 25.在△ABC中,∠BAC=90°,点D是BC上一点,将△ABD沿AD翻折后得到△AED,边AE交BC于点F. (1)如图①,当AE⊥BC时,写出图中所有与∠B相等的角: ;所有与∠C相等的角: . (2)若∠C-∠B=50°,∠BAD=x°(0<x≤45) . ① 求∠B的度数; ②是否存在这样的x的值,使得△DEF中有两个角相等.若存在,并求x的值;若不存在,请说明理由. 【参考答案】 一、选择题 1.A 解析:A 【分析】 依据算术平方根的定义解答即可. 【详解】 4的算术平方根是2, 故选:A. 【点睛】 本题考查的是求一个数的算术平方根的问题,解题关键是明确算术平方根的定义. 2.C 【分析】 判断是否是平移现象,要根据平移的性质进行,即图形平移前后的形状和大小没有变化,只是位置发生变化. 【详解】 解:A. 投篮时的篮球运动,不是沿直线运动,此选项不是平移现象 ; B 解析:C 【分析】 判断是否是平移现象,要根据平移的性质进行,即图形平移前后的形状和大小没有变化,只是位置发生变化. 【详解】 解:A. 投篮时的篮球运动,不是沿直线运动,此选项不是平移现象 ; B. 随风飘动的树叶在空中的运动,在空中不是沿直线运动,此选项不是平移现象; C. 刹车时汽车在地面上的滑动,此选项是平移现象; D. 冷水加热过程中小气泡变成大气泡,大小发生了变化,此选项不是平移现象. 故选:C. 【点睛】 本题考查的知识点是平移的概念,掌握平移的性质是解此题的关键. 3.D 【分析】 根据各象限内点的坐标特征解答. 【详解】 解:点(3,-2)所在象限是第四象限. 故选:D. 【点睛】 本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-). 4.C 【分析】 根据两个相等的角不一定是对顶角对①进行判定,根据邻补角与角平分线的性质对②进行判断,根据在同一平面内,两条直线垂直于同一条直线,那么这两条直线平行对③进行判断,根据平行线的判定对④进行判断. 【详解】 解:①如果两个角相等,那么它们不一定是对顶角,选项说法错误,符合题意; ②如果两个角互为邻补角,那么它们的平分线互相垂直,选项说法正确,不符合题意; ③在同一平面内,如果两条直线垂直于同一条直线,那么这两条直线平行,选项说法错误,符合题意; ④如果两条直线平行于同一条直线,那么这两条直线平行,选项说法正确,不符合题意; 故选:C. 【点睛】 本题考查了命题与定理:命题的“真”“假”是就命题的内容而言.任何一个命题非真即假.要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可. 5.C 【分析】 根据一副三角板的特征先得到∠E=60°,∠C=45°,∠1+∠2=90°,再根据已知求出∠1=60°,从而可证得AC∥DE,再根据平行线的性质即可求出∠4的度数. 【详解】 解:根据题意可知:∠E=60°,∠C=45°,∠1+∠2=90°, ∵, ∴∠1=60°, ∴∠1=∠E, ∴AC∥DE, ∴∠4=∠C=45°. 故选:C. 【点睛】 本题考查的是平行线的性质和余角、补角的概念,掌握平行线的性质定理和判定定理是解题的关键. 6.D 【分析】 分别根据算术平方根的定义、立方根的定义及平方根的定义对各小题进行逐一判断即可. 【详解】 解:①∵(±1)2=1,∴一个数的平方等于1,那么这个数就是1,故①错误; ②∵42=16,∴4是16的算术平方根,故②错误, ③平方根等于它本身的数只有0,故③正确, ④8的立方根是2,故④错误. 故选:D. 【点睛】 本题考查了立方根,平方根和算术平方根的定义,熟知算术平方根的定义、立方根的定义及平方根的定义是解答此题的关键. 7.A 【分析】 根据直角三角形可求出∠3的度数,再根据平行线的性质∠2=∠3即可得出答案. 【详解】 解:如图所示: ∵直角三角形ABC,∠C=90°,∠1=54°, ∴∠3=90°-∠1=36°, ∵a∥b, ∴∠2=∠3=36°. 故选:A. 【点睛】 本题考查了平行线的性质,熟练掌握平行线的性质,求出∠3的度数是解题的关键. 8.A 【分析】 首先利用题目所给公式求出的坐标,然后利用公式求出对称点的坐标,依此类推即可求出的坐标;由的坐标和的坐标相同,即坐标以6为周期循环,利用这个规律即可求出点的坐标 【详解】 解:设, ∵, 解析:A 【分析】 首先利用题目所给公式求出的坐标,然后利用公式求出对称点的坐标,依此类推即可求出的坐标;由的坐标和的坐标相同,即坐标以6为周期循环,利用这个规律即可求出点的坐标 【详解】 解:设, ∵,,且是的中点, ∴解得:, ∴ 同理可得: ∴每6个点一个循环, ∵ ∴点的坐标是 故选A 【点睛】 此题考查了平面直角坐标系中坐标规律的探索,读懂题目,利用题目所给公式是解题的关键,利用公式求出几个点的坐标,找到循环规律,利用这个规律即可求出. 九、填空题 9.11 【分析】 直接利用算术平方根的定义以及有理数的乘方运算法则分别化简得出答案. 【详解】 解:原式=2+9 =11. 故答案为:11. 【点睛】 此题主要考查了算术平方根以及有理数的乘方运算,正 解析:11 【分析】 直接利用算术平方根的定义以及有理数的乘方运算法则分别化简得出答案. 【详解】 解:原式=2+9 =11. 故答案为:11. 【点睛】 此题主要考查了算术平方根以及有理数的乘方运算,正确化简各数是解题关键. 十、填空题 10.4 【分析】 根据横坐标不变,纵坐标相反,确定a,b的值,计算即可. 【详解】 ∵点关于轴的对称点的坐标为, ∴a=5,b= -1, ∴a+b= 5-1=4, 故答案为:4. 【点睛】 本题考查了坐 解析:4 【分析】 根据横坐标不变,纵坐标相反,确定a,b的值,计算即可. 【详解】 ∵点关于轴的对称点的坐标为, ∴a=5,b= -1, ∴a+b= 5-1=4, 故答案为:4. 【点睛】 本题考查了坐标系中轴对称问题,熟练掌握轴对称的坐标变化特点是解题的关键. 十一、填空题 11.【分析】 如图,先根据三角形的内角和定理求出∠1+∠2的度数,再求出∠DAC+∠ACF的度数,然后根据角平分线的定义可求出∠3+∠4的度数,进而可得答案. 【详解】 解:如图,∵∠B=40°,∴∠ 解析:【分析】 如图,先根据三角形的内角和定理求出∠1+∠2的度数,再求出∠DAC+∠ACF的度数,然后根据角平分线的定义可求出∠3+∠4的度数,进而可得答案. 【详解】 解:如图,∵∠B=40°,∴∠1+∠2=180°-∠B=140°, ∴∠DAC+∠ACF=360°-∠1-∠2=220°, ∵AE和CE分别是和的角平分线, ∴, ∴, ∴. 故答案为:70. 【点睛】 本题考查了三角形的内角和定理和角平分线的定义,属于基础题型,熟练掌握三角形的内角和定理和整体的数学思想是解题的关键. 十二、填空题 12.①②④ 【分析】 根据平行线的判定与性质分析判断各项正确与否即可. 【详解】 解:∵∠B=∠C, ∴AB∥CD, ∴∠A=∠AEC, 又∵∠A=∠D, ∴∠AEC=∠D, ∴AE∥DF, ∴∠AMC 解析:①②④ 【分析】 根据平行线的判定与性质分析判断各项正确与否即可. 【详解】 解:∵∠B=∠C, ∴AB∥CD, ∴∠A=∠AEC, 又∵∠A=∠D, ∴∠AEC=∠D, ∴AE∥DF, ∴∠AMC=∠FNM, 又∵∠BND=∠FNM, ∴∠AMC=∠BND, 故①②④正确, 由条件不能得出∠AMC=90°,故③不一定正确; 故答案为:①②④. 【点睛】 本题考查了对顶角的性质及平行线的判定与性质,难度一般. 十三、填空题 13.【分析】 根据翻折得到,根据,即可求出AC,再根据E是中点即可求解. 【详解】 沿翻折使与重合 故答案为:. 【点睛】 此题主要考查三角形内的线段求解,解题的关键是熟知全等三角形的性 解析: 【分析】 根据翻折得到,根据,即可求出AC,再根据E是中点即可求解. 【详解】 沿翻折使与重合 故答案为:. 【点睛】 此题主要考查三角形内的线段求解,解题的关键是熟知全等三角形的性质. 十四、填空题 14.4 【分析】 根据题意将原式展开,然后化简绝对值,求解即可. 【详解】 = = =4 故答案为4. 【点睛】 本题考查了定义新运算,绝对值的化简,和实数的计算,熟练掌握绝对值的化简规律是本题的关键 解析:4 【分析】 根据题意将原式展开,然后化简绝对值,求解即可. 【详解】 = = =4 故答案为4. 【点睛】 本题考查了定义新运算,绝对值的化简,和实数的计算,熟练掌握绝对值的化简规律是本题的关键. 十五、填空题 15.或 【详解】 【分析】分x<0,0≤x<3,x≥3三种情况分别讨论即可得. 【详解】当x<0时,2x<0,x-3<0,由题意则有-2x-(x-3)=5,解得:x=, 当0≤x<3时,2x≥0,x-3 解析:或 【详解】 【分析】分x<0,0≤x<3,x≥3三种情况分别讨论即可得. 【详解】当x<0时,2x<0,x-3<0,由题意则有-2x-(x-3)=5,解得:x=, 当0≤x<3时,2x≥0,x-3<0,由题意则有2x-(x-3)=5,解得:x=2, 当x≥3时,2x>0,x-3≥0,由题意则有2x+x-3=5,解得:x=<3(不合题意,舍去), 综上,x的值为2或, 故答案为2或. 【点睛】本题考查了坐标与图形的性质,根据x的取值范围分情况进行讨论是解题的关键. 十六、填空题 16.(-19,8) 【分析】 求出A3,A6,A9的坐标,观察得出A3n横坐标为1−3n,可求出A18的坐标,从而可得结论. 【详解】 解:观察图形可知:A3(−2,1),A6(−5,2),A9(−8, 解析:(-19,8) 【分析】 求出A3,A6,A9的坐标,观察得出A3n横坐标为1−3n,可求出A18的坐标,从而可得结论. 【详解】 解:观察图形可知:A3(−2,1),A6(−5,2),A9(−8,3),•••, ∵−2=1−3×1,−5=1−3×2,−8=1−3×3, ∴A3n横坐标为1−3n, ∴A18横坐标为:1−3×6=−17, ∴A18(−17,6), 把A18向左平移2个单位,再向上平移2个单位得到A20, ∴A20(−19,8). 故答案为:(−19,8). 【点睛】 本题主要考查坐标系中点、线段的平移规律.在平面直角坐标系中,图形的平移与图形上某点的平移相同.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减. 十七、解答题 17.(1)1 (2) 【详解】 试题分析:(1)先化简根式,再加减即可;(2)先化简根式,再加减即可; 试题解析: (1)原式=; (2)原式=-3-0-+0.5+ = 解析:(1)1 (2) 【详解】 试题分析:(1)先化简根式,再加减即可;(2)先化简根式,再加减即可; 试题解析: (1)原式=; (2)原式=-3-0-+0.5+ = 十八、解答题 18.(1);(2) 【分析】 (1)方程变形后,利用平方根定义开方即可求出解; (2)方程利用立方根的定义开立方即可求出解. 【详解】 解:(1)方程变形得:, 解得:; (2)开立方得:, 解得:. 解析:(1);(2) 【分析】 (1)方程变形后,利用平方根定义开方即可求出解; (2)方程利用立方根的定义开立方即可求出解. 【详解】 解:(1)方程变形得:, 解得:; (2)开立方得:, 解得:. 【点睛】 本题考查了立方根,以及平方根,解题的关键是熟练掌握各自的求解方法. 十九、解答题 19.已知;CD;同旁内角互补两直线平行;∠APC;两直线平行内错角相等;已知;∠BAP;∠APC;∠4;内错角相等两直线平行;两直线平行内错角相等. 【分析】 根据平行线的性质和判定即可解决问题; 【详 解析:已知;CD;同旁内角互补两直线平行;∠APC;两直线平行内错角相等;已知;∠BAP;∠APC;∠4;内错角相等两直线平行;两直线平行内错角相等. 【分析】 根据平行线的性质和判定即可解决问题; 【详解】 解:∵∠BAP+∠APD=180°(已知), ∴AB∥CD.(同旁内角互补两直线平行), ∴∠BAP=∠APC.(两直线平行内错角相等), 又∵∠1=∠2,(已知), ∠3=∠BAP-∠1, ∠4=∠APC-∠2, ∴∠3=∠4(等式的性质), ∴AE∥PF.(内错角相等两直线平行), ∴∠E=∠F.(两直线平行内错角相等). 【点睛】 本题考查平行线的判定与性质,熟记平行线的判定方法和性质是解题的关键. 二十、解答题 20.(1)作图见解析,;(2)7 【分析】 (1)直接利用P点平移变化规律得出A′、B′、C′的坐标;直接利用得出各对应点位置进而得出答案; (2)利用三角形ABC所在矩形面积减去周围三角形面积进而得出 解析:(1)作图见解析,;(2)7 【分析】 (1)直接利用P点平移变化规律得出A′、B′、C′的坐标;直接利用得出各对应点位置进而得出答案; (2)利用三角形ABC所在矩形面积减去周围三角形面积进而得出答案. 【详解】 解:(1)∵P到点的对应点,横坐标向左平移了两个单位,纵坐标向上平移了3个单位. ∵, ∴, 如图所示,三角形A′B′C′即为所求, (2)三角形ABC的面积为:4×5−×1×3−×2×4−×3×5=7. 【点睛】 此题主要考查了平移变换以及三角形面积求法,正确得出对应点位置是解题关键. 二十一、解答题 21.同意; 【分析】 找出的整数部分与小数部分.然后再来求. 【详解】 解:同意小明的表示方法. 无理数的整数部分是, 即, 无理数的小数部分是, 即, , 【点睛】 本题主要考查了无理数的大小.解题 解析:同意; 【分析】 找出的整数部分与小数部分.然后再来求. 【详解】 解:同意小明的表示方法. 无理数的整数部分是, 即, 无理数的小数部分是, 即, , 【点睛】 本题主要考查了无理数的大小.解题关键是确定无理数的整数部分即可解决问题. 二十二、解答题 22.不同意,理由见解析. 【详解】 试题分析:设面积为300平方厘米的长方形的长宽分为3x厘米,2x厘米,则3x•2x=300,x2=50,解得x=,而面积为400平方厘米的正方形的边长为20厘米,由于 解析:不同意,理由见解析. 【详解】 试题分析:设面积为300平方厘米的长方形的长宽分为3x厘米,2x厘米,则3x•2x=300,x2=50,解得x=,而面积为400平方厘米的正方形的边长为20厘米,由于>20,所以用一块面积为400平方厘米的正方形纸片,沿着边的方向裁不出一块面积为300平方厘米的长方形纸片,使它的长宽之比为3:2. 试题解析:解:不同意李明的说法.设长方形纸片的长为3x (x>0)cm,则宽为2x cm,依题意得:3x•2x=300,6x2=300,x2=50,∵x>0,∴x==,∴长方形纸片的长为 cm,∵50>49,∴>7,∴>21,即长方形纸片的长大于20cm,由正方形纸片的面积为400 cm2,可知其边长为20cm,∴长方形纸片的长大于正方形纸片的边长. 答:李明不能用这块纸片裁出符合要求的长方形纸片. 点睛:本题考查了算术平方根的定义:一个正数的正的平方根叫这个数的算术平方根;0的算术平方根为0.也考查了估算无理数的大小. 二十三、解答题 23.(1)见解析;(2)见解析;(3)40° 【分析】 (1)根据平行线的性质和判定解答即可; (2)过点H作HP∥AB,根据平行线的性质解答即可; (3)过点H作HP∥AB,根据平行线的性质解答即可. 解析:(1)见解析;(2)见解析;(3)40° 【分析】 (1)根据平行线的性质和判定解答即可; (2)过点H作HP∥AB,根据平行线的性质解答即可; (3)过点H作HP∥AB,根据平行线的性质解答即可. 【详解】 证明:(1)∵AB∥CD, ∴∠AFE=∠FED, ∵∠AGH=∠FED, ∴∠AFE=∠AGH, ∴EF∥GH, ∴∠FEH+∠H=180°, ∵FE⊥HE, ∴∠FEH=90°, ∴∠H=180°﹣∠FEH=90°, ∴HG⊥HE; (2)过点M作MQ∥AB, ∵AB∥CD, ∴MQ∥CD, 过点H作HP∥AB, ∵AB∥CD, ∴HP∥CD, ∵GM平分∠HGB, ∴∠BGM=∠HGM=∠BGH, ∵EM平分∠HED, ∴∠HEM=∠DEM=∠HED, ∵MQ∥AB, ∴∠BGM=∠GMQ, ∵MQ∥CD, ∴∠QME=∠MED, ∴∠GME=∠GMQ+∠QME=∠BGM+∠MED, ∵HP∥AB, ∴∠BGH=∠GHP=2∠BGM, ∵HP∥CD, ∴∠PHE=∠HED=2∠MED, ∴∠GHE=∠GHP+∠PHE=2∠BGM+2∠MED=2(∠BGM+∠MED), ∴∠GHE=∠2GME; (3)过点M作MQ∥AB,过点H作HP∥AB, 由∠KFE:∠MGH=13:5,设∠KFE=13x,∠MGH=5x, 由(2)可知:∠BGH=2∠MGH=10x, ∵∠AFE+∠BFE=180°, ∴∠AFE=180°﹣10x, ∵FK平分∠AFE, ∴∠AFK=∠KFE= ∠AFE, 即, 解得:x=5°, ∴∠BGH=10x=50°, ∵HP∥AB,HP∥CD, ∴∠BGH=∠GHP=50°,∠PHE=∠HED, ∵∠GHE=90°, ∴∠PHE=∠GHE﹣∠GHP=90°﹣50°=40°, ∴∠HED=40°. 【点睛】 本题考查了平行线的判定与性质,熟练掌握平行线的判定与性质定理以及灵活构造平行线是解题的关键. 二十四、解答题 24.(1)72°;(2)30秒或110秒;(3)不变,∠BAC=2∠BCD 【分析】 (1)根据∠BAM+∠BAN=180°,∠BAM:∠BAN=3:2,即可得到∠BAN的度数; (2)设A灯转动t秒, 解析:(1)72°;(2)30秒或110秒;(3)不变,∠BAC=2∠BCD 【分析】 (1)根据∠BAM+∠BAN=180°,∠BAM:∠BAN=3:2,即可得到∠BAN的度数; (2)设A灯转动t秒,两灯的光束互相平行,分两种情况进行讨论:当0<t<90时,根据2t=1•(30+t),可得 t=30;当90<t<150时,根据1•(30+t)+(2t-180)=180,可得t=110; (3)设灯A射线转动时间为t秒,根据∠BAC=2t-108°,∠BCD=126°-∠BCA=t-54°,即可得出∠BAC:∠BCD=2:1,据此可得∠BAC和∠BCD关系不会变化. 【详解】 解:(1)∵∠BAM+∠BAN=180°,∠BAM:∠BAN=3:2, ∴∠BAN=180°×=72°, 故答案为:72; (2)设A灯转动t秒,两灯的光束互相平行, ①当0<t<90时,如图1, ∵PQ∥MN, ∴∠PBD=∠BDA, ∵AC∥BD, ∴∠CAM=∠BDA, ∴∠CAM=∠PBD ∴2t=1•(30+t), 解得 t=30; ②当90<t<150时,如图2, ∵PQ∥MN, ∴∠PBD+∠BDA=180°, ∵AC∥BD, ∴∠CAN=∠BDA ∴∠PBD+∠CAN=180° ∴1•(30+t)+(2t-180)=180, 解得 t=110, 综上所述,当t=30秒或110秒时,两灯的光束互相平行; (3)∠BAC和∠BCD关系不会变化. 理由:设灯A射线转动时间为t秒, ∵∠CAN=180°-2t, ∴∠BAC=72°-(180°-2t)=2t-108°, 又∵∠ABC=108°-t, ∴∠BCA=180°-∠ABC-∠BAC=180°-t,而∠ACD=126°, ∴∠BCD=126°-∠BCA=126°-(180°-t)=t-54°, ∴∠BAC:∠BCD=2:1, 即∠BAC=2∠BCD, ∴∠BAC和∠BCD关系不会变化. 【点睛】 本题主要考查了平行线的性质以及角的和差关系的运用,解决问题的关键是运用分类思想进行求解,解题时注意:两直线平行,内错角相等;两直线平行,同旁内角互补. 二十五、解答题 25.(1)∠E、∠CAF;∠CDE、∠BAF; (2)①20°;②30 【分析】 (1)由翻折的性质和平行线的性质即可得与∠B相等的角;由等角代换即可得与∠C相等的角; (2)①由三角形内角和定理可得, 解析:(1)∠E、∠CAF;∠CDE、∠BAF; (2)①20°;②30 【分析】 (1)由翻折的性质和平行线的性质即可得与∠B相等的角;由等角代换即可得与∠C相等的角; (2)①由三角形内角和定理可得,再由根据角的和差计算即可得∠C的度数,进而得∠B的度数. ②根据翻折的性质和三角形外角及三角形内角和定理,用含x的代数式表示出∠FDE、∠DFE的度数,分三种情况讨论求出符合题意的x值即可. 【详解】 (1)由翻折的性质可得:∠E=∠B, ∵∠BAC=90°,AE⊥BC, ∴∠DFE=90°, ∴180°-∠BAC=180°-∠DFE=90°, 即:∠B+∠C=∠E+∠FDE=90°, ∴∠C=∠FDE, ∴AC∥DE, ∴∠CAF=∠E, ∴∠CAF=∠E=∠B 故与∠B相等的角有∠CAF和∠E; ∵∠BAC=90°,AE⊥BC, ∴∠BAF+∠CAF=90°, ∠CFA=180°-(∠CAF+∠C)=90° ∴∠BAF+∠CAF=∠CAF+∠C=90° ∴∠BAF=∠C 又AC∥DE, ∴∠C=∠CDE, ∴故与∠C相等的角有∠CDE、∠BAF; (2)①∵ ∴ 又∵, ∴∠C=70°,∠B=20°; ②∵∠BAD=x°, ∠B=20°则,, 由翻折可知:∵, , ∴, , 当∠FDE=∠DFE时,, 解得:; 当∠FDE=∠E时,,解得:(因为0<x≤45,故舍去); 当∠DFE=∠E时,,解得:(因为0<x≤45,故舍去); 综上所述,存在这样的x的值,使得△DEF中有两个角相等.且. 【点睛】 本题考查图形的翻折、三角形内角和定理、平行线的判定及其性质、三角形外角的性质、等角代换,解题的关键是熟知图形翻折的性质及综合运用所学知识.- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2024 年人教版 中学 年级 下册 数学 期末 测试 解析
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【精***】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【精***】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【精***】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【精***】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文