人教七年级下册数学期末测试(含解析).doc
《人教七年级下册数学期末测试(含解析).doc》由会员分享,可在线阅读,更多相关《人教七年级下册数学期末测试(含解析).doc(23页珍藏版)》请在咨信网上搜索。
人教七年级下册数学期末测试(含解析) 一、选择题 1.如图,直线a,b,c被射线l和m所截,则下列关系正确的是( ) A.∠1与∠2是对顶角 B.∠1与∠3是同旁内角 C.∠3与∠4是同位角 D.∠2与∠3是内错角 2.下列图形中,哪个可以通过图1平移得到( ) A. B. C. D. 3.在直角坐标系中内点在第三象限,那么点在( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限 4.下列命题是假命题的是( ) A.对顶角相等 B.两直线平行,同旁内角相等 C.过直线外一点有且只有一条直线与已知直线平行 D.同位角相等,两直线平行 5.如图,直线,点在直线上,下列结论正确的是( ) A. B. C. D. 6.下列叙述中,①1的立方根为±1;②4的平方根为±2;③-8立方根是-2;④的算术平方根为.正确的是( ) A.①②③ B.①②④ C.①③④ D.②③④ 7.如图,,分别交,于点,,若,则的度数为( ) A. B. C. D. 8.如图,在平面直角坐标系中,A(1,1),B(﹣1,1),C(﹣1,﹣2),D(1,﹣2).把一条长为2017个单位长度且没有弹性的细线(线的粗细忽略不计)的一端固定在点A处,并按A﹣B﹣C﹣D﹣A…的规律绕在四边形ABCD的边上,则细线另一端所在位置的点的坐标是( ) A.(﹣1,0) B.(1,﹣2) C.(1,1) D.(﹣1,﹣1) 九、填空题 9.若a、b为实数,且满足|a﹣2|+=0,则a﹣b的立方根为_____. 十、填空题 10.平面直角坐标系中,点关于轴的对称点是__________. 十一、填空题 11.如图.已知点为两条相互平行的直线之间一动点,和的角平分线相交于,若,则的度数为________. 十二、填空题 12.如图,直线a∥b,直线c与直线a,b分别交于点D,E,射线DF⊥直线c,则图中与∠1互余的角有 _______个. 十三、填空题 13.如图,在△ABC中,将∠B、∠C按如图所示的方式折叠,点B、C均落于边BC上的点Q处,MN、EF为折痕,若∠A=82°,则∠MQE= _________ 十四、填空题 14.已知有理数,我们把称为的差倒数,如:2的差倒数是,的差倒数是,如果,是的差倒数,是的差倒数,是的差倒数…依此类推,那么的值是______. 十五、填空题 15.在平面直角坐标系中,已知三点,其中a,b满足关系式,若在第二象限内有一点,使四边形的面积与三角形的面积相等,则点P的坐标为________. 十六、填空题 16.在平面直角坐标系中,一蚂蚁从原点O出发,按向上、向右、向下、向右的方向依次不断移动,每次移动1个单位;其行走路线如图所示.则点的坐标为__________. 十七、解答题 17.计算: (1) (2) 十八、解答题 18.(1)已知am=3,an=5,求a3m﹣2n的值. (2)已知x﹣y=,xy=,求下列各式的值: ①x2y﹣xy2; ②x2+y2. 十九、解答题 19.如图.已知∠1=∠2,∠C=∠D,求证:∠A=∠F. (1)请把下面证明过程中序号对应的空白内容补充完整. 证明:∴∠1=∠2(已知) 又∵∠1=∠DMN( ) ∵∠2=∠DMN(等量代换) ∴DB∥EC( ) ∴∠DBC+∠C=180°( ). ∵∠C=∠D(已知), ∴∠DBC+( )=180°(等量代换) ∴DF∥AC( ) ∴∠A=∠F( ) (2)在(1)的基础上,小明进一步探究得到∠DBC=∠DEC,请帮他写出推理过程. 二十、解答题 20.如图,三角形ABC在平面直角坐标系中, (1)请写出三角形ABC各点的坐标; (2)将 三角形ABC经过平移后得到三角形A1B1C1,若三角形ABC中任意一点M(a,b)与三角形A1B1C1的对应点的坐标为M1(a-1,b+2),写出A1B1C1的坐标,并画出平移后的图形; (3)求出三角形ABC的面积. 二十一、解答题 21.阅读下面的文字,解答问题: 大家知道,是无理数,而无理数是无限不循环小数,因此的小数部分我们不可能全部地写出来,于是小明用来表示的小数部分,你同意小明的表示方法吗? 事实上,小明的表示方法是有道理的,因为的整数部分是1,将这个数减去其整数部分,差是小数部分. 又例如,因为,即,所以的整数部分为2,小数部分为.请解答: (1)的整数部分为 ;小数部分为 ; (2)如果的整数部分为a,的小数部分为b,求的值. 二十二、解答题 22.如图,阴影部分(正方形)的四个顶点在5×5的网格格点上. (1)请求出图中阴影部分(正方形)的面积和边长 (2)若边长的整数部分为,小数部分为,求的值. 二十三、解答题 23.(1)(问题)如图1,若,,.求的度数; (2)(问题迁移)如图2,,点在的上方,问,,之间有何数量关系?请说明理由; (3)(联想拓展)如图3所示,在(2)的条件下,已知,的平分线和的平分线交于点,用含有的式子表示的度数. 二十四、解答题 24.已知两条直线l1,l2,l1∥l2,点A,B在直线l1上,点A在点B的左边,点C,D在直线l2上,且满足. (1)如图①,求证:AD∥BC; (2)点M,N在线段CD上,点M在点N的左边且满足,且AN平分∠CAD; (Ⅰ)如图②,当时,求∠DAM的度数; (Ⅱ)如图③,当时,求∠ACD的度数. 二十五、解答题 25.在中,,,点在直线上运动(不与点、重合),点在射线上运动,且,设. (1)如图①,当点在边上,且时,则__________,__________; (2)如图②,当点运动到点的左侧时,其他条件不变,请猜想和的数量关系,并说明理由; (3)当点运动到点的右侧时,其他条件不变,和还满足(2)中的数量关系吗?请在图③中画出图形,并给予证明.(画图痕迹用黑色签字笔加粗加黑) 【参考答案】 一、选择题 1.C 解析:C 【分析】 根据对顶角、邻补角、同位角、内错角的定义分别分析即可. 【详解】 解:A、∠1与∠2是邻补角,故原题说法错误; B、∠1与∠3不是同旁内角,故原题说法错误; C、∠3与∠4是同位角,故原题说法正确; D、∠2与∠3不是内错角,故原题说法错误; 故选:C. 【点睛】 此题主要考查了对顶角、邻补角、内错角和同位角,解题的关键是掌握对顶角、邻补角、内错角和同位角的定义. 2.A 【详解】 试题分析:因为图形平移前后,不改变图形的形状和大小,只是位置发生改变,所以由图1平移可得A,故选A. 考点:平移的性质. 解析:A 【详解】 试题分析:因为图形平移前后,不改变图形的形状和大小,只是位置发生改变,所以由图1平移可得A,故选A. 考点:平移的性质. 3.D 【分析】 根据第三象限内点的坐标符号判断出a、b,再根据各象限内点的坐标特征解答. 【详解】 解:∵点M(a,b)在第三象限, ∴a<0,b<0, ∴-a>0, 那么点N(-a,b)所在的象限是:第四象限. 故选:D. 【点睛】 本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-). 4.B 【分析】 真命题就是正确的命题,条件和结果相矛盾的命题是假命题. 【详解】 解:A. 对顶角相等是真命题,故A不符合题意; B. 两直线平行,同旁内角互补,故B是假命题,符合题意; C. 过直线外一点有且只有一条直线与已知直线平行,是真命题,故C不符合题意; D. 同位角相等,两直线平行,是真命题,故D不符合题意, 故选:B. 【点睛】 本题考查真假命题,是基础考点,掌握相关知识是解题关键. 5.D 【分析】 根据两直线平行,同旁内角互补可得∠1+∠AOF=180°,再根据两直线平行,内错角相等可得∠3=∠AOC,而通过∠AOF=∠AOC-∠2,整理可得∠1+∠3-∠2=180°. 【详解】 解:∵AB∥EF, ∴∠1+∠AOF=180°, ∵CD∥AB, ∴∠3=∠AOC, 又∵∠AOF=∠AOC−∠2=∠3-∠2, ∴∠1+∠3-∠2=180°. 故选:D. 【点睛】 本题主要考查平行线的性质,从复杂图形中找出内错角,同旁内角是解题的关键. 6.D 【分析】 分别求出每个数的立方根、平方根和算术平方根,再判断即可. 【详解】 ∵1的立方根为1,∴①错误; ∵4的平方根为±2,∴②正确; ∵−8的立方根是−2,∴③正确; ∵的算术平方根是,∴④正确; 正确的是②③④, 故选:D. 【点睛】 本题考查了平方根、算术平方根和立方根.解题的关键是掌握平方根、算术平方根和立方根的定义. 7.B 【分析】 根据平行线的性质和对顶角相等即可得∠2的度数. 【详解】 解:∵, ∴∠2=∠FHD, ∵∠FHD=∠1=39°, ∴∠2=39°. 故选:B. 【点睛】 本题考查了平行线的性质,解决本题的关键是掌握平行线的性质. 8.B 【分析】 根据点、、、的坐标可得出、的长度以及四边形为长方形,进而可求出长方形的周长,根据细线的缠绕方向以及细线的长度即可得出细线的另一端所在位置. 【详解】 解:,,,, ,,且四边形为长方形 解析:B 【分析】 根据点、、、的坐标可得出、的长度以及四边形为长方形,进而可求出长方形的周长,根据细线的缠绕方向以及细线的长度即可得出细线的另一端所在位置. 【详解】 解:,,,, ,,且四边形为长方形, 长方形的周长. ,, 细线的另一端落在点上,即. 故选:. 【点睛】 本题考查了规律型中点的坐标、长方形的判定以及长方形的周长,根据长方形的周长结合细线的长度找出细线终点所在的位置是解题的关键. 九、填空题 9.-1 【分析】 根据非负数的性质,求出a、b的值,再进而计算所给代数式的立方根. 【详解】 解:∵|a﹣2|+=0,|a﹣2|≥0,≥0 ∴a﹣2=0,3﹣b=0 ∴a=2,b=3 ∴, 故答案为: 解析:-1 【分析】 根据非负数的性质,求出a、b的值,再进而计算所给代数式的立方根. 【详解】 解:∵|a﹣2|+=0,|a﹣2|≥0,≥0 ∴a﹣2=0,3﹣b=0 ∴a=2,b=3 ∴, 故答案为:﹣1. 【点睛】 本题主要考查了非负数的性质,立方根的性质,关键是根据“两个非负数和为0,则这两个数都为0”列出方程求得a、b的值. 十、填空题 10.【分析】 根据平面直角坐标系中,关于坐标轴对称的点的坐标特征,即可完成解答. 【详解】 解:点关于轴的对称点的坐标是(3,2). 【点睛】 本题考查了根据平面直角坐标系中关于坐标轴对称的点的坐标特 解析: 【分析】 根据平面直角坐标系中,关于坐标轴对称的点的坐标特征,即可完成解答. 【详解】 解:点关于轴的对称点的坐标是(3,2). 【点睛】 本题考查了根据平面直角坐标系中关于坐标轴对称的点的坐标特征,即关于x轴对称的点的坐标横坐标不变,纵坐标变为相反数;关于y轴对称的点的坐标纵坐标不变,横 坐标变为相反数; 十一、填空题 11.120° 【分析】 由角平分线的定义可得,,又由,得,;设,,则;再根据四边形内角和定理得到,最后根据即可求解. 【详解】 解:和的角平分线相交于, ,, 又, ,, 设,, , 在四边形中,,,, 解析:120° 【分析】 由角平分线的定义可得,,又由,得,;设,,则;再根据四边形内角和定理得到,最后根据即可求解. 【详解】 解:和的角平分线相交于, ,, 又, ,, 设,, , 在四边形中,,,, , , , , 故答案为:. 【点睛】 本题考查了平行线的判定和性质,正确的识别图形是解题的关键. 十二、填空题 12.4 【分析】 根据射线DF⊥直线c,可得与∠1互余的角有∠2,∠3,根据a∥b,可得与∠1互余的角有∠4,∠5,可得图中与∠1互余的角有4个 【详解】 ∵射线DF⊥直线c ∴∠1+∠2=90°,∠1 解析:4 【分析】 根据射线DF⊥直线c,可得与∠1互余的角有∠2,∠3,根据a∥b,可得与∠1互余的角有∠4,∠5,可得图中与∠1互余的角有4个 【详解】 ∵射线DF⊥直线c ∴∠1+∠2=90°,∠1+∠3=90° 即与∠1互余的角有∠2,∠3 又∵a∥b ∴∠3=∠5,∠2=∠4 ∴∠1互余的角有∠4,∠5 ∴与∠1互余的角有4个 故答案为:4 【点睛】 本题考查了互余的定义,如果两个角的和等于(直角),就说这两个角互为余角,简称互余,即其中每一个角是另一个角的余角;本题还考查了平行线的性质定理,两直线平行,同位角相等. 十三、填空题 13.【分析】 根据折叠的性质得到,,再根据的度数即可求出的度数,再根据求解即可. 【详解】 解:∵折叠, ∴,, ∵, ∴, ∴. 故答案是:. 【点睛】 本题考查折叠问题,解题的关键是掌握折叠的性质 解析: 【分析】 根据折叠的性质得到,,再根据的度数即可求出的度数,再根据求解即可. 【详解】 解:∵折叠, ∴,, ∵, ∴, ∴. 故答案是:. 【点睛】 本题考查折叠问题,解题的关键是掌握折叠的性质. 十四、填空题 14.. 【分析】 根据题意,可以写出这列数的前几项,从而可以发现数字的变化规律,从而可以求得所求式子的值. 【详解】 ∵, ∴,,,, …… ∴,每三个数一个循环, ∵, ∴, 则 +--3 -3-++ 解析:. 【分析】 根据题意,可以写出这列数的前几项,从而可以发现数字的变化规律,从而可以求得所求式子的值. 【详解】 ∵, ∴,,,, …… ∴,每三个数一个循环, ∵, ∴, 则 +--3 -3-++3 =-3-++3 . 故答案为:. 【点晴】 本题考查数字的变化类,解答本题的关键是明确题意,发现数字的变化特点,求出所求式子的值. 十五、填空题 15.(-4,1) 【分析】 根据非负数的性质分别求出a、b,根据三角形的面积公式列式计算得到答案. 【详解】 解:∵, ∴a=3,b=4, ∴A(0,3),B(4,0),C(4,6), ∴△ABC的面积 解析:(-4,1) 【分析】 根据非负数的性质分别求出a、b,根据三角形的面积公式列式计算得到答案. 【详解】 解:∵, ∴a=3,b=4, ∴A(0,3),B(4,0),C(4,6), ∴△ABC的面积=×6×4=12, 四边形ABOP的面积=△AOP的面积+△AOB的面积=×3×(-m)+×3×4=6-m, 由题意得,6-m=12, 解得,m=-4, ∴点P的坐标为(-4,1), 故答案为:(-4,1). 【点睛】 本题考查的是坐标与图形性质,非负数的性质,掌握点的坐标与图形的关系是解题的关键. 十六、填空题 16.(1010,1) 【分析】 根据图象先计算出A4和A8的坐标,进而得出点A4n的坐标为(2n,0),再用2020÷4=505,可得出点A2021的坐标. 【详解】 解:由图可知A4,A8都在x轴上, 解析:(1010,1) 【分析】 根据图象先计算出A4和A8的坐标,进而得出点A4n的坐标为(2n,0),再用2020÷4=505,可得出点A2021的坐标. 【详解】 解:由图可知A4,A8都在x轴上, ∵蚂蚁每次移动1个单位, ∴OA4=2,OA8=4, ∴A4(2,0),A8(4,0), ∴OA4n=4n÷2=2n, ∴点A4n的坐标为(2n,0). ∵2020÷4=505, ∴点A2020的坐标是(1010,0). ∴点A2021的坐标是(1010,1). 故答案为:(1010,1). 【点睛】 本题考查了规律型问题在点的坐标问题中的应用,数形结合并正确得出规律是解题的关键. 十七、解答题 17.(1)1.2;(2) 【解析】试题分析:(1)、根据算术平方根、立方根以及-1的奇数次幂的计算法则得出各式的值,然后进行求和得出答案;(2)、根据算术平方根、立方根以及绝对值的计算法则得出各式的值, 解析:(1)1.2;(2) 【解析】试题分析:(1)、根据算术平方根、立方根以及-1的奇数次幂的计算法则得出各式的值,然后进行求和得出答案;(2)、根据算术平方根、立方根以及绝对值的计算法则得出各式的值,然后进行求和得出答案. 试题解析:(1)原式 (2)原式 十八、解答题 18.(1);(2)①;② 【分析】 (1)逆向运用同底数幂的除法法则以及幂的乘方运算法则计算即可; (2)①利用提公因式法因式分解解答即可; ②根据完全平方公式计算即可. 【详解】 解:(1),, 解析:(1);(2)①;② 【分析】 (1)逆向运用同底数幂的除法法则以及幂的乘方运算法则计算即可; (2)①利用提公因式法因式分解解答即可; ②根据完全平方公式计算即可. 【详解】 解:(1),, ; (2)①,, ; ②,, . 【点睛】 本题考查了完全平方公式,同底数幂的除法,提公因式法因式分解以及幂的乘方,熟记相关公式与运算法则是解答本题的关键. 十九、解答题 19.(1)见解析;(2)见解析 【分析】 (1)由对顶角相等及等量代换得到∠2=∠DMN,由此判定DB∥EC,由平行线的性质及等量代换得出∠DBC+∠D=180°即可判定DF∥AC,再根据平行线的性质即 解析:(1)见解析;(2)见解析 【分析】 (1)由对顶角相等及等量代换得到∠2=∠DMN,由此判定DB∥EC,由平行线的性质及等量代换得出∠DBC+∠D=180°即可判定DF∥AC,再根据平行线的性质即可得解; (2)由平行线的性质及等量代换即可得解. 【详解】 解:(1)证明:∵∠1=∠2(已知), 又∵∠1=∠DMN(对顶角相等), ∴∠2=∠DMN(等量代换), ∴DB∥EC(同位角相等,两直线平行 ), ∴∠DBC+∠C=180°( 两直线平行,同旁内角互补), ∵∠C=∠D(已知), ∵∠DBC+(∠D)=180°(等量代换), ∴DF∥AC( 同旁内角互补,两直线平行), ∴∠A=∠F(两直线平行,内错角相等 ). (2)∵DB∥EC, ∴∠DBC+∠C=180°,∠DEC+∠D=180°, ∵∠C=∠D, ∴∠DBC=∠DEC. 【点睛】 此题考查了平行线的判定与性质,熟练掌握平行线的判定定理与性质定理是解题的关键. 二十、解答题 20.(1)A(-2,-2),B(3,1),C(0,2);(2)A1(-3,0),B1(2,3),C1(-1,4),图见详解;(3)7 【分析】 (1)利用点的坐标的表示方法分别写出点A、B、C的坐标; 解析:(1)A(-2,-2),B(3,1),C(0,2);(2)A1(-3,0),B1(2,3),C1(-1,4),图见详解;(3)7 【分析】 (1)利用点的坐标的表示方法分别写出点A、B、C的坐标; (2)先利用点的坐标平移的规律写出点A、B、C的对应点A1、B1、C1的坐标,然后描点即可得到△A1B1C1; (3)利用一个矩形的面积分别减去三个三角形的面积计算三角形ABC的面积. 【详解】 解:(1)如图观察可得:A(-2,-2),B(3,1),C(0,2); (2)根据三角形ABC中任意一点M(a,b)与三角形A1B1C1的对应点的坐标为M1(a-1,b+2)可知,△ABC向左平移一个单位长度,向上平移两个单位长度, 平移后坐标为:A1(-3,0),B1(2,3),C1(-1,4), 平移后的△A1B1C1如下图所示: ; (3). 【点睛】 本题考查了作图-平移变换:确定平移后图形的基本要素有两个:平移方向、平移距离.作图时要先找到图形的关键点,分别把这几个关键点按照平移的方向和距离确定对应点后,再顺次连接对应点即可得到平移后的图形. 二十一、解答题 21.(1)9,;(2)15 【分析】 (1)根据题意求出所在整数范围,即可求解; (2)求出a,b然后代入代数式即可. 【详解】 解:(1)∵,即 ∴的整数部分为9,小数部分为 (2)∵,即 ∴的整数部 解析:(1)9,;(2)15 【分析】 (1)根据题意求出所在整数范围,即可求解; (2)求出a,b然后代入代数式即可. 【详解】 解:(1)∵,即 ∴的整数部分为9,小数部分为 (2)∵,即 ∴的整数部分为5,小数部分为 ∴, 【点睛】 此题主要考查了二次根式的大小,熟练掌握二次根式的有关性质是解题的关键. 二十二、解答题 22.(1)S=13,边长为 ;(2)6 【详解】 分析:(1)、利用正方形的面积减去四个直角三角形的面积得出阴影部分的面积,从而得出正方形的边长;(2)、根据无理数的估算得出a和b的值,然后得出答案. 解析:(1)S=13,边长为 ;(2)6 【详解】 分析:(1)、利用正方形的面积减去四个直角三角形的面积得出阴影部分的面积,从而得出正方形的边长;(2)、根据无理数的估算得出a和b的值,然后得出答案. 详解:解:(1)S=25-12=13, 边长为 , (2)a=3,b= -3 原式=9+-3-=6. 点睛:本题主要考查的就是无理数的估算,属于中等难度的题型.解决这个问题的关键就是根据正方形的面积得出边长. 二十三、解答题 23.(1)90°;(2)∠PFC=∠PEA+∠P;(3)∠G=α 【分析】 (1)根据平行线的性质与判定可求解; (2)过P点作PN∥AB,则PN∥CD,可得∠FPN=∠PEA+∠FPE,进而可得∠PF 解析:(1)90°;(2)∠PFC=∠PEA+∠P;(3)∠G=α 【分析】 (1)根据平行线的性质与判定可求解; (2)过P点作PN∥AB,则PN∥CD,可得∠FPN=∠PEA+∠FPE,进而可得∠PFC=∠PEA+∠FPE,即可求解; (3)令AB与PF交点为O,连接EF,根据三角形的内角和定理可得∠GEF+∠GFE=∠PEA+∠PFC+∠OEF+∠OFE,由(2)得∠PEA=∠PFC-α,由∠OFE+∠OEF=180°-∠FOE=180°-∠PFC可求解. 【详解】 解:(1)如图1,过点P作PM∥AB, ∴∠1=∠AEP. 又∠AEP=40°, ∴∠1=40°. ∵AB∥CD, ∴PM∥CD, ∴∠2+∠PFD=180°. ∵∠PFD=130°, ∴∠2=180°-130°=50°. ∴∠1+∠2=40°+50°=90°. 即∠EPF=90°. (2)∠PFC=∠PEA+∠P. 理由:过P点作PN∥AB,则PN∥CD, ∴∠PEA=∠NPE, ∵∠FPN=∠NPE+∠FPE, ∴∠FPN=∠PEA+∠FPE, ∵PN∥CD, ∴∠FPN=∠PFC, ∴∠PFC=∠PEA+∠FPE,即∠PFC=∠PEA+∠P; (3)令AB与PF交点为O,连接EF,如图3. 在△GFE中,∠G=180°-(∠GFE+∠GEF), ∵∠GEF=∠PEA+∠OEF,∠GFE=∠PFC+∠OFE, ∴∠GEF+∠GFE=∠PEA+∠PFC+∠OEF+∠OFE, ∵由(2)知∠PFC=∠PEA+∠P, ∴∠PEA=∠PFC-α, ∵∠OFE+∠OEF=180°-∠FOE=180°-∠PFC, ∴∠GEF+∠GFE=(∠PFC−α)+∠PFC+180°−∠PFC=180°−α, ∴∠G=180°−(∠GEF+∠GFE)=180°−180°+α=α. 【点睛】 本题主要考查平行线的性质与判定,灵活运用平行线的性质与判定是解题的关键. 二十四、解答题 24.(1)证明见解析;(2)(Ⅰ);(Ⅱ). 【分析】 (1)先根据平行线的性质可得,再根据角的和差可得,然后根据平行线的判定即可得证; (2)(Ⅰ)先根据平行线的性质可得,从而可得,再根据角的和差可得 解析:(1)证明见解析;(2)(Ⅰ);(Ⅱ). 【分析】 (1)先根据平行线的性质可得,再根据角的和差可得,然后根据平行线的判定即可得证; (2)(Ⅰ)先根据平行线的性质可得,从而可得,再根据角的和差可得,然后根据即可得; (Ⅱ)设,从而可得,先根据角平分线的定义可得,再根据角的和差可得,然后根据建立方程可求出x的值,从而可得的度数,最后根据平行线的性质即可得. 【详解】 (1), , 又, , ; (2)(Ⅰ), , , , 由(1)已得:, , ; (Ⅱ)设,则, 平分, , , , , 由(1)已得:, ,即, 解得, , 又, . 【点睛】 本题考查了平行线的判定与性质、角的和差、角平分线的定义、一元一次方程的几何应用等知识点,熟练掌握平行线的判定与性质是解题关键. 二十五、解答题 25.(1)60,30;(2)∠BAD=2∠CDE,证明见解析;(3)成立,∠BAD=2∠CDE,证明见解析 【分析】 (1)如图①,将∠BAC=100°,∠DAC=40°代入∠BAD=∠BAC-∠DAC 解析:(1)60,30;(2)∠BAD=2∠CDE,证明见解析;(3)成立,∠BAD=2∠CDE,证明见解析 【分析】 (1)如图①,将∠BAC=100°,∠DAC=40°代入∠BAD=∠BAC-∠DAC,求出∠BAD.在△ABC中利用三角形内角和定理求出∠ABC=∠ACB=40°,根据三角形外角的性质得出∠ADC=∠ABC+∠BAD=100°,在△ADE中利用三角形内角和定理求出∠ADE=∠AED=70°,那么∠CDE=∠ADC-∠ADE=30°; (2)如图②,在△ABC和△ADE中利用三角形内角和定理求出∠ABC=∠ACB=40°,∠ADE=∠AED=.根据三角形外角的性质得出∠CDE=∠ACB-∠AED=,再由∠BAD=∠DAC-∠BAC得到∠BAD=n-100°,从而得出结论∠BAD=2∠CDE; (3)如图③,在△ABC和△ADE中利用三角形内角和定理求出∠ABC=∠ACB=40°,∠ADE=∠AED=.根据三角形外角的性质得出∠CDE=∠ACD-∠AED=,再由∠BAD=∠BAC+∠DAC得到∠BAD=100°+n,从而得出结论∠BAD=2∠CDE. 【详解】 解:(1)∠BAD=∠BAC-∠DAC=100°-40°=60°. ∵在△ABC中,∠BAC=100°,∠ABC=∠ACB, ∴∠ABC=∠ACB=40°, ∴∠ADC=∠ABC+∠BAD=40°+60°=100°. ∵∠DAC=40°,∠ADE=∠AED, ∴∠ADE=∠AED=70°, ∴∠CDE=∠ADC-∠ADE=100°-70°=30°. 故答案为60,30. (2)∠BAD=2∠CDE,理由如下: 如图②,在△ABC中,∠BAC=100°, ∴∠ABC=∠ACB=40°. 在△ADE中,∠DAC=n, ∴∠ADE=∠AED=, ∵∠ACB=∠CDE+∠AED, ∴∠CDE=∠ACB-∠AED=40°-=, ∵∠BAC=100°,∠DAC=n, ∴∠BAD=n-100°, ∴∠BAD=2∠CDE. (3)成立,∠BAD=2∠CDE,理由如下: 如图③,在△ABC中,∠BAC=100°, ∴∠ABC=∠ACB=40°, ∴∠ACD=140°. 在△ADE中,∠DAC=n, ∴∠ADE=∠AED=, ∵∠ACD=∠CDE+∠AED, ∴∠CDE=∠ACD-∠AED=140°-=, ∵∠BAC=100°,∠DAC=n, ∴∠BAD=100°+n, ∴∠BAD=2∠CDE. 【点睛】 本题考查了三角形内角和定理,三角形外角的性质,从图形中得出相关角度之间的关系是解题的关键.- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 人教七 年级 下册 数学 期末 测试 解析
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【快乐****生活】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【快乐****生活】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【快乐****生活】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【快乐****生活】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文