人教中学七年级下册数学期末学业水平及解析.doc
《人教中学七年级下册数学期末学业水平及解析.doc》由会员分享,可在线阅读,更多相关《人教中学七年级下册数学期末学业水平及解析.doc(26页珍藏版)》请在咨信网上搜索。
人教中学七年级下册数学期末学业水平及解析 一、选择题 1.25的算数平方根是 A. B.±5 C. D.5 2.北京2022年冬奥会会徽是以汉字“冬”为灵感来源设计的.在下面如图的四个图中,能由如图经过平移得到的是( ) A. B. C. D. 3.点在第二象限内,则点在第______象限. A.一 B.二 C.三 D.四 4.下列给出四个命题:①如果两个角相等,那么它们是对顶角;②如果两个角互为邻补角,那么它们的平分线互相垂直;③如果两条直线垂直于同一条直线,那么这两条直线平行;④如果两条直线平行于同一条直线,那么这两条直线平行.其中为假命题的是( ) A.① B.①② C.①③ D.①②③④ 5.如图,从①,②,③三个条件中选出两个作为已知条件,另一个作为结论所组成的命题中,正确命题的个数为( ) A.0 B.1 C.2 D.3 6.如图,下列各数中,数轴上点A表示的可能是( ) A.4的算术平方根 B.4的立方根 C.8的算术平方根 D.8的立方根 7.两个直角三角板如图摆放,其中,,,与交于点M,若,则的大小为( ) A.95° B.105° C.115° D.125° 8.如图,长方形BCDE的各边分别平行于x轴或y轴,物体甲和物体乙由点A(2,0)同时出发,沿长方形BCDE的边作环绕运动,物体甲按逆时针方向以1个单位/秒匀速运动,物体乙按顺时针方向以2个单位/秒匀速运动,则两个物体运动后的第2021次相遇地点的坐标是( ) A.(﹣1,﹣1) B.(﹣1,1) C.(﹣2,1) D.(2,0) 九、填空题 9.的算术平方根是_______. 十、填空题 10.点关于轴的对称点的坐标是__________. 十一、填空题 11.如图,AD是△ABC的角平分线,DF⊥AB,垂足为F,DE=DG,△ADG和△AED的面积分别为50和38,则△EDF的面积为_____. 十二、填空题 12.如图,已知AB∥CD,BC∥DE.若∠A=20°,∠C=105°,则∠AED的度数是_____. 十三、填空题 13.将一张长方形纸条ABCD沿EF折叠后,EC′交AD于点G,若∠FGE=62°,则∠GFE的度数是___. 十四、填空题 14.对于正数x规定,例如:,则f (2020)+f (2019)+……+f (2)+f (1)+=___________ 十五、填空题 15.若点P(2-m,m+1)在x轴上,则P点坐标为_____. 十六、填空题 16.如图,已知A1(1,2),A2(2,2),A3(3,0),A4(4,﹣2),A5(5,﹣2),A6(6,0),…,按这样的规律,则点A2021的坐标为 ____________. 十七、解答题 17.计算:(1)|2−|++2;(2)已知(x–2)2=16,求x的值. 十八、解答题 18.求下列各式中的x值: (1)16(x+1)2=25; (2)8(1﹣x)3=125 十九、解答题 19.补全下列推理过程: 如图,已知EF//AD,∠1=∠2,∠BAC=70°,求∠AGD. 解:∵EF//AD ∴∠2= ( ) 又∵∠1=∠2( ) ∴∠1=∠3( ) ∴AB// ( ) ∴∠BAC+ =180°( ) ∵∠BAC=70° ∴∠AGD= . 二十、解答题 20.如图,在平面直角坐标系中,三角形OBC的顶点都在网格格点上,一个格是一个单位长度. (1)将三角形OBC先向下平移3个单位长度,再向左平移2个单位长度(点与点C是对应点),得到三角形,在图中画出三角形; (2)直接写出三角形的面积为____________. 二十一、解答题 21.一个正数的两个平方根为和,是的立方根,的小数部分是,求的平方根. 二十二、解答题 22.如图,阴影部分(正方形)的四个顶点在5×5的网格格点上. (1)请求出图中阴影部分(正方形)的面积和边长 (2)若边长的整数部分为,小数部分为,求的值. 二十三、解答题 23.如图,直线,一副直角三角板中,. (1)若如图1摆放,当平分时,证明:平分. (2)若如图2摆放时,则 (3)若图2中固定,将沿着方向平移,边与直线相交于点,作和的角平分线相交于点(如图3),求的度数. (4)若图2中的周长,现将固定,将沿着方向平移至点与重合,平移后的得到,点的对应点分别是,请直接写出四边形的周长. (5)若图2中固定,(如图4)将绕点顺时针旋转,分钟转半圈,旋转至与直线首次重合的过程中,当线段与的一条边平行时,请直接写出旋转的时间. 二十四、解答题 24.阅读下面材料: 小颖遇到这样一个问题:已知:如图甲,为之间一点,连接,求的度数. 她是这样做的: 过点作 则有 因为 所以① 所以 所以 即_ ; 1.小颖求得的度数为__ ; 2.上述思路中的①的理由是__ ; 3.请你参考她的思考问题的方法,解决问题: 已知:直线点在直线上,点在直线上,连接平分平分且所在的直线交于点. (1)如图1,当点在点的左侧时,若,则的度数为 ;(用含有的式子表示). (2)如图2,当点在点的右侧时,设,直接写出的度数(用含有的式子表示). 二十五、解答题 25.(1)如图1所示,△ABC中,∠ACB的角平分线CF与∠EAC的角平分线AD的反向延长线交于点F; ①若∠B=90°则∠F= ; ②若∠B=a,求∠F的度数(用a表示); (2)如图2所示,若点G是CB延长线上任意一动点,连接AG,∠AGB与∠GAB的角平分线交于点H,随着点G的运动,∠F+∠H的值是否变化?若变化,请说明理由;若不变,请求出其值. 【参考答案】 一、选择题 1.D 解析:D 【分析】 一个正数的平方根有2个,且这两个互为相反数,而算数平方根只有一个且必须是正数,特别地,我们规定0的算术平方根是0负数没有算术平方根,但i的平方是-1,i是一个虚数,是复数的基本单位. 【详解】 , ∴25的算术平方根是:5. 故答案为5. 【点睛】 本题考查了算术平方根,熟练掌握该知识点是本题解题的关键. 2.C 【分析】 根据平移只改变图形的位置,不改变图形的形状与大小解答. 【详解】 解:观察各选项图形只改变图形的位置,不改变图形的形状与大小可知, A.是旋转180°后图形,故选项A不合题意; B.是 解析:C 【分析】 根据平移只改变图形的位置,不改变图形的形状与大小解答. 【详解】 解:观察各选项图形只改变图形的位置,不改变图形的形状与大小可知, A.是旋转180°后图形,故选项A不合题意; B.是轴对称图形,故选项B不合题意; C.选项的图案可以通过平移得到.故选项C符合题意; D.是轴对称图形,故选项D不符合题意. 故选:C. 【点睛】 本题考查了图形的平移,掌握平移的定义及性质是解题的关键. 3.D 【分析】 先根据第二象限内点的横坐标是负数,纵坐标是正数判断出m、n的正负情况,再根据各象限内点的坐标特征求解. 【详解】 解:∵点P(m,n)在第二象限, ∴m<0,n>0, ∴-m>0,m-n<0, ∴点Q(-m,m-n)在第四象限. 故选D. 【点睛】 本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-). 4.C 【分析】 根据两个相等的角不一定是对顶角对①进行判定,根据邻补角与角平分线的性质对②进行判断,根据在同一平面内,两条直线垂直于同一条直线,那么这两条直线平行对③进行判断,根据平行线的判定对④进行判断. 【详解】 解:①如果两个角相等,那么它们不一定是对顶角,选项说法错误,符合题意; ②如果两个角互为邻补角,那么它们的平分线互相垂直,选项说法正确,不符合题意; ③在同一平面内,如果两条直线垂直于同一条直线,那么这两条直线平行,选项说法错误,符合题意; ④如果两条直线平行于同一条直线,那么这两条直线平行,选项说法正确,不符合题意; 故选:C. 【点睛】 本题考查了命题与定理:命题的“真”“假”是就命题的内容而言.任何一个命题非真即假.要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可. 5.D 【分析】 分别任选其中两个条件作为已知,然后结合平行线的判定与性质,证明剩余一个条件是否成立即可. 【详解】 解:如图所示: (1)当①∠1=∠2,则∠3=∠2,故DB∥EC,则∠D=∠4; 当②∠C=∠D,故∠4=∠C,则DF∥AC,可得:∠A=∠F, 即①②可证得③; (2)当①∠1=∠2,则∠3=∠2,故DB∥EC,则∠D=∠4, 当③∠A=∠F,故DF∥AC,则∠4=∠C,故可得:∠C=∠D, 即①③可证得②; (3)当③∠A=∠F,故DF∥AC,则∠4=∠C, 当②∠C=∠D,则∠4=∠D,故DB∥EC,则∠2=∠3,可得:∠1=∠2, 即②③可证得①. 故正确的有3个. 故选:D. 【点睛】 本题主要考查了平行线的判定和性质,正确掌握并熟练运用平行线的判定与性质是解题关键. 6.C 【详解】 解:由题意可知4的算术平方根是2,4的立方根是 <2, 8的算术平方根是, 2<<3,8的立方根是2, 故根据数轴可知, 故选C 7.B 【分析】 根据BC∥EF,∠E=45°可以得到∠EDC=∠E=45°,然后根据C=30°,∠C+∠MDC+∠DMC=180°,即可求解. 【详解】 解:∵BC∥EF,∠E=45° ∴∠EDC=∠E=45°, ∵∠C=30°,∠C+∠MDC+∠DMC=180°, ∴∠DMC=180°-∠C-∠MDC=105°, 故选B. 【点睛】 本题主要考查了三角形的内角和定理,平行线的性质,解题的关键在于能够熟练掌握相关知识进行求解. 8.A 【分析】 根据题意得:矩形的边长为4和2,物体乙是物体甲的速度的2倍,时间相同,∴物体甲与物体乙的路程比为1:2,可得到物体甲和物体乙第一次相遇点为(-1,1);第二次相遇点为(-1,-1);第 解析:A 【分析】 根据题意得:矩形的边长为4和2,物体乙是物体甲的速度的2倍,时间相同,∴物体甲与物体乙的路程比为1:2,可得到物体甲和物体乙第一次相遇点为(-1,1);第二次相遇点为(-1,-1);第三次相遇点为(2,0);由此得出规律,即可求解. 【详解】 根据题意得:矩形的边长为4和2,物体乙是物体甲的速度的2倍,时间相同, ∴物体甲与物体乙的路程比为1:2, 由题意知:第一次相遇物体甲与物体乙运动的路程和为 , 物体甲运动的路程为,物体乙运动的路程为 , 此时在BC边相遇,即第一次相遇点为(-1,1); 第二次相遇物体甲与物体乙运动的路程和为 , 物体甲运动的路程为,物体乙运动的路程为, 在DE边相遇,即第二次相遇点为(-1,-1); 第三次相遇物体甲与物体乙运动的路程和为, 物体甲运动的路程为,物体乙运动的路程为, 在A点相遇,即第三次相遇点为(2,0); 此时甲乙回到原出发点,则每相遇三次,两点回到出发点, ∵ ,故两个物体运动后的第2021次相遇地点的是:第二次相遇地点,即点(-1,-1). 故选:A. 【点睛】 本题主要考查了点的变化规律,以及行程问题中的相遇问题,通过计算发现规律就可以解决问题,解题的关键是找出规律每相遇三次,甲乙两物体同时回到原点. 九、填空题 9.. 【详解】 试题分析:∵的平方为,∴的算术平方根为.故答案为. 考点:算术平方根. 解析:. 【详解】 试题分析:∵的平方为,∴的算术平方根为.故答案为. 考点:算术平方根. 十、填空题 10.【分析】 关于x轴对称的点横坐标不变,纵坐标互为相反数,据此可解答. 【详解】 点关于轴的对称点的坐标是, 故答案为:. 【点睛】 本题考查了关于x轴对称的点的坐标,关于x轴对称的两个点,横坐标不 解析: 【分析】 关于x轴对称的点横坐标不变,纵坐标互为相反数,据此可解答. 【详解】 点关于轴的对称点的坐标是, 故答案为:. 【点睛】 本题考查了关于x轴对称的点的坐标,关于x轴对称的两个点,横坐标不变,纵坐标互为相反数. 十一、填空题 11.6 【详解】 如图,过点D作DH⊥AC于点H, 又∵AD是△ABC的角平分线,DF⊥AB,垂足为F, ∴DF=DH,∠AFD=∠ADH=∠DHG=90°, 又∵AD=AD,DE=DG, ∴△ADF≌ 解析:6 【详解】 如图,过点D作DH⊥AC于点H, 又∵AD是△ABC的角平分线,DF⊥AB,垂足为F, ∴DF=DH,∠AFD=∠ADH=∠DHG=90°, 又∵AD=AD,DE=DG, ∴△ADF≌△ADH,△DEF≌△DGH, 设S△DEF=,则S△AED+=S△ADG-,即38+=50-,解得:=6. ∴△EDF的面积为6. 十二、填空题 12.95°. 【分析】 延长DE交AB于F,根据两直线平行,同旁内角互补求出∠B,再根据两直线平行,同位角相等求出∠AFE,然后根据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解. 【详解 解析:95°. 【分析】 延长DE交AB于F,根据两直线平行,同旁内角互补求出∠B,再根据两直线平行,同位角相等求出∠AFE,然后根据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解. 【详解】 解:如图,延长DE交AB于F, ∵AB∥CD, ∴∠B=180°﹣∠C=180°﹣105°=75°, ∵BC∥DE, ∴∠AFE=∠B=75°, 在△AEF中,∠AED=∠A+∠AFE=20°+75°=95°, 故答案为:95°. 【点睛】 本题考查了平行线的性质,三角形的外角的性质,熟练掌握平行线的性质是解题的关键. 十三、填空题 13.59° 【分析】 由长方形的性质及折叠的性质可得∠1=∠2,AD∥BC,根据平行线的性质可求解∠GEC的度数,进而可求解∠2的度数,再利用平行线的性质可求解. 【详解】 解:如图,∵长方形ABCD沿 解析:59° 【分析】 由长方形的性质及折叠的性质可得∠1=∠2,AD∥BC,根据平行线的性质可求解∠GEC的度数,进而可求解∠2的度数,再利用平行线的性质可求解. 【详解】 解:如图,∵长方形ABCD沿EF折叠, ∴∠1=∠2,AD∥BC, ∴∠FGE+∠GEC=180°, ∵∠FGE=62°, ∴∠GEC=180°-62°=118°, ∴∠1=∠2=∠GEC=59°, ∵AD∥BC, ∴∠GFE=∠2, ∴∠GFE=59°. 故答案为59°. 【点睛】 本题主要考查翻折问题,平行线的性质,求解∠GEC的度数是解题的关键. 十四、填空题 14.5 【分析】 由已知可求,则可求. 【详解】 解:, , , , 故答案为:2019.5 【点睛】 本题考查代数值求值,根据所给条件,探索出是解题的关键. 解析:5 【分析】 由已知可求,则可求. 【详解】 解:, , , , 故答案为:2019.5 【点睛】 本题考查代数值求值,根据所给条件,探索出是解题的关键. 十五、填空题 15.(3,0) 【分析】 根据x轴上的点的坐标纵坐标为0列方程可求出m的值,即可得出点P坐标. 【详解】 ∵点P(2-m,m+1)在x轴上, ∴m+1=0, 解得:m=-1, ∴2-m=3, ∴P点坐标 解析:(3,0) 【分析】 根据x轴上的点的坐标纵坐标为0列方程可求出m的值,即可得出点P坐标. 【详解】 ∵点P(2-m,m+1)在x轴上, ∴m+1=0, 解得:m=-1, ∴2-m=3, ∴P点坐标为(3,0), 故答案为:(3,0) 【点睛】 本题考查了点的坐标,熟记x轴上的点的纵坐标等于0是解题的关键. 十六、填空题 16.(2021,﹣2) 【分析】 观察发现,每6个点形成一个循环,再根据点A6的坐标及2021÷6所得的整数及余数,可计算出点A2021的横坐标,再根据余数对比第一组的相应位置的数可得其纵坐标. 【详解 解析:(2021,﹣2) 【分析】 观察发现,每6个点形成一个循环,再根据点A6的坐标及2021÷6所得的整数及余数,可计算出点A2021的横坐标,再根据余数对比第一组的相应位置的数可得其纵坐标. 【详解】 解:观察发现,每6个点形成一个循环, ∵A6(6,0), ∴OA6=6, ∵2021÷6=336…5, ∴点A2021的位于第337个循环组的第5个, ∴点A2021的横坐标为6×336+5=2021,其纵坐标为:﹣2, ∴点A2021的坐标为(2021,﹣2). 故答案为:(2021,﹣2). 【点睛】 此题主要考查坐标的规律探索,解题的关键是根据图形的特点发现规律进行求解. 十七、解答题 17.(1)原式=;(2)x=-2或x=6. 【分析】 (1)根据绝对值、立方根和二次根式的性质计算即可; (2)利用平方根的性质解方程即可. 【详解】 解:(1)原式; (2) 【点睛】 本题考查平 解析:(1)原式=;(2)x=-2或x=6. 【分析】 (1)根据绝对值、立方根和二次根式的性质计算即可; (2)利用平方根的性质解方程即可. 【详解】 解:(1)原式; (2) 【点睛】 本题考查平方根、立方根和二次根式的性质,熟练掌握运算法则是解题关键. 十八、解答题 18.(1)或;(2) 【分析】 (1)根据平方根,即可解答; (2)根据立方根,即可解答. 【详解】 解:(1)等式两边都除以16,得. 等式两边开平方,得. 所以,得. 所以, 解析:(1)或;(2) 【分析】 (1)根据平方根,即可解答; (2)根据立方根,即可解答. 【详解】 解:(1)等式两边都除以16,得. 等式两边开平方,得. 所以,得. 所以, (2)等式两边都除以8,得. 等式两边开立方,得. 所以, 【点睛】 本题考查平方根、立方根,解题关键是熟记平方根、立方根. . 十九、解答题 19.∠3;两直线平行,同位角相等;已知;等量代换;DG;内错角相等,两直线平行;∠AGD;两直线平行,同旁内角互补;110° 【分析】 根据平行线的性质得出∠2=∠3,求出∠1=∠3,根据平行线的判定得 解析:∠3;两直线平行,同位角相等;已知;等量代换;DG;内错角相等,两直线平行;∠AGD;两直线平行,同旁内角互补;110° 【分析】 根据平行线的性质得出∠2=∠3,求出∠1=∠3,根据平行线的判定得出AB//DG,根据平行线的性质推出∠BAC+∠AGD=180°,代入求出即可求得∠AGD. 【详解】 解:∵EF//AD, ∴∠2=∠3(两直线平行,同位角相等), 又∵∠1=∠2(已知), ∴∠1=∠3(等量代换), ∴AB//DG,(内错角相等,两直线平行) ∴∠BAC+∠AGD=180°,(两直线平行,同旁内角互补) ∵∠BAC=70°, ∴∠AGD=110° 故答案为:∠3,两直线平行,同位角相等,已知,等量代换,DG,内错角相等,两直线平行,∠AGD,两直线平行,同旁内角互补;110°. 【点睛】 本题考查了平行线的性质和判定的应用,能正确根据平行线的性质和判定定理进行推理是解此题的关键. 二十、解答题 20.(1)见解析;(2)5 【分析】 (1)根据平移的性质先确定O、B、C的对应点O1、B1、C1的坐标,然后顺次连接O1、B1、C1即可; (2)根据的面积=其所在的长方形面积减去周围三个三角形的面积 解析:(1)见解析;(2)5 【分析】 (1)根据平移的性质先确定O、B、C的对应点O1、B1、C1的坐标,然后顺次连接O1、B1、C1即可; (2)根据的面积=其所在的长方形面积减去周围三个三角形的面积进行求解即可. 【详解】 解:(1)如图所示,即为所求; (2)由题意得:. 【点睛】 本题主要考查了平移作图,三角形面积,解题的关键在于能够熟练掌握平移作图的方法. 二十一、解答题 21.【分析】 根据平方根的性质即可求出的值,根据立方根的定义求得的值,根据求得的小数部分是,即可求得答案. 【详解】 ∵一个正数的两个平方根为和, ∴, 解得:, ∵是的立方根, ∴, 解得:, ∵, 解析: 【分析】 根据平方根的性质即可求出的值,根据立方根的定义求得的值,根据求得的小数部分是,即可求得答案. 【详解】 ∵一个正数的两个平方根为和, ∴, 解得:, ∵是的立方根, ∴, 解得:, ∵, ∴的整数部分是6,则小数部分是:, ∴, ∴的平方根为:. 【点睛】 本题考查了平方根的性质,立方根的定义,估算无理数的大小,解题的关键是正确理解平方根的定义以及“夹逼法”的运用. 二十二、解答题 22.(1)S=13,边长为 ;(2)6 【详解】 分析:(1)、利用正方形的面积减去四个直角三角形的面积得出阴影部分的面积,从而得出正方形的边长;(2)、根据无理数的估算得出a和b的值,然后得出答案. 解析:(1)S=13,边长为 ;(2)6 【详解】 分析:(1)、利用正方形的面积减去四个直角三角形的面积得出阴影部分的面积,从而得出正方形的边长;(2)、根据无理数的估算得出a和b的值,然后得出答案. 详解:解:(1)S=25-12=13, 边长为 , (2)a=3,b= -3 原式=9+-3-=6. 点睛:本题主要考查的就是无理数的估算,属于中等难度的题型.解决这个问题的关键就是根据正方形的面积得出边长. 二十三、解答题 23.(1)见详解;(2)15°;(3)67.5°;(4)45cm;(5)10s或30s或40s 【分析】 (1)运用角平分线定义及平行线性质即可证得结论; (2)如图2,过点E作EK∥MN,利用平行线性 解析:(1)见详解;(2)15°;(3)67.5°;(4)45cm;(5)10s或30s或40s 【分析】 (1)运用角平分线定义及平行线性质即可证得结论; (2)如图2,过点E作EK∥MN,利用平行线性质即可求得答案; (3)如图3,分别过点F、H作FL∥MN,HR∥PQ,运用平行线性质和角平分线定义即可得出答案; (4)根据平移性质可得D′A=DF,DD′=EE′=AF=5cm,再结合DE+EF+DF=35cm,可得出答案; (5)设旋转时间为t秒,由题意旋转速度为1分钟转半圈,即每秒转3°,分三种情况:①当BC∥DE时,②当BC∥EF时,③当BC∥DF时,分别求出旋转角度后,列方程求解即可. 【详解】 (1)如图1,在△DEF中,∠EDF=90°,∠DFE=30°,∠DEF=60°, ∵ED平分∠PEF, ∴∠PEF=2∠PED=2∠DEF=2×60°=120°, ∵PQ∥MN, ∴∠MFE=180°−∠PEF=180°−120°=60°, ∴∠MFD=∠MFE−∠DFE=60°−30°=30°, ∴∠MFD=∠DFE, ∴FD平分∠EFM; (2)如图2,过点E作EK∥MN, ∵∠BAC=45°, ∴∠KEA=∠BAC=45°, ∵PQ∥MN,EK∥MN, ∴PQ∥EK, ∴∠PDE=∠DEK=∠DEF−∠KEA, 又∵∠DEF=60°. ∴∠PDE=60°−45°=15°, 故答案为:15°; (3)如图3,分别过点F、H作FL∥MN,HR∥PQ, ∴∠LFA=∠BAC=45°,∠RHG=∠QGH, ∵FL∥MN,HR∥PQ,PQ∥MN, ∴FL∥PQ∥HR, ∴∠QGF+∠GFL=180°,∠RHF=∠HFL=∠HFA−∠LFA, ∵∠FGQ和∠GFA的角平分线GH、FH相交于点H, ∴∠QGH=∠FGQ,∠HFA=∠GFA, ∵∠DFE=30°, ∴∠GFA=180°−∠DFE=150°, ∴∠HFA=∠GFA=75°, ∴∠RHF=∠HFL=∠HFA−∠LFA=75°−45°=30°, ∴∠GFL=∠GFA−∠LFA=150°−45°=105°, ∴∠RHG=∠QGH=∠FGQ=(180°−105°)=37.5°, ∴∠GHF=∠RHG+∠RHF=37.5°+30°=67.5°; (4)如图4,∵将△DEF沿着CA方向平移至点F与A重合,平移后的得到△D′E′A, ∴D′A=DF,DD′=EE′=AF=5cm, ∵DE+EF+DF=35cm, ∴DE+EF+D′A+AF+DD′=35+10=45(cm), 即四边形DEAD′的周长为45cm; (5)设旋转时间为t秒,由题意旋转速度为1分钟转半圈,即每秒转3°, 分三种情况: BC∥DE时,如图5,此时AC∥DF, ∴∠CAE=∠DFE=30°, ∴3t=30, 解得:t=10; BC∥EF时,如图6, ∵BC∥EF, ∴∠BAE=∠B=45°, ∴∠BAM=∠BAE+∠EAM=45°+45°=90°, ∴3t=90, 解得:t=30; BC∥DF时,如图7,延长BC交MN于K,延长DF交MN于R, ∵∠DRM=∠EAM+∠DFE=45°+30°=75°, ∴∠BKA=∠DRM=75°, ∵∠ACK=180°−∠ACB=90°, ∴∠CAK=90°−∠BKA=15°, ∴∠CAE=180°−∠EAM−∠CAK=180°−45°−15°=120°, ∴3t=120, 解得:t=40, 综上所述,△ABC绕点A顺时针旋转的时间为10s或30s或40s时,线段BC与△DEF的一条边平行. 【点睛】 本题主要考查了平行线性质及判定,角平分线定义,平移的性质等,添加辅助线,利用平行线性质是解题关键. 二十四、解答题 24.;2.平行于同一条直线的两条直线平行;3.(1);(2). 【分析】 1、根据角度和计算得到答案; 2、根据平行线的推论解答; 3、(1)根据角平分线的性质及1的结论证明即可得到答案; (2)根据B 解析:;2.平行于同一条直线的两条直线平行;3.(1);(2). 【分析】 1、根据角度和计算得到答案; 2、根据平行线的推论解答; 3、(1)根据角平分线的性质及1的结论证明即可得到答案; (2)根据BE平分平分求出,过点E作EF∥AB,根据平行线的性质求出∠BEF=,,再利用周角求出答案. 【详解】 1、过点作 则有 因为 所以① 所以 所以 即; 故答案为:; 2、过点作 则有 因为 所以EF∥CD(平行于同一条直线的两条直线平行), 故答案为:平行于同一条直线的两条直线平行; 3、(1)∵BE平分平分 ∴, 过点E作EF∥AB,由1可得∠BED=, ∴∠BED=, 故答案为:; (2)∵BE平分平分 ∴, 过点E作EF∥AB,则∠ABE=∠BEF=, ∵ ∴EF∥CD, ∴, ∴, ∴. 【点睛】 此题考查平行线的性质:两直线平行内错角相等,两直线平行同旁内角互补,平行线的推论,正确引出辅助线是解题的关键. 二十五、解答题 25.(1)①45°;②∠F=a;(2)∠F+∠H的值不变,是定值180°. 【分析】 (1)①②依据AD平分∠CAE,CF平分∠ACB,可得∠CAD=∠CAE,∠ACF=∠ACB,依据∠CAE是△ABC 解析:(1)①45°;②∠F=a;(2)∠F+∠H的值不变,是定值180°. 【分析】 (1)①②依据AD平分∠CAE,CF平分∠ACB,可得∠CAD=∠CAE,∠ACF=∠ACB,依据∠CAE是△ABC的外角,可得∠B=∠CAE-∠ACB,再根据∠CAD是△ACF的外角,即可得到∠F=∠CAD-∠ACF=∠CAE-∠ACB=(∠CAE-∠ACB)=∠B; (2)由(1)可得,∠F=∠ABC,根据角平分线的定义以及三角形内角和定理,即可得到∠H=90°+∠ABG,进而得到∠F+∠H=90°+∠CBG=180°. 【详解】 解:(1)①∵AD平分∠CAE,CF平分∠ACB, ∴∠CAD=∠CAE,∠ACF=∠ACB, ∵∠CAE是△ABC的外角, ∴∠B=∠CAE﹣∠ACB, ∵∠CAD是△ACF的外角, ∴∠F=∠CAD﹣∠ACF=∠CAE﹣∠ACB=(∠CAE﹣∠ACB)=∠B=45°, 故答案为45°; ②∵AD平分∠CAE,CF平分∠ACB, ∴∠CAD=∠CAE,∠ACF=∠ACB, ∵∠CAE是△ABC的外角, ∴∠B=∠CAE﹣∠ACB, ∵∠CAD是△ACF的外角, ∴∠F=∠CAD﹣∠ACF=∠CAE﹣∠ACB=(∠CAE﹣∠ACB)=∠B=a; (2)由(1)可得,∠F=∠ABC, ∵∠AGB与∠GAB的角平分线交于点H, ∴∠AGH=∠AGB,∠GAH=∠GAB, ∴∠H=180°﹣(∠AGH+∠GAH)=180°﹣(∠AGB+∠GAB)=180°﹣(180°﹣∠ABG)=90°+∠ABG, ∴∠F+∠H=∠ABC+90°+∠ABG=90°+∠CBG=180°, ∴∠F+∠H的值不变,是定值180°. 【点睛】 本题主要考查了三角形内角和定理、三角形外角性质的综合运用,熟练运用定理是解题的关键.- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 中学 年级 下册 数学 期末 学业 水平 解析
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【精****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【精****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【精****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【精****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文