人教版七年级下册数学期末试题.doc
《人教版七年级下册数学期末试题.doc》由会员分享,可在线阅读,更多相关《人教版七年级下册数学期末试题.doc(24页珍藏版)》请在咨信网上搜索。
人教版七年级下册数学期末试题 一、选择题 1.如图,与是同旁内角,它们是由( ) A.直线,被直线所截形成的 B.直线,被直线所截形成的 C.直线,被直线所截形成的 D.直线,被直线所截形成的 2.北京2022年冬奥会会徽是以汉字“冬”为灵感来源设计的.在下面如图的四个图中,能由如图经过平移得到的是( ) A. B. C. D. 3.若点在轴上,则点所在的象限是( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限 4.下列给出四个命题:①如果两个角相等,那么它们是对顶角;②如果两个角互为邻补角,那么它们的平分线互相垂直;③如果两条直线垂直于同一条直线,那么这两条直线平行;④如果两条直线平行于同一条直线,那么这两条直线平行.其中为假命题的是( ) A.① B.①② C.①③ D.①②③④ 5.为增强学生体质,感受中国的传统文化,学校将国家级非物质文化遗产“抖空竹”引入阳光特色大课间,小聪把它抽象成图2的数学问题:已知AB∥CD,∠EAB=80°,,则∠E的度数是( ) A.30° B.40° C.60° D.70° 6.下列算式,正确的是( ) A. B. C. D. 7.两个直角三角板如图摆放,其中,,,与交于点M,若,则的大小为( ) A.95° B.105° C.115° D.125° 8.如图,已知A1(1,0),A2(1,1),A3(﹣1,1),A4(﹣1,﹣1),A5(2,﹣1)……则点A2021的坐标为( ) A.(505,﹣504) B.(506,﹣505) C.(505,﹣505) D.(﹣506,506) 九、填空题 9.4的算术平方根是_____. 十、填空题 10.若点A(5,b)与点B(a+1,3)关于x轴对称,则(a+b)=______ 十一、填空题 11.如图,在△ABC中,∠A=50°,∠C=72°,BD是△ABC的一条角平分线,求∠ADB=__度. 十二、填空题 12.如图,,点M为CD上一点,MF平分∠CME.若∠1=57°,则∠EMD的大小为_____度. 十三、填空题 13.如图,在四边形ABCD纸片中,AD∥BC,AB∥CD.将纸片折叠,点A、B分别落在G、H处,EF为折痕,FH交CD于点K.若∠CKF=35°,则∠A+∠GED=______°. 十四、填空题 14.如图,数轴上,两点表示的数分别为和4.1,则,两点之间表示整数的点共有____个. 十五、填空题 15.已知点A在x轴上方,y轴左侧,到x轴的距离是3,到y轴的距离是4,那么点A的坐标是______________. 十六、填空题 16.如图,所有正方形的中心均在坐标原点,且各边与x轴或y轴平行,从内到外,它们的边长依次为2,4,6,8,…顶点依次用A1,A2,A3,A4…表示,则顶点A2021的坐标是________. 十七、解答题 17.计算: (1)3-(-5)+(-6) (2) 十八、解答题 18.(1)已知am=3,an=5,求a3m﹣2n的值. (2)已知x﹣y=,xy=,求下列各式的值: ①x2y﹣xy2; ②x2+y2. 十九、解答题 19.填空并完成以下过程: 已知:点P在直线CD上,∠BAP+∠APD=180°,∠1=∠2. 请你说明:∠E=∠F. 解:∵∠BAP +∠APD=180°,(_______) ∴AB∥_______,(___________) ∴∠BAP=________,(__________) 又∵∠1=∠2,(已知) ∠3=________-∠1, ∠4=_______-∠2, ∴∠3=________,(等式的性质) ∴AE∥PF,(____________) ∴∠E=∠F.(___________) 二十、解答题 20.如图,在平面直角坐标系中,DABC的顶点 C的坐标为(1,3).点A、B分别在格点上. (1)直接写出A、B两点的坐标; (2)若把DABC向上平移3个单位,再向右平移2个单位得DA¢B¢C¢,画出DA¢B¢C¢; (3)若DABC内有一点 M(m,n),按照(2)的平移规律直接写出平移后点M的对应点 M¢的坐标. 二十一、解答题 21.一个正数的两个平方根为和,是的立方根,的小数部分是,求的平方根. 二十二、解答题 22.小丽想用一块面积为400cm2的正方形纸片,沿着边的方向裁处一块面积为300cm2的长方形纸片. (1)请帮小丽设计一种可行的裁剪方案; (2)若使长方形的长宽之比为3:2,小丽能用这块纸片裁处符合要求的纸片吗?若能,请帮小丽设计一种裁剪方案,若不能,请简要说明理由. 二十三、解答题 23.如图,直线HDGE,点A在直线HD上,点C在直线GE上,点B在直线HD、GE之间,∠DAB=120°. (1)如图1,若∠BCG=40°,求∠ABC的度数; (2)如图2,AF平分∠HAB,BC平分∠FCG,∠BCG=20°,比较∠B,∠F的大小; (3)如图3,点P是线段AB上一点,PN平分∠APC,CN平分∠PCE,探究∠HAP和∠N的数量关系,并说明理由. 二十四、解答题 24.已知,如图①,∠BAD=50°,点C为射线AD上一点(不与A重合),连接BC. (1)[问题提出]如图②,AB∥CE,∠BCD=73 °,则:∠B= . (2)[类比探究]在图①中,探究∠BAD、∠B和∠BCD之间有怎样的数量关系?并用平行线的性质说明理由. (3)[拓展延伸]如图③,在射线BC上取一点O,过O点作直线MN使MN∥AD,BE平分∠ABC交AD于E点,OF平分∠BON交AD于F点,交AD于G点,当C点沿着射线AD方向运动时,∠FOG的度数是否会变化?若变化,请说明理由;若不变,请求出这个不变的值. 二十五、解答题 25.如图,△ABC和△ADE有公共顶点A,∠ACB=∠AED=90°,∠BAC=45°,∠DAE=30°. (1)若DE//AB,则∠EAC= ; (2)如图1,过AC上一点O作OG⊥AC,分别交AB、AD、AE于点G、H、F. ①若AO=2,S△AGH=4,S△AHF=1,求线段OF的长; ②如图2,∠AFO的平分线和∠AOF的平分线交于点M,∠FHD的平分线和∠OGB的平分线交于点N,∠N+∠M的度数是否发生变化?若不变,求出其度数;若改变,请说明理由. 【参考答案】 一、选择题 1.A 解析:A 【分析】 根据两直线被第三条直线所截,根据角位于两直线的中间,截线的同一侧是同旁内角,可得同旁内角. 【详解】 解:与是同旁内角,它们是由直线,被直线所截形成的 故选A. 【点睛】 本题考查了同旁内角的含义,熟练掌握含义是解题的关键. 2.C 【分析】 根据平移只改变图形的位置,不改变图形的形状与大小解答. 【详解】 解:观察各选项图形只改变图形的位置,不改变图形的形状与大小可知, A.是旋转180°后图形,故选项A不合题意; B.是 解析:C 【分析】 根据平移只改变图形的位置,不改变图形的形状与大小解答. 【详解】 解:观察各选项图形只改变图形的位置,不改变图形的形状与大小可知, A.是旋转180°后图形,故选项A不合题意; B.是轴对称图形,故选项B不合题意; C.选项的图案可以通过平移得到.故选项C符合题意; D.是轴对称图形,故选项D不符合题意. 故选:C. 【点睛】 本题考查了图形的平移,掌握平移的定义及性质是解题的关键. 3.D 【分析】 根据点在轴上,求得,从而求得点的坐标,进而判断所在的象限. 【详解】 在轴上, , , 在第四象限, 故选D. 【点睛】 本题考查了直角坐标系中坐标和象限的知识;解题的关键是熟练掌握直角坐标系中坐标和象限的性质,从而完成求解. 4.C 【分析】 根据两个相等的角不一定是对顶角对①进行判定,根据邻补角与角平分线的性质对②进行判断,根据在同一平面内,两条直线垂直于同一条直线,那么这两条直线平行对③进行判断,根据平行线的判定对④进行判断. 【详解】 解:①如果两个角相等,那么它们不一定是对顶角,选项说法错误,符合题意; ②如果两个角互为邻补角,那么它们的平分线互相垂直,选项说法正确,不符合题意; ③在同一平面内,如果两条直线垂直于同一条直线,那么这两条直线平行,选项说法错误,符合题意; ④如果两条直线平行于同一条直线,那么这两条直线平行,选项说法正确,不符合题意; 故选:C. 【点睛】 本题考查了命题与定理:命题的“真”“假”是就命题的内容而言.任何一个命题非真即假.要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可. 5.A 【分析】 过点作,先根据平行线的性质可得,再根据平行公理推论、平行线的性质可得,然后根据角的和差即可得. 【详解】 解:如图,过点作, , , , , , , , , 故选:A. 【点睛】 本题考查了平行线的判定与性质,熟练掌握平行线的性质是解题关键. 6.A 【分析】 根据平方根、立方根及算术平方根的概念逐一计算即可得答案. 【详解】 A.,计算正确,故该选项符合题意, B.,故该选项计算错误,不符合题意, C.,故该选项计算错误,不符合题意, D.,故该选项计算错误,不符合题意, 故选:A. 【点睛】 本题考查平方根、立方根、算术平方根的概念,熟练掌握定义是解题关键. 7.B 【分析】 根据BC∥EF,∠E=45°可以得到∠EDC=∠E=45°,然后根据C=30°,∠C+∠MDC+∠DMC=180°,即可求解. 【详解】 解:∵BC∥EF,∠E=45° ∴∠EDC=∠E=45°, ∵∠C=30°,∠C+∠MDC+∠DMC=180°, ∴∠DMC=180°-∠C-∠MDC=105°, 故选B. 【点睛】 本题主要考查了三角形的内角和定理,平行线的性质,解题的关键在于能够熟练掌握相关知识进行求解. 8.B 【分析】 求在平面直角坐标系中的位置,经观察分析所有点,除外,其他所有点按一定的规律分布在四个象限,且每个象限的点满足:角标÷4=循环次数+余数,余数0,1,2,3确定相应的象限,由此确定点在第 解析:B 【分析】 求在平面直角坐标系中的位置,经观察分析所有点,除外,其他所有点按一定的规律分布在四个象限,且每个象限的点满足:角标÷4=循环次数+余数,余数0,1,2,3确定相应的象限,由此确定点在第四象限,根据推导可得出结论; 【详解】 由题可知, 第一象限的点:,…角标除以4余数为2; 第二象限的点:,,…角标除以4余数为3; 第三象限的点:,,…角标除以4余数为0; 第四象限的点:,,…角标除以4余数为1; 由上规律可知:, ∴点在第四象限, 又∵,, 即横坐标为正数,数字为角标除以4的商加1;纵坐标为负数,数字为角标除以4的商, ∴. 故选:B. 【点睛】 本题主要考查了点的坐标规律,准确理解是解题的关键. 九、填空题 9.【详解】 试题分析:∵,∴4算术平方根为2.故答案为2. 考点:算术平方根. 解析:【详解】 试题分析:∵,∴4算术平方根为2.故答案为2. 考点:算术平方根. 十、填空题 10.1 【分析】 关于x轴对称的两点横坐标相等,纵坐标互为相反数,由此可求a、b的值. 【详解】 解:∵点A(5,b)与点B(a+1,3)关于x轴对称, ∴5=a+1,b=-3, ∴a=4, ∴(a+b 解析:1 【分析】 关于x轴对称的两点横坐标相等,纵坐标互为相反数,由此可求a、b的值. 【详解】 解:∵点A(5,b)与点B(a+1,3)关于x轴对称, ∴5=a+1,b=-3, ∴a=4, ∴(a+b)2017=(4-3)2017=1. 故答案为:1. 【点睛】 本题考查了关于坐标轴对称的两点的坐标关系.关于x轴对称的两点横坐标相等,纵坐标互为相反数,关于y轴对称的两点纵坐标相等,横坐标反数. 十一、填空题 11.101 【分析】 直接利用三角形内角和定理得出∠ABC的度数,再利用角平分线的性质结合三角形内角和定理得出答案. 【详解】 ∵在△ABC中,∠A=50°,∠C=72°, ∴∠ABC=180°−50° 解析:101 【分析】 直接利用三角形内角和定理得出∠ABC的度数,再利用角平分线的性质结合三角形内角和定理得出答案. 【详解】 ∵在△ABC中,∠A=50°,∠C=72°, ∴∠ABC=180°−50°−72°=58°, ∵BD是△ABC的一条角平分线, ∴∠ABD=29°, ∴∠ADB=180°−50°−29°=101°. 故答案为:101. 【点睛】 此题考查三角形内角和定理,解题关键在于掌握其定理. 十二、填空题 12.【分析】 根据AB∥CD,求得∠CMF=∠1=57°,利用MF平分∠CME,求得∠CME=2∠CMF=114°,根据∠EMD=180°-∠CME求出结果. 【详解】 ∵AB∥CD, ∴∠CMF=∠ 解析: 【分析】 根据AB∥CD,求得∠CMF=∠1=57°,利用MF平分∠CME,求得∠CME=2∠CMF=114°,根据∠EMD=180°-∠CME求出结果. 【详解】 ∵AB∥CD, ∴∠CMF=∠1=57°, ∵MF平分∠CME, ∴∠CME=2∠CMF=114°, ∴∠EMD=180°-∠CME=66°, 故答案为:66. 【点睛】 此题考查平行线的性质,角平分线的有关计算,理解图形中角之间的和差关系是解题的关键. 十三、填空题 13.145 【分析】 首先判定四边形ABCD是平行四边形,得到∠A=∠C,AD∥BC,再根据折叠变换的性质和平行线的性质将角度转化求解. 【详解】 解:∵AD∥BC,AB∥CD, ∴四边形ABCD是平行 解析:145 【分析】 首先判定四边形ABCD是平行四边形,得到∠A=∠C,AD∥BC,再根据折叠变换的性质和平行线的性质将角度转化求解. 【详解】 解:∵AD∥BC,AB∥CD, ∴四边形ABCD是平行四边形, ∴∠A=∠C, 根据翻转折叠的性质可知,∠AEF=∠GEF,∠EFB=∠EFK, ∵AD∥BC, ∴∠DEF=∠EFB,∠AEF=∠EFC, ∴∠GEF=∠AEF=∠EFC,∠DEF=∠EFB=∠EFK, ∴∠GEF﹣∠DEF=∠EFC﹣∠EFK, ∴∠GED=∠CFK, ∵∠C+∠CFK+∠CKF=180°, ∴∠C+∠CFK=145°, ∴∠A+∠GED=145°, 故答案为145. 【点睛】 本题主要考查平行线的性质;多边形内角与外角及翻折变换(折叠问题),熟练掌握平行线的性质;多边形内角与外角及翻折变换(折叠问题)是解题的关键. 十四、填空题 14.3 【分析】 根据无理数的估算、结合数轴求解即可 【详解】 解: ∴ ∴ ∴在到4.1之间由2,3,4这三个整数 故答案为:3. 【点睛】 本题考查了无理数的估算、实数与数轴,掌握无理数的估算方法是 解析:3 【分析】 根据无理数的估算、结合数轴求解即可 【详解】 解: ∴ ∴ ∴在到4.1之间由2,3,4这三个整数 故答案为:3. 【点睛】 本题考查了无理数的估算、实数与数轴,掌握无理数的估算方法是解题关键. 十五、填空题 15.(-4,3) . 【分析】 到x轴的距离表示点的纵坐标的绝对值;到y轴的距离表示点的横坐标的绝对值. 【详解】 解:根据题意可得点在第二象限,第二象限中的点横坐标为负数,纵坐标为正数. 所以点A的坐 解析:(-4,3) . 【分析】 到x轴的距离表示点的纵坐标的绝对值;到y轴的距离表示点的横坐标的绝对值. 【详解】 解:根据题意可得点在第二象限,第二象限中的点横坐标为负数,纵坐标为正数. 所以点A的坐标为(-4,3) 故答案为:(-4,3) . 【点睛】 本题考查点的坐标,利用数形结合思想解题是关键. 十六、填空题 16.(-506,-506) 【分析】 根据正方形的性质找出部分An点的坐标,根据坐标的变化找出变化规律“A4n+1(-n-1,-n-1),A4n+2(-n-1,n+1),A4n+3(n+1,n+1),A 解析:(-506,-506) 【分析】 根据正方形的性质找出部分An点的坐标,根据坐标的变化找出变化规律“A4n+1(-n-1,-n-1),A4n+2(-n-1,n+1),A4n+3(n+1,n+1),A4n+4(n+1,-n-1)(n为自然数)”,依此即可得出结论. 【详解】 解:观察发现:A1(-1,-1),A2(-1,1),A3(1,1),A4(1,-1),A5(-2,-2),A6(-2,2),A7(2,2),A8(2,-2),A9(-3,-3),…, ∴A4n+1(-n-1,-n-1),A4n+2(-n-1,n+1),A4n+3(n+1,n+1),A4n+4(n+1,-n-1)(n为自然数), ∵2021=505×4+1, ∴A2021(-506,-506), 故答案为:(-506,-506). 【点睛】 本题考查了规律型:点的坐标,解题的关键是找出变化规律“A4n+1(-n-1,-n-1),A4n+2(-n-1,n+1),A4n+3(n+1,n+1),A4n+4(n+1,-n-1)(n为自然数),”解决该题型题目时,根据点的坐标的变化找出变化规律是关键. 十七、解答题 17.(1)2;(2)-1 【分析】 (1)利用加减法法则计算即可得到结果; (2)先算乘方和平方根,再算乘法,最后进行加减计算即可得到结果. 【详解】 (1)解:3-(-5)+(-6) =3+5-6 解析:(1)2;(2)-1 【分析】 (1)利用加减法法则计算即可得到结果; (2)先算乘方和平方根,再算乘法,最后进行加减计算即可得到结果. 【详解】 (1)解:3-(-5)+(-6) =3+5-6 =2 (2)解:(-1)2- =1-4× =1-2 =-1 【点睛】 此题考查了实数的运算,熟练掌握运算法则是解本题的关键. 十八、解答题 18.(1);(2)①;② 【分析】 (1)逆向运用同底数幂的除法法则以及幂的乘方运算法则计算即可; (2)①利用提公因式法因式分解解答即可; ②根据完全平方公式计算即可. 【详解】 解:(1),, 解析:(1);(2)①;② 【分析】 (1)逆向运用同底数幂的除法法则以及幂的乘方运算法则计算即可; (2)①利用提公因式法因式分解解答即可; ②根据完全平方公式计算即可. 【详解】 解:(1),, ; (2)①,, ; ②,, . 【点睛】 本题考查了完全平方公式,同底数幂的除法,提公因式法因式分解以及幂的乘方,熟记相关公式与运算法则是解答本题的关键. 十九、解答题 19.已知;CD;同旁内角互补两直线平行;∠APC;两直线平行内错角相等;已知;∠BAP;∠APC;∠4;内错角相等两直线平行;两直线平行内错角相等. 【分析】 根据平行线的性质和判定即可解决问题; 【详 解析:已知;CD;同旁内角互补两直线平行;∠APC;两直线平行内错角相等;已知;∠BAP;∠APC;∠4;内错角相等两直线平行;两直线平行内错角相等. 【分析】 根据平行线的性质和判定即可解决问题; 【详解】 解:∵∠BAP+∠APD=180°(已知), ∴AB∥CD.(同旁内角互补两直线平行), ∴∠BAP=∠APC.(两直线平行内错角相等), 又∵∠1=∠2,(已知), ∠3=∠BAP-∠1, ∠4=∠APC-∠2, ∴∠3=∠4(等式的性质), ∴AE∥PF.(内错角相等两直线平行), ∴∠E=∠F.(两直线平行内错角相等). 【点睛】 本题考查平行线的判定与性质,熟记平行线的判定方法和性质是解题的关键. 二十、解答题 20.(1),;(2)见解析;(3). 【分析】 (1)根据原点的位置确定点的坐标即可; (2)将三点向上平移3个单位,再向右平移2个单位得到,连接即可; (3)将M(m,n)向上平移3个单位,再向右平移 解析:(1),;(2)见解析;(3). 【分析】 (1)根据原点的位置确定点的坐标即可; (2)将三点向上平移3个单位,再向右平移2个单位得到,连接即可; (3)将M(m,n)向上平移3个单位,再向右平移2个单位,即横坐标+2,纵坐标+3即可得到的坐标. 【详解】 (1)根据原点的位置确定点的坐标, 则,; (2)将三点向上平移3个单位,再向右平移2个单位得到, , , 在图中描出点,连接,DA¢B¢C¢即为所求. (3)将M(m,n)向上平移3个单位,再向右平移2个单位,即横坐标+2,纵坐标+3 . 【点睛】 本题考查了平面直角坐标系的定义,平移的作图,根据平移的方向和距离确定点的坐标是解题的关键. 二十一、解答题 21.【分析】 根据平方根的性质即可求出的值,根据立方根的定义求得的值,根据求得的小数部分是,即可求得答案. 【详解】 ∵一个正数的两个平方根为和, ∴, 解得:, ∵是的立方根, ∴, 解得:, ∵, 解析: 【分析】 根据平方根的性质即可求出的值,根据立方根的定义求得的值,根据求得的小数部分是,即可求得答案. 【详解】 ∵一个正数的两个平方根为和, ∴, 解得:, ∵是的立方根, ∴, 解得:, ∵, ∴的整数部分是6,则小数部分是:, ∴, ∴的平方根为:. 【点睛】 本题考查了平方根的性质,立方根的定义,估算无理数的大小,解题的关键是正确理解平方根的定义以及“夹逼法”的运用. 二十二、解答题 22.(1)可以以正方形一边为长方形的长,在其邻边上截取长为15cm的线段作为宽即可裁出符合要求的长方形;(2)不能,理由见解析. 【解析】 (1)解:设面积为400cm2的正方形纸片的边长为a cm ∴ 解析:(1)可以以正方形一边为长方形的长,在其邻边上截取长为15cm的线段作为宽即可裁出符合要求的长方形;(2)不能,理由见解析. 【解析】 (1)解:设面积为400cm2的正方形纸片的边长为a cm ∴a2=400 又∵a>0 ∴a=20 又∵要裁出的长方形面积为300cm2 ∴若以原正方形纸片的边长为长方形的长, 则长方形的宽为:300÷20=15(cm) ∴可以以正方形一边为长方形的长,在其邻边上截取长为15cm的线段作为宽即可裁出符合要求的长方形 (2)∵长方形纸片的长宽之比为3:2 ∴设长方形纸片的长为3xcm,则宽为2xcm ∴6x 2=300 ∴x 2=50 又∵x>0 ∴x = ∴长方形纸片的长为 又∵>202 即:>20 ∴小丽不能用这块纸片裁出符合要求的纸片 二十三、解答题 23.(1)∠ABC=100°;(2)∠ABC>∠AFC;(3)∠N=90°﹣∠HAP;理由见解析. 【分析】 (1)过点B作BMHD,则HDGEBM,根据平行线的性质求得∠ABM与∠CBM,便可求得最后 解析:(1)∠ABC=100°;(2)∠ABC>∠AFC;(3)∠N=90°﹣∠HAP;理由见解析. 【分析】 (1)过点B作BMHD,则HDGEBM,根据平行线的性质求得∠ABM与∠CBM,便可求得最后结果; (2)过B作BPHDGE,过F作FQHDGE,由平行线的性质得,∠ABC=∠HAB+∠BCG,∠AFC=∠HAF+∠FCG,由角平分线的性质和已知角的度数分别求得∠HAF,∠FCG,最后便可求得结果; (3)过P作PKHDGE,先由平行线的性质证明∠ABC=∠HAB+∠BCG,∠AFC=∠HAF+∠FCG,再根据角平分线求得∠NPC与∠PCN,由后由三角形内角和定理便可求得结果. 【详解】 解:(1)过点B作BMHD,则HDGEBM,如图1, ∴∠ABM=180°﹣∠DAB,∠CBM=∠BCG, ∵∠DAB=120°,∠BCG=40°, ∴∠ABM=60°,∠CBM=40°, ∴∠ABC=∠ABM+∠CBM=100°; (2)过B作BPHDGE,过F作FQHDGE,如图2, ∴∠ABP=∠HAB,∠CBP=∠BCG,∠AFQ=∠HAF,∠CFQ=∠FCG, ∴∠ABC=∠HAB+∠BCG,∠AFC=∠HAF+∠FCG, ∵∠DAB=120°, ∴∠HAB=180°﹣∠DAB=60°, ∵AF平分∠HAB,BC平分∠FCG,∠BCG=20°, ∴∠HAF=30°,∠FCG=40°, ∴∠ABC=60°+20°=80°,∠AFC=30°+40°=70°, ∴∠ABC>∠AFC; (3)过P作PKHDGE,如图3, ∴∠APK=∠HAP,∠CPK=∠PCG, ∴∠APC=∠HAP+∠PCG, ∵PN平分∠APC, ∴∠NPC=∠HAP+∠PCG, ∵∠PCE=180°﹣∠PCG,CN平分∠PCE, ∴∠PCN=90°﹣∠PCG, ∵∠N+∠NPC+∠PCN=180°, ∴∠N=180°﹣∠HAP﹣∠PCG﹣90°+∠PCG=90°﹣∠HAP, 即:∠N=90°﹣∠HAP. 【点睛】 本题考查了角平分线的定义,平行线性质和判定:两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等.此题难度适中,注意掌握辅助线的作法,注意掌握数形结合思想与方程思想的应用,理清各角度之间的关系是解题的关键,也是本题的难点. 二十四、解答题 24.(1);(2),见解析;(3)不变, 【分析】 (1)根据平行线的性质求出,再求出的度数,利用内错角相等可求出角的度数; (2)过点作∥,类似(1)利用平行线的性质,得出三个角的关系; (3)运用 解析:(1);(2),见解析;(3)不变, 【分析】 (1)根据平行线的性质求出,再求出的度数,利用内错角相等可求出角的度数; (2)过点作∥,类似(1)利用平行线的性质,得出三个角的关系; (3)运用(2)的结论和平行线的性质、角平分线的性质,可求出的度数,可得结论. 【详解】 (1)因为∥, 所以, 因为∠BCD=73 °, 所以, 故答案为: (2), 如图②,过点作∥, 则,. 因为, 所以, (3)不变, 设, 因为平分, 所以. 由(2)的结论可知,且, 则:. 因为∥, 所以, 因为平分, 所以. 因为∥, 所以, 所以. 【点睛】 本题考查了平行线的性质和角平分线的定义,解题关键是熟练运用平行线的性质证明角相等,通过等量代换等方法得出角之间的关系. 二十五、解答题 25.(1)45°;(2)①1;②是定值,∠M+∠N=142.5° 【分析】 (1)利用平行线的性质求解即可. (2)①利用三角形的面积求出GH,HF,再证明AO=OG=2,可得结论. ②利用角平分线的定 解析:(1)45°;(2)①1;②是定值,∠M+∠N=142.5° 【分析】 (1)利用平行线的性质求解即可. (2)①利用三角形的面积求出GH,HF,再证明AO=OG=2,可得结论. ②利用角平分线的定义求出∠M,∠N(用∠FAO表示),可得结论. 【详解】 解:(1)如图, ∵AB∥ED ∴∠E=∠EAB=90°(两直线平行,内错角相等), ∵∠BAC=45°, ∴∠CAE=90°-45°=45°. 故答案为:45°. (2)①如图1中, ∵OG⊥AC, ∴∠AOG=90°, ∵∠OAG=45°, ∴∠OAG=∠OGA=45°, ∴AO=OG=2, ∵S△AHG=•GH•AO=4,S△AHF=•FH•AO=1, ∴GH=4,FH=1, ∴OF=GH-HF-OG=4-1-2=1. ②结论:∠N+∠M=142.5°,度数不变. 理由:如图2中, ∵MF,MO分别平分∠AFO,∠AOF, ∴∠M=180°-(∠AFO+∠AOF)=180°-(180°-∠FAO)=90°+∠FAO, ∵NH,NG分别平分∠DHG,∠BGH, ∴∠N=180°-(∠DHG+∠BGH) =180°-(∠HAG+∠AGH+∠HAG+∠AHG) =180°-(180°+∠HAG) =90°-∠HAG =90°-(30°+∠FAO+45°) =52.5°-∠FAO, ∴∠M+∠N=142.5°. 【点睛】 本题考查平行线的性质,角平分线的定义,三角形内角和定理,三角形外角的性质等知识,最后一个问题的解题关键是用∠FAO表示出∠M,∠N.- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 人教版七 年级 下册 数学 期末 试题
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【精***】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【精***】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【精***】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【精***】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文