初二上册压轴题强化数学检测试题带答案[001].doc
《初二上册压轴题强化数学检测试题带答案[001].doc》由会员分享,可在线阅读,更多相关《初二上册压轴题强化数学检测试题带答案[001].doc(20页珍藏版)》请在咨信网上搜索。
初二上册压轴题强化数学检测试题带答案 1.已知:AD为△ABC的中线,分别以AB和AC为一边在△ABC的外部作等腰三角形ABE和等腰三角形ACF,且AE=AB,AF=AC,连接EF,∠EAF+∠BAC=180°. (1)如图1,若∠ABE=65°,∠ACF=75°,求∠BAC的度数. (2)如图1,求证:EF=2AD. (3)如图2,设EF交AB于点G,交AC于点R,FC与EB交于点M,若点G为EF中点,且∠BAE=60°,请探究∠GAF和∠CAF的数量关系,并证明你的结论. 2.在平面直角坐标系中,A(a,0),B(0,b)分别是x轴负半轴和y轴正半轴上一点,点C与点A关于y轴对称,点P是x轴正半轴上C点右侧一动点. (1)当2a2+4ab+4b2+2a+1=0时,求A,B的坐标; (2)当a+b=0时, ①如图1,若D与P关于y轴对称,PE⊥DB并交DB延长线于E,交AB的延长线于F,求证:PB=PF; ②如图2,把射线BP绕点B顺时针旋转45o,交x轴于点Q,当CP=AQ时,求∠APB的大小. 3.如图,已知CD是线段AB的垂直平分线,垂足为D,C在D点上方,∠BAC=30°,P是直线CD上一动点,E是射线AC上除A点外的一点,PB=PE,连BE. (1)如图1,若点P与点C重合,求∠ABE的度数; (2)如图2,若P在C点上方,求证:PD+AC=CE; (3)若AC=6,CE=2,则PD的值为 (直接写出结果). 4.如图,中,,. (1)如图1,,,求证:; (2)如图2,,,请直接用几何语言写出、的位置关系____________; (3)证明(2)中的结论. 5.如图1,在平面直角坐标系中,直线AB与轴交于点A、与轴交于点B,且∠ABO=45°,A(-6,0),直线BC与直线AB关于轴对称. (1)求△ABC的面积; (2)如图2,D为OA延长线上一动点,以BD为直角边,D为直角顶点,作等腰直角△BDE,求证:AB⊥AE; (3)如图3,点E是轴正半轴上一点,且∠OAE=30°,AF平分∠OAE,点M是射线AF上一动点,点N是线段AO上一动点,判断是否存在这样的点M,N,使OM+NM的值最小?若存在,请写出其最小值,并加以说明. 6.如图,在等边中,,分别为,边上的点,,. (1)如图1,若点在边上,求证:; (2)如图2,连.若,求证:; (3)如图3,是的中点,点在内,,点,分别在,上,,若,直接写出的度数(用含有的式子表示). 7.[背景]角的平分线是常见的几何模型,利用轴对称构造三角形全等可解决有关问题. [问题]在四边形ABDE中,C是BD边的中点. (1)如图1,若AC平分∠BAE,∠ACE=90°,则线段AE、AB、DE的长度满足的数量关系为______;(直接写出答案) (2)如图2,AC平分∠BAE,EC平分∠AED,若∠ACE=120°,则线段AB、BD、DE、AE的长度满足怎样的数量关系?写出结论并证明; (3)如图3,若∠ACE=120°,AB=4,DE=9,BD=12,则AE的最大值是______.(直接写出答案) 8.我们不妨约定:把“有一组邻边相等”的凸四边形叫做“菠菜四边形”. (1)如下:①平行四边形,②矩形,③菱形,④正方形,一定是“菠菜四边形”的是________(填序号); (2)如图1,四边形ABCD为“菠菜四边形”,且∠BAD=∠BCD=90°,AD=AB,AE⊥CD于点E,若AE=4,求四边形ABCD的面积; (3)①如图2,四边形ABCD为“菠菜四边形”,且AB=AD,记四边形ABCD,△BOC,△AOD的面积依次为S,,,若.求证:ADBC; ②在①的条件下,延长BA、CD交于点E,记BC=m,DC=n,求证:. 【参考答案】 2.(1)∠BAC=50° (2)见解析 (3)∠GAF﹣∠CAF=60°,理由见解析 【分析】(1)利用三角形的内角和定理求出∠EAB,∠CAF,再根据∠EAF+∠BAC=180°构建方程即可解 解析:(1)∠BAC=50° (2)见解析 (3)∠GAF﹣∠CAF=60°,理由见解析 【分析】(1)利用三角形的内角和定理求出∠EAB,∠CAF,再根据∠EAF+∠BAC=180°构建方程即可解决问题; (2)延长AD至H,使DH=AD,连接BH,想办法证明△ABH≌△EAF即可解决问题; (3)结论:∠GAF﹣∠CAF=60°.想办法证明△ACD≌△FAG,推出∠ACD=∠FAG,再证明∠BCF=150°即可. (1) 解:∵AE=AB, ∴∠AEB=∠ABE=65°, ∴∠EAB=50°, ∵AC=AF, ∴∠ACF=∠AFC=75°, ∴∠CAF=30°, ∵∠EAF+∠BAC=180°, ∴∠EAB+2∠ABC+∠FAC=180°, ∴50°+2∠BAC+30°=180°, ∴∠BAC=50°. (2) 证明:证明:如图,延长AD至点H,使DH=AD,连接BH ∵AD是△ABC的中线, ∴BD=DC, 又∵DH=AD,∠BDH=∠ADC ∴△ADC≌△HDB(SAS), ∴BH=AC,∠BHD=∠DAC, ∴BH=AF, ∵∠BHD=∠DAC, ∴BH∥AC, ∴∠BAC+∠ABH=180°, 又∵∠EAF+∠BAC=180°, ∴∠ABH=∠EAF, 又∵AB=AE,BH=AF, ∴△AEF≌△BAH(SAS), ∴EF=AH=2AD, ∴EF=2AD; (3) 结论:∠GAF﹣∠CAF=60°. 理由:由(2)得,AD=EF,又点G为EF中点, ∴EG=AD, 由(2)△AEF≌△BAH, ∴∠AEG=∠BAD, 在△EAG和△ABD中, , ∴△EAG≌△ABD, ∴∠EAG=∠ABC=60°,AG=BD, ∴△AEB是等边三角形,AG=CD, ∴∠ABE=60°, ∴∠CBM=60°, 在△ACD和△FAG中, , ∴△ACD≌△FAG, ∴∠ACD=∠FAG, ∵AC=AF, ∴∠ACF=∠AFC, 在四边形ABCF中,∠ABC+∠BCF+∠CFA+∠BAF=360°, ∴60°+2∠BCF=360°, ∴∠BCF=150°, ∴∠BCA+∠ACF=150°, ∴∠GAF+(180°﹣∠CAF)=150°, ∴∠GAF﹣∠CAF=60°. 【点睛】本题考查三角形综合题、全等三角形的判定和性质、等腰三角形的性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考压轴题. 3.(1);(2)①见解析;②∠APB=22.5° 【分析】(1)利用非负数的性质求解即可; (2)①想办法证明∠PBF=∠F,可得结论;②如图2中,过点Q作QF⊥QB交PB于F,过点F作FH⊥x轴 解析:(1);(2)①见解析;②∠APB=22.5° 【分析】(1)利用非负数的性质求解即可; (2)①想办法证明∠PBF=∠F,可得结论;②如图2中,过点Q作QF⊥QB交PB于F,过点F作FH⊥x轴于H,可得等腰直角△BQF,证明△FQH≌△QBO(AAS),再证明FQ=FP即可解决问题. 【详解】解:(1)∵2a2+4ab+4b2+2a+1=0, ∴(a+2b)2+(a+1)2=0, ∵(a+2b)2≥0 ,(a+1)2≥0, ∴a+2b=0,a+1=0, ∴a=﹣1,b=, ∴A(﹣1,0),B(0,). (2)①证明:如图1中, ∵a+b=0, ∴a=﹣b, ∴OA=OB, 又∵∠AOB=90°, ∴∠BAO=∠ABO=45°, ∵D与P关于y轴对称, ∴BD=BP, ∴∠BDP=∠BPD, 设∠BDP=∠BPD=α, 则∠PBF=∠BAP+∠BPA=45°+α, ∵PE⊥DB, ∴∠BEF=90°, ∴∠F=90°﹣∠EBF, 又∠EBF=∠ABD=∠BAO﹣∠BDP=45°﹣α, ∴∠F=45°+α, ∴∠PBF=∠F, ∴PB=PF. ②解:如图2中,过点Q作QF⊥QB交PB于F,过点F作FH⊥x轴于H.可得等腰直角△BQF, ∵∠BOQ=∠BQF=∠FHQ=90°, ∴∠BQO+∠FQH=90°,∠FQH+∠QFH=90°, ∴∠BQO=∠QFH, ∵QB=QF, ∴△FQH≌△QBO(AAS), ∴HQ=OB=OA, ∴HO=AQ=PC, ∴PH=OC=OB=QH, ∴FQ=FP, 又∠BFQ=45°, ∴∠APB=22.5°. 【点睛】本题考查完全平方公式、实数的非负性、全等三角形的判定与性质、等腰直角三角形的判定与性质,解题的关键是综合运用相关知识解题. 4.(1)∠ABE=90°;(2)PD+AC=CE,见解析;(3)1 【分析】(1)根据线段垂直平分线的性质和等边三角形的判定与性质得到:△BPE为等边三角形,则∠CBE=60°,故∠ABE=90°; 解析:(1)∠ABE=90°;(2)PD+AC=CE,见解析;(3)1 【分析】(1)根据线段垂直平分线的性质和等边三角形的判定与性质得到:△BPE为等边三角形,则∠CBE=60°,故∠ABE=90°; (2)如图2,过P作PH⊥AE于H,连BC,作PG⊥BC交BC的延长线于G,构造含30度角的直角△PCG、直角△CPH以及全等三角形(Rt△PGB≌Rt△PHE),根据含30度的直角三角形的性质和全等三角形的对应边相等证得结论; (3)分三种情况讨论,根据(2)的解题思路得到PD=AC+CE或PD=CE-AC,将数值代入求解即可. 【详解】(1)解:如图1,∵点P与点C重合,CD是线段AB的垂直平分线, ∴PA=PB, ∴∠PAB=∠PBA=30°, ∴∠BPE=∠PAB+∠PBA=60°, ∵PB=PE, ∴△BPE为等边三角形, ∴∠CBE=60°, ∴∠ABE=90°; (2)如图2,过P作PH⊥AE于H,连BC,作PG⊥BC交BC的延长线于G, ∵CD垂直平分AB, ∴CA=CB, ∵∠BAC=30°, ∴∠ACD=∠BCD=60°, ∴∠GCP=∠HCP=∠BCE=∠ACD=∠BCD=60°, ∴∠GPC=∠HPC=30°, ∴PG=PH,CG=CH=CP,CD=AC, 在Rt△PGB和Rt△PHE中, , ∴Rt△PGB≌Rt△PHE(HL). ∴BG=EH,即CB+CG=CE-CH, ∴CB+CP=CE-CP,即CB+CP=CE, 又∵CB=AC, ∴CP=PD-CD=PD-AC, ∴PD+AC=CE; (3)①当P在C点上方时,由(2)得:PD=CE-AC, 当AC=6,CE=2时,PD=2-3=-1,不符合题意; ②当P在线段CD上时, 如图3,过P作PH⊥AE于H,连BC,作PG⊥BC交BC于G, 此时Rt△PGB≌Rt△PHE(HL), ∴BG=EH,即CB-CG=CE+CH, ∴CB-CP=CE+CP,即CP=CB-CE, 又∵CB=AC, ∴PD=CD-CP=AC-CB+CE, ∴PD=CE-AC. 当AC=6,CE=2时,PD=2-3=-1,不符合题意; ③当P在D点下方时,如图4, 同理,PD=AC-CE, 当AC=6,CE=2时,PD=3-2=1. 故答案为:1. 【点睛】本题主要考查了三角形综合题,综合运用全等三角形的判定与性质,含30度角直角三角形的性质,等边三角形的判定与性质等知识点,难度较大,解题时,注意要分类讨论. 5.(1)见解析;(2)⊥;(3)见解析 【分析】(1)根据垂直的定义可得∠ADC=∠E=90°,根据余角的性质可得∠ACD=∠BAE,然后根据AAS即可证得结论; (2)由于要得出、的位置关系,结 解析:(1)见解析;(2)⊥;(3)见解析 【分析】(1)根据垂直的定义可得∠ADC=∠E=90°,根据余角的性质可得∠ACD=∠BAE,然后根据AAS即可证得结论; (2)由于要得出、的位置关系,结合图形可猜想:⊥; (3)如图,作CP⊥AC于点C,延长FD交CP于点P,先证明△BAE≌△FCP,可得∠3=∠P,AB=CP,然后证明△ACD≌△PCD,可得∠4=∠P,进一步即可推出∠4+∠2=90°,问题得证. 【详解】解:(1)证明:∵,, ∴∠ADC=∠E=90°,∠DAC+∠ACD=90°, ∵, ∴∠DAC+∠BAE=90°, ∴∠ACD=∠BAE, 在△DAC和△EBA中, ∵∠ADC=∠E,∠ACD=∠BAE,AC=AB, ∴(AAS); (2)结合图形可得:⊥; 故答案为:⊥; (3)证明:如图,作CP⊥AC于点C,延长FD交CP于点P, ∵AF=CE, ∴AE=CF, ∵, ∴∠1=∠2, ∵∠BAE=∠FCP=90°, ∴△BAE≌△FCP, ∴∠3=∠P,AB=CP, ∵,, ∴∠ABC=∠ACB=45°, ∵∠PCP=90°,AB=CP, ∴∠FCD=45°,AC=PC, ∴∠ACB=∠PCD, ∵CD=CD, ∴△ACD≌△PCD, ∴∠4=∠P, ∵∠3=∠P, ∴∠3=∠4, ∵∠3+∠2=90°, ∴∠4+∠2=90°, ∴∠AGE=90°,即⊥. 【点睛】本题考查了等腰直角三角形的性质、全等三角形的判定和性质,正确添加辅助线、熟练掌握全等三角形的判定和性质是解题的关键. 6.(1)36;(2)证明见解析;(3)3,理由见解析. 【分析】(1)根据直线与坐标轴的交点易得A,C的坐标,从而得出AC=12,OB=6,根据三角形面积公式可求解; (2) 过E作EF⊥x轴于点 解析:(1)36;(2)证明见解析;(3)3,理由见解析. 【分析】(1)根据直线与坐标轴的交点易得A,C的坐标,从而得出AC=12,OB=6,根据三角形面积公式可求解; (2) 过E作EF⊥x轴于点F,延长EA交y轴于点H,证△DEF≌△BDO,得出EF=OD=AF,有,得出∠BAE=90°. (3)由已知条件可在线段OA上任取一点N,再在AE作关于OF的对称点,当点N运动时,最短为点O到直线AE的距离.再由,在直角三角形中, 即可得解. 【详解】解:(1)由已知条件得: AC=12,OB=6 ∴ (2)过E作EF⊥x轴于点F,延长EA交y轴于点H, ∵△BDE是等腰直角三角形, ∴DE=DB, ∠BDE=90°, ∴ ∵ ∴ ∴ ∵EF轴, ∴ ∴DF=BO=AO,EF=OD ∴AF=EF ∴ ∴∠BAE=90° (3)由已知条件可在线段OA上任取一点N,再在AE作关于OF的对称点,当点N运动时,最短为点O到直线AE的距离,即点O到直线AE的垂线段的长, ∵,OA=6, ∴OM+ON=3 【点睛】本题考查的知识点主要是直角三角形的性质及应用,轴对称在最短路径问题中的应用,弄懂题意,作出合理的辅助线是解题的关键. 7.(1)见解析 (2)见解析 (3) 【分析】(1)连接DF,根据“有一个角是60°的等腰三角形是等边三角形”可判断△DEF是等边三角形,则DF=EF,又△ABC是等边三角形,根据三角形内角和可 解析:(1)见解析 (2)见解析 (3) 【分析】(1)连接DF,根据“有一个角是60°的等腰三角形是等边三角形”可判断△DEF是等边三角形,则DF=EF,又△ABC是等边三角形,根据三角形内角和可得出,∠AFD=∠FEC,所以△ADF≌△CFE(AAS),则AD=CF; (2)过点F作JKAC交AB于点J,交BC于点K,过点F作PIAB交AC于P,交BC于点I,连接DF,则△BJK和△CPI是等边三角形,△BDE≌△JFD≌KEF,所以DJ=BE=FK,因为ABPI,FKAC,所以四边形AJFP是平行四边形,则AJ=PF,易得△CPI为等边三角形,由∠FCB=30°可得CF平分∠PCI,则FI=FP,所以FP=AJ,FK=BE=DJ,FI=FK,所以AJ=DJ=BE,即AD=AJ+DJ=2BE; (3)延长MO到点G,使OG=OM,连接NG,BG,NM,作∠ACQ=∠ABN,且使CQ=BN,连接MQ,AQ,先得到△BOG≌△COM(SAS),再得到△ACQ≌△ABN(SAS)和△BNG≌△CQM(SAS),所以∠NAM=∠MAQ=∠CAM+∠CAQ=∠CAM+∠BAN,所以∠CAM+∠BAN=30°,则∠CAM=,所以∠BAN=30°-. (1) 证明:如图,连接, ,, ∵是等边三角形, ∴, ∵是等边三角形, ∴, , , , ,, , ; (2) 证明:如图,过点作交于点,交于点,过点作交于,交于点,连接, , , 和是等边三角形, ,, 是等边三角形, 由(1)中结论可知,, , ,, 四边形是平行四边形, , , , 为等边三角形,, , 平分, 是等边三角形, , , ,, ,即; (3) 如图,延长到点,使,连接,,,作,且使,连接,, ,, , ,,, , ,, , , , , 是等边三角形, , , ,, ,,, , ,, ,, , ,, , , , , ,, , , 又, , , . 【点睛】本题属于三角形的综合题,涉及全等三角形的性质与判定,等边三角形的性质与判定,等腰三角形三线合一等知识,类比思想及构造的思想进行分析,仿造(1)中的结论构造出全等三角形是解题关键. 8.(1)AE=AB+DE (2)AE=AB+DE+BD (3) 【分析】(1)在AE上取一点F,使AF=AB,及可以得出△ACB≌△ACF,就可以得出BC=FC,∠ACB=∠ACF,就可以得出△ 解析:(1)AE=AB+DE (2)AE=AB+DE+BD (3) 【分析】(1)在AE上取一点F,使AF=AB,及可以得出△ACB≌△ACF,就可以得出BC=FC,∠ACB=∠ACF,就可以得出△CEF≌△CED.就可以得出结论; (3)在AE上取点F,使AF=AB,连接CF,在AE上取点G,使EG=ED,连接CG.可以求得CF=CG,△CFG是等边三角形,就有FG=CG=BD,进而得出结论; (3)作B关于AC的对称点F,D关于EC的对称点G,连接AF,FC,CG,EG,FG.根据两点之间线段最短解决问题即可. (1) AE=AB+DE; 理由:在AE上取一点F,使AF=AB, ∵AC平分∠BAE, ∴∠BAC=∠FAC. 在△ACB和△ACF中, , ∴△ACB≌△ACF(SAS), ∴BC=FC,∠ACB=∠ACF. ∵C是BD边的中点. ∴BC=CD, ∴CF=CD. ∵∠ACE=90°, ∴∠ACB+∠DCE=90°,∠ACF+∠ECF=90° ∴∠ECF=∠ECD. 在△CEF和△CED中, , ∴△CEF≌△CED(SAS), ∴EF=ED. ∵AE=AF+EF, ∴AE=AB+DE, 故答案为:AE=AB+DE; (2) 猜想:AE=AB+DE+BD. 证明:在AE上取点F,使AF=AB,连接CF,在AE上取点G,使EG=ED,连接CG. ∵C是BD边的中点, ∴CB=CD=BD. ∵AC平分∠BAE, ∴∠BAC=∠FAC. 在△ACB和△ACF中, ∴△ACB≌△ACF(SAS), ∴CF=CB, ∴∠BCA=∠FCA. 同理可证:CD=CG, ∴∠DCE=∠GCE. ∵CB=CD, ∴CG=CF ∵∠ACE=120°, ∴∠BCA+∠DCE=180°-120°=60°. ∴∠FCA+∠GCE=60°. ∴∠FCG=60°. ∴△FGC是等边三角形. ∴FG=FC=BD. ∵AE=AF+EG+FG. ∴AE=AB+DE+BD. (3) 作B关于AC的对称点F,D关于EC的对称点G,连接AF,FC,CG,EG,FG,如图所示: ∵C是BD边的中点, ∴CB=CD=BD=, ∵△ACB≌△ACF(SAS), ∴CF=CB=, ∴∠BCA=∠FCA, 同理可证:CD=CG=, ∴∠DCE=∠GCE, ∵CB=CD, ∴CG=CF, ∵∠ACE=120°, ∴∠BCA+∠DCE=180°-120°=60°, ∴∠FCA+∠GCE=60°, ∴∠FCG=60°, ∴△FGC是等边三角形, ∴FC=CG=FG=, ∵AE≤AF+FG+EG, ∴当A、F、G、E共线时AE的值最大,最大值为. 故答案为:. 【点睛】本题考查了四边形的综合题,角平分线的性质的运用,全等三角形的判定及性质的运用,等边三角形的性质的运用,勾股定理的运用,解答时证明三角形全等是关键. 9.(1)③ ④ (2)16 (3)①见解析;②见解析 【分析】(1)根据菠菜四边形的定义结合各个特殊四边形的定义即可得出结论; (2)过A作,交CB的延长线于F,求出四边形AFCE是矩形,则, 解析:(1)③ ④ (2)16 (3)①见解析;②见解析 【分析】(1)根据菠菜四边形的定义结合各个特殊四边形的定义即可得出结论; (2)过A作,交CB的延长线于F,求出四边形AFCE是矩形,则,求出,得出,有全等的出AE=AF=3,,求出,求出,代入求解即可; (3)记面积为,则,,根据已知条件可得,进而可得,得出 由平分线的性质结合等腰三角形的性质可得BD平分,过点D作于点H,作于点N,则DH=DN,则,由此即可得出结论. (1) 根据菱形于正方形的定义值,一定是菠菜四边形的是菱形与正方形, 故答案为:③④ (2) 如图,过A作,交CB的延长线于F, ∴ 四边形AFCE是矩形 则 四边形AFCE是正方形, 即四边形ABCD的面积为16 (3) ①记, ∴ ∵ ∴ ∴ ∵ ∴ ∴ ∴ ∴ 如图:作, ∴ ∴ AMAD ∴四边形AMND为平行四边形 ∴ADMN ∴ADBC ②∵ADBC ∴ 又∵AD=AB ∴ ∴ ∴BD平分 如图: ∵ ∴ ∴ 又∵ ∴ ∴ 【点睛】本题考查全等三角形的性质与判定,三角形的面积,角平分线的性质,对于同第登高的三角形的面积相等的推到是关键.- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 001 初二 上册 压轴 强化 数学 检测 试题 答案
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【a199****6536】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【a199****6536】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【a199****6536】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【a199****6536】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文