人教版中学七年级下册数学期末质量监测试卷(附答案).doc
《人教版中学七年级下册数学期末质量监测试卷(附答案).doc》由会员分享,可在线阅读,更多相关《人教版中学七年级下册数学期末质量监测试卷(附答案).doc(26页珍藏版)》请在咨信网上搜索。
人教版中学七年级下册数学期末质量监测试卷(附答案) 一、选择题 1.如图,∠B的同位角是( ) A.∠1 B.∠2 C.∠3 D.∠4 2.在如图所示的四个汽车标识图案中,能用平移变换来分析其形成过程的是( ) A. B. C. D. 3.在平面直角坐标系中,点(3,-3)所在的象限是( ). A.第一象限 B.第二象限 C.第三象限 D.第四象限 4.下列四个命题:①5是25的算术平方根;②的平方根是-4;③经过直线外一点,有且只有一条直线与这条直线平行;④同旁内角互补.其中真命题的个数是( ). A.0个 B.1个 C.2个 D.3个 5.如图,已知平分,平分,.下列结论正确的有( ) ①;②;③;④若,则. A.1个 B.2个 C.3个 D.4个 6.下列说法错误的是( ) A.3的平方根是 B.﹣1的立方根是﹣1 C.0.1是0.01的一个平方根 D.算术平方根是本身的数只有0和1 7.如图所示,小明课间把老师的三角板的直角顶点放在黑板的两条平行线a,b上,已知2=35°,则∠1的度数为( ) A.45° B.125° C.55° D.35° 8.如图,一个粒子在第一象限内及x轴、y轴上运动,在第一分钟,它从原点运动到点;第二分钟,它从点运动到点,而后它接着按图中箭头所示在与x轴、y轴平行的方向上来回运动,且每分钟移动1个单位长度,那么在第2021分钟时,这个粒子所在位置的坐标是( ) A. B. C. D. 九、填空题 9.______. 十、填空题 10.已知点,点关于x轴对称,则的值是____. 十一、填空题 11.如图.已知点为两条相互平行的直线之间一动点,和的角平分线相交于,若,则的度数为________. 十二、填空题 12.如图,,,,则∠CAD的度数为____________. 十三、填空题 13.如图所示,一个四边形纸片ABCD,,把纸片按如图所示折叠,使点B落在AD边上的点,AE是折痕,,则=________度. 十四、填空题 14.规定:[x]表示不大于x的最大整数,(x)表示不小于x的最小整数,[x)表示最接近x的整数(x≠n+0.5,n为整数),例如:[2.3]=2,(2.3)=3,[2.3)=2.当﹣1<x<1时,化简[x]+(x)+[x)的结果是_____. 十五、填空题 15.把所有的正整数按如图所示规律排列形成数表.若正整数6对应的位置记为,则对应的正整数是_______. 第1列 第2列 第3列 第4列 …… 第1行 1 2 5 10 …… 第2行 4 3 6 11 …… 第3行 9 8 7 12 …… 第4行 16 15 14 13 …… 第5行 …… …… …… …… …… 十六、填空题 16.如图,在平面直角坐标系中,边长为1的等边△OA1A2的一条边OA2在x的正半轴上,O为坐标原点;将△OA1A2沿x轴正方向依次向右移动2个单位,依次得到△A3A4A5,△A6A7A8…,则顶点A2021的坐标为 __________________. 十七、解答题 17.计算: (1) (2) 十八、解答题 18.求下列各式中的的值: (1); (2). 十九、解答题 19.已知:如图,DB⊥AF于点G,EC⊥AF于点H,∠C=∠D.求证:∠A=∠F. 证明:∵DB⊥AF于点G,EC⊥AF于点H(已知), ∴∠DGH=∠EHF=90°( ). ∴DB∥EC( ). ∴∠C= ( ). ∵∠C=∠D(已知), ∴∠D= ( ). ∴DF∥AC( ). ∴∠A=∠F( ). 二十、解答题 20.如图,在平面直角坐标系中,三角形OBC的顶点都在网格格点上,一个格是一个单位长度. (1)将三角形OBC先向下平移3个单位长度,再向左平移2个单位长度(点与点C是对应点),得到三角形,在图中画出三角形; (2)直接写出三角形的面积为____________. 二十一、解答题 21.实数在数轴上的对应点的位置如图所示,. (1)求的值; (2)已知的小数部分是,的小数部分是,求的平方根. 二十二、解答题 22.(1)小丽计划在母亲节那天送份礼物妈妈,特设计一个表面积为12dm2的正方体纸盒,则这个正方体的棱长是 . (2)为了增加小区的绿化面积,幸福公园准备修建一个面积121πm2的草坪,草坪周围用篱笆围绕.现从对称美的角度考虑有甲,乙两种方案,甲方案:建成正方形;乙方案:建成圆形的.如果从节省篱笆费用的角度考虑,你会选择哪种方案?请说明理由; (3)在(2)的方案中,审批时发现修如此大的草坪,目的是亲近自然,若按上方案就没达到目的,因此建议用如图的设计方案:正方形里修三条小路,三条小路的宽度是一样,这样草坪的实际面积就减少了21πm2,请你根据此方案求出各小路的宽度(π取整数). 二十三、解答题 23.已知,如图1,射线PE分别与直线AB,CD相交于E、F两点,∠PFD的平分线与直线AB相交于点M,射线PM交CD于点N,设∠PFM=α°,∠EMF=β°,且(40﹣2α)2+|β﹣20|=0 (1)α= ,β= ;直线AB与CD的位置关系是 ; (2)如图2,若点G、H分别在射线MA和线段MF上,且∠MGH=∠PNF,试找出∠FMN与∠GHF之间存在的数量关系,并证明你的结论; (3)若将图中的射线PM绕着端点P逆时针方向旋转(如图3),分别与AB、CD相交于点M1和点N1时,作∠PM1B的角平分线M1Q与射线FM相交于点Q,问在旋转的过程中的值是否改变?若不变,请求出其值;若变化,请说明理由. 二十四、解答题 24.问题情境 (1)如图1,已知,,,求的度数.佩佩同学的思路:过点作,进而,由平行线的性质来求,求得________. 问题迁移 (2)图2.图3均是由一块三角板和一把直尺拼成的图形,三角板的两直角边与直尺的两边重合,,,与相交于点,有一动点在边上运动,连接,,记,. ①如图2,当点在,两点之间运动时,请直接写出与,之间的数量关系; ②如图3,当点在,两点之间运动时,与,之间有何数量关系?请判断并说明理由;拓展延伸 (3)当点在,两点之间运动时,若,的角平分线,相交于点,请直接写出与,之间的数量关系. 二十五、解答题 25.已知ABCD,点E是平面内一点,∠CDE的角平分线与∠ABE的角平分线交于点F. (1)若点E的位置如图1所示. ①若∠ABE=60°,∠CDE=80°,则∠F= °; ②探究∠F与∠BED的数量关系并证明你的结论; (2)若点E的位置如图2所示,∠F与∠BED满足的数量关系式是 . (3)若点E的位置如图3所示,∠CDE 为锐角,且,设∠F=α,则α的取值范围为 . 【参考答案】 一、选择题 1.C 解析:C 【分析】 同位角就是:两个角都在截线的同旁,又分别处在被截的两条直线同侧的位置的角. 【详解】 解:∠B与∠3是DE、BC被AB所截而成的同位角, 故选:C. 【点睛】 本题主要考查了同位角,解答此类题确定三线八角是关键,可直接从截线入手.同位角的边构成F形,内错角的边构成Z形,同旁内角的边构成U形. 2.D 【分析】 根据平移作图是一个基本图案按照一定的方向平移一定的距离,连续作图设计出的图案进行分析即可. 【详解】 解:A、不能用平移变换来分析其形成过程,故此选项错误; B、不能用平移变换来分析其 解析:D 【分析】 根据平移作图是一个基本图案按照一定的方向平移一定的距离,连续作图设计出的图案进行分析即可. 【详解】 解:A、不能用平移变换来分析其形成过程,故此选项错误; B、不能用平移变换来分析其形成过程,故此选项错误; C、不能用平移变换来分析其形成过程,故此选项正确; D、能用平移变换来分析其形成过程,故此选项错误; 故选:D. 【点睛】 本题考查利用平移设计图案,解题关键是掌握图形的平移只改变图形的位置,而不改变图形的形状、大小和方向. 3.D 【分析】 根据各象限内点的坐标特征解答即可. 【详解】 点(3,-3)的横坐标为正数,纵坐标为负数, 所以点(3,-3)所在的象限是第四象限, 故选D. 【点睛】 本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-). 4.C 【分析】 根据相关概念逐项分析即可. 【详解】 ①5是25的算术平方根,故原命题是真命题; ②的平方根是,故原命题是假命题; ③经过直线外一点,有且只有一条直线与这条直线平行,故原命题是真命题; ④两直线平行,同旁内角互补,故原命题是假命题; 故选:C. 【点睛】 本题考查命题真假的判断,涉及到平方根,平行公理,以及平行线的性质,熟练掌握基本定理和性质是解题关键. 5.C 【分析】 由三个已知条件可得AB∥CD,从而①正确;由①及平行线的性质则可推得②正确;由条件无法推出AC∥BD,可知③错误;由及平分,可得∠ACP=∠E,得AC∥BD,从而由平行线的性质易得,即④正确. 【详解】 ∵平分,平分 ∴∠ACD=2∠ACP=2∠2,∠CAB=2∠1=2∠CAP ∵ ∴∠ACD+∠CAB=2(∠1+∠2)=2×90゜=180゜ ∴ 故①正确 ∵ ∴∠ABE=∠CDB ∵∠CDB+∠CDF=180゜ ∴ 故②正确 由已知条件无法推出AC∥BD 故③错误 ∵,∠ACD=2∠ACP=2∠2 ∴∠ACP=∠E ∴AC∥BD ∴∠CAP=∠F ∵∠CAB=2∠1=2∠CAP ∴ 故④正确 故正确的序号为①②④ 故选:C. 【点睛】 本题考查了平行线的判定与性质,角平分线的定义,掌握这些知识是关键. 6.A 【分析】 根据平方根、立方根、算术平方根的概念进行判断即可. 【详解】 解:A、3的平方根是±,原说法错误,故此选项符合题意; B、﹣1的立方根是﹣1,原说法正确,故此选项不符合题意; C、0.1是0.01的一个平方根,原说法正确,故此选项不符合题意; D、算术平方根是本身的数只有0和1,原说法正确,故此选项不符合题意. 故选:A. 【点睛】 本题考查了平方根、立方根、算术平方根的概念,掌握平方根、立方根、算术平方根的概念是解题的关键. 7.C 【分析】 根据∠ACB=90°,∠2=35°求出∠3的度数,根据平行线的性质得出∠1=∠3,代入即可得出答案. 【详解】 解:∵∠ACB=90°,∠2=35°, ∴∠3=180°-90°-35°=55°, ∵a∥b, ∴∠1=∠3=55°. 故选:C. 【点睛】 本题考查了平行线的性质和邻补角的定义,解此题的关键是求出∠3的度数和得出∠1=∠3,题目比较典型,难度适中. 8.B 【分析】 找出粒子运动规律和坐标之间的关系即可解题. 【详解】 解:由题知(0,0)表示粒子运动了0分钟, (1,1)表示粒子运动了2=1×2分钟,将向左运动, (2,2)表示粒子运动了6=2× 解析:B 【分析】 找出粒子运动规律和坐标之间的关系即可解题. 【详解】 解:由题知(0,0)表示粒子运动了0分钟, (1,1)表示粒子运动了2=1×2分钟,将向左运动, (2,2)表示粒子运动了6=2×3分钟,将向下运动, (3,3)表示粒子运动了12=3×4分钟,将向左运动, ... 于是会出现: (44,44)点粒子运动了44×45=1980分钟,此时粒子将会向下运动, ∴在第2021分钟时,粒子又向下移动了2021−1980=41个单位长度, ∴粒子的位置为(44,3), 故选:B. 【点睛】 本题考查的是动点坐标问题,解题的关键是找出粒子的运动规律. 九、填空题 9.10 【分析】 先计算乘法,然后计算算术平方根,即可得到答案. 【详解】 解:; 故答案为:10. 【点睛】 本题考查了算术平方根,解题的关键是掌握算术平方根的计算方法. 解析:10 【分析】 先计算乘法,然后计算算术平方根,即可得到答案. 【详解】 解:; 故答案为:10. 【点睛】 本题考查了算术平方根,解题的关键是掌握算术平方根的计算方法. 十、填空题 10.-6 【分析】 让两点的横坐标相等,纵坐标相加得0,即可得关于x,y的二元一次方程组,解值即可. 【详解】 解:∵点,点关于x轴对称, ∴; 解得:, ∴, 故答案为-6. 【点睛】 本题考查平面直 解析:-6 【分析】 让两点的横坐标相等,纵坐标相加得0,即可得关于x,y的二元一次方程组,解值即可. 【详解】 解:∵点,点关于x轴对称, ∴; 解得:, ∴, 故答案为-6. 【点睛】 本题考查平面直角坐标系中关于坐标轴成轴对称的两点的坐标之间的关系:关于横轴的对称点,横坐标不变,纵坐标变成相反数. 十一、填空题 11.120° 【分析】 由角平分线的定义可得,,又由,得,;设,,则;再根据四边形内角和定理得到,最后根据即可求解. 【详解】 解:和的角平分线相交于, ,, 又, ,, 设,, , 在四边形中,,,, 解析:120° 【分析】 由角平分线的定义可得,,又由,得,;设,,则;再根据四边形内角和定理得到,最后根据即可求解. 【详解】 解:和的角平分线相交于, ,, 又, ,, 设,, , 在四边形中,,,, , , , , 故答案为:. 【点睛】 本题考查了平行线的判定和性质,正确的识别图形是解题的关键. 十二、填空题 12.【分析】 根据两直线平行内错角相等可得,,再根据角之间的关系即可求出的度数. 【详解】 解:∵∥,, ∴, ∴ 故答案为: 【点睛】 本题主要考查了平行线的相关知识,熟练运用两直线平行内错角相等是 解析: 【分析】 根据两直线平行内错角相等可得,,再根据角之间的关系即可求出的度数. 【详解】 解:∵∥,, ∴, ∴ 故答案为: 【点睛】 本题主要考查了平行线的相关知识,熟练运用两直线平行内错角相等是解答此题的关键. 十三、填空题 13.【分析】 根据四边形的内角和等于求出,根据翻折的性质可得,然后求出 ,再根据直角三角形两锐角互余列式计算即可得解. 【详解】 解:,, , 由翻折的性质得,, , , . 故答案为:. 【点睛】 解析:【分析】 根据四边形的内角和等于求出,根据翻折的性质可得,然后求出 ,再根据直角三角形两锐角互余列式计算即可得解. 【详解】 解:,, , 由翻折的性质得,, , , . 故答案为:. 【点睛】 本题考查了翻折变换的性质,四边形的内角和定理,直角三角形两锐角互余的性质. 十四、填空题 14.﹣2或﹣1或0或1或2. 【分析】 有三种情况: ①当时,[x]=-1,(x)=0,[x)=-1或0, ∴[x]+(x)+[x)=-2或-1; ②当时,[x]=0,(x)=0,[x)=0, ∴[x] 解析:﹣2或﹣1或0或1或2. 【分析】 有三种情况: ①当时,[x]=-1,(x)=0,[x)=-1或0, ∴[x]+(x)+[x)=-2或-1; ②当时,[x]=0,(x)=0,[x)=0, ∴[x]+(x)+[x)=0; ③当时,[x]=0,(x)=1,[x)=0或1, ∴[x]+(x)+[x)=1或2; 综上所述,化简[x]+(x)+[x)的结果是-2或﹣1或0或1或2. 故答案为-2或﹣1或0或1或2. 点睛:本题是一道阅读理解题.读懂题意并进行分类讨论是解题的关键. 【详解】 请在此输入详解! 十五、填空题 15.138 【分析】 根据表格中的数据,以及正整数6对应的位置记为,可得表示方法,观察出1行1列数的特点为12-0,2行2列数的特点为22-1,3行3列数的特点为32-2,…n行n列数的特点为(n2-n 解析:138 【分析】 根据表格中的数据,以及正整数6对应的位置记为,可得表示方法,观察出1行1列数的特点为12-0,2行2列数的特点为22-1,3行3列数的特点为32-2,…n行n列数的特点为(n2-n+1),且每一行的第一个数字逆箭头方向顺次减少1,由此进一步解决问题. 【详解】 解:∵正整数6对应的位置记为, 即表示第2行第3列的数, ∴表示第12行第7列的数, 由1行1列的数字是12-0=12-(1-1)=1, 2行2列的数字是22-1=22-(2-1)=3, 3行3列的数字是32-2=32-(3-1)=7, … n行n列的数字是n2-(n-1)=n2-n+1, ∴第12行12列的数字是122-12+1=133, ∴第12行第7列的数字是138, 故答案为:138. 【点睛】 此题考查观察分析归纳总结顾虑的能力,解答此题的关键是找出两个规律,即n行n列数的特点为(n2-n+1),且每一行的第一个数字逆箭头方向顺次减少1,此题有难度. 十六、填空题 16.(1346.5,). 【分析】 观察图形可知,3个点一个循环,每个循环向右移动2个单位,依此可求顶点A2021的坐标. 【详解】 解:是等边三角形,边长为1 ,,,,… 观察图形可知,3个点一个循 解析:(1346.5,). 【分析】 观察图形可知,3个点一个循环,每个循环向右移动2个单位,依此可求顶点A2021的坐标. 【详解】 解:是等边三角形,边长为1 ,,,,… 观察图形可知,3个点一个循环,每个循环向右移动2个单位 2021÷3=673…1, 673×2=1346,故顶点A2021的坐标是(1346.5,). 故答案为:(1346.5,). 【点睛】 本题考查了平面直角坐标系点的规律,等边三角形的性质,勾股定理,找到规律是解题的关键. 十七、解答题 17.(1)-5;(2) 【解析】 【分析】 (1)根据绝对值、乘方的意义和立方根的定义进行计算即可; (2)先根据平方根和立方根的定义化简各数,进而即可得出答案. 【详解】 (1)原式=; (2)原式= 解析:(1)-5;(2) 【解析】 【分析】 (1)根据绝对值、乘方的意义和立方根的定义进行计算即可; (2)先根据平方根和立方根的定义化简各数,进而即可得出答案. 【详解】 (1)原式=; (2)原式= -6+2+1+=. 故答案为:(1)-5;(2) . 【点睛】 本题考查实数的运算,解题的关键是熟练掌握平方根和立方根的定义. 十八、解答题 18.(1)或;(2) 【分析】 (1)方程整理后,利用平方根定义开方即可求出x的值; (2)方程利用立方根定义开立方即可求出x的值. 【详解】 解:(1) , 或. (2) , . 【点睛】 此题考查了 解析:(1)或;(2) 【分析】 (1)方程整理后,利用平方根定义开方即可求出x的值; (2)方程利用立方根定义开立方即可求出x的值. 【详解】 解:(1) , 或. (2) , . 【点睛】 此题考查了立方根,以及平方根,熟练掌握运算法则是解本题的关键. 十九、解答题 19.垂直的定义;同位角相等,两直线平行;∠DBA;两直线平行,同位角相等;∠DBA;等量代换;内错角相等,两直线平行;两直线平行,内错角相等 【分析】 先证DB∥EC,得∠C=∠DBA,再证∠D=∠DB 解析:垂直的定义;同位角相等,两直线平行;∠DBA;两直线平行,同位角相等;∠DBA;等量代换;内错角相等,两直线平行;两直线平行,内错角相等 【分析】 先证DB∥EC,得∠C=∠DBA,再证∠D=∠DBA,得DF∥AC,然后由平行线的性质即可得出结论. 【详解】 解:∵DB⊥AF于点G,EC⊥AF于点H(已知), ∴∠DGH=∠EHF=90°(垂直的定义), ∴DB∥EC(同位角相等,两直线平行), ∴∠C=∠DBA(两直线平行,同位角相等), ∵∠C=∠D(已知), ∴∠D=∠DBA(等量代换), ∴DF∥AC(内错角相等,两直线平行), ∴∠A=∠F(两直线平行,内错角相等). 故答案为:垂直的定义;同位角相等,两直线平行;∠DBA,两直线平行,同位角相等;∠DBA,等量代换;内错角相等,两直线平行;两直线平行,内错角相等. 【点睛】 本题主要考查了平行线的判定与性质,熟练掌握平行线的判定与性质是解题的关键. 二十、解答题 20.(1)见解析;(2)5 【分析】 (1)根据平移的性质先确定O、B、C的对应点O1、B1、C1的坐标,然后顺次连接O1、B1、C1即可; (2)根据的面积=其所在的长方形面积减去周围三个三角形的面积 解析:(1)见解析;(2)5 【分析】 (1)根据平移的性质先确定O、B、C的对应点O1、B1、C1的坐标,然后顺次连接O1、B1、C1即可; (2)根据的面积=其所在的长方形面积减去周围三个三角形的面积进行求解即可. 【详解】 解:(1)如图所示,即为所求; (2)由题意得:. 【点睛】 本题主要考查了平移作图,三角形面积,解题的关键在于能够熟练掌握平移作图的方法. 二十一、解答题 21.(1);(2) 【分析】 (1)根据A点在数轴上的位置,可以知道2<a<3,根据a的范围去绝对值化简即可; (2)先求出b+2,得到它的整数部分,用b+2减去整数部分就是小数部分,从而求出m;同理可 解析:(1);(2) 【分析】 (1)根据A点在数轴上的位置,可以知道2<a<3,根据a的范围去绝对值化简即可; (2)先求出b+2,得到它的整数部分,用b+2减去整数部分就是小数部分,从而求出m;同理可求出n.然后求出2m+2n+1,再求平方根. 【详解】 解:(1)由图知:, ,, ; (2), 整数部分是3, ; 的整数部分是6, , , 的平方根为. 【点睛】 本题主要考查了无理数的估算,考核学生的运算能力,解题时注意一个正数的平方根有两个. 二十二、解答题 22.(1)dm;(2)从节省篱笆费用的角度考虑,选择乙方案建成圆形;(3)根据此方案求出小路的宽度为 【分析】 (1)先求得正方体的一个面的面积,然后依据算术平方根的定义求解即可; (2)根据正方形的周 解析:(1)dm;(2)从节省篱笆费用的角度考虑,选择乙方案建成圆形;(3)根据此方案求出小路的宽度为 【分析】 (1)先求得正方体的一个面的面积,然后依据算术平方根的定义求解即可; (2)根据正方形的周长公式以及圆形的周长公式即可求出答案; (3)根据图形的平移求解. 【详解】 解:(1)∵正方体有6个面且每个面都相等, ∴正方体的一个面的面积=2 dm2. ∴正方形的棱长=dm; 故答案为: dm ; (2)甲方案:设正方形的边长为xm,则x2 =121 ∴x =11 ∴正方形的周长为:4x=44m 乙方案: 设圆的半径rm为,则r2==121 ∴r =11 ∴圆的周长为:2= 22m ∴ 442222(2- ∵ 4> ∴ 2 ∴ ∴正方形的周长比圆的周长大 故从节省篱笆费用的角度考虑,选择乙方案建成圆形; (3)依题意可进行如图所示的平移,设小路的宽度为ym ,则 (11 –y)2=12121 ∴11 –y =10 ∴ y= ∵ 取整数 ∴ y = 答:根据此方案求出小路的宽度为; 【点睛】 本题主要考查的是算术平方根的定义,熟练掌握正方形的性质以及平移的性质是解题的关键; 二十三、解答题 23.(1)20,20,;(2);(3)的值不变, 【分析】 (1)根据,即可计算和的值,再根据内错角相等可证; (2)先根据内错角相等证,再根据同旁内角互补和等量代换得出; (3)作的平分线交的延长线于 解析:(1)20,20,;(2);(3)的值不变, 【分析】 (1)根据,即可计算和的值,再根据内错角相等可证; (2)先根据内错角相等证,再根据同旁内角互补和等量代换得出; (3)作的平分线交的延长线于,先根据同位角相等证,得,设,,得出,即可得. 【详解】 解:(1), ,, , ,, , ; 故答案为:20、20,; (2); 理由:由(1)得, , , , , , , ; (3)的值不变,; 理由:如图3中,作的平分线交的延长线于, , , ,, , , , 设,, 则有:, 可得, , . 【点睛】 本题主要考查平行线的判定与性质,熟练掌握内错角相等证平行,平行线同旁内角互补等知识是解题的关键. 二十四、解答题 24.(1);(2)①,②,理由见解析;(3) 【分析】 (1)过点作,则,由平行线的性质可得的度数; (2)①过点作的平行线,依据平行线的性质可得与,之间的数量关系; ②过作,依据平行线的性质可得,,即 解析:(1);(2)①,②,理由见解析;(3) 【分析】 (1)过点作,则,由平行线的性质可得的度数; (2)①过点作的平行线,依据平行线的性质可得与,之间的数量关系; ②过作,依据平行线的性质可得,,即可得到; (3)过和分别作的平行线,依据平行线的性质以及角平分线的定义,即可得到与,之间的数量关系为. 【详解】 解:(1)如图1,过点作,则, 由平行线的性质可得,, 又∵,, ∴, 故答案为:; (2)①如图2,与,之间的数量关系为; 过点P作PM∥FD,则PM∥FD∥CG, ∵PM∥FD, ∴∠1=∠α, ∵PM∥CG, ∴∠2=∠β, ∴∠1+∠2=∠α+∠β, 即:, ②如图,与,之间的数量关系为;理由: 过作, ∵, ∴, ∴,, ∴; (3)如图, 由①可知,∠N=∠3+∠4, ∵EN平分∠DEP,AN平分∠PAC, ∴∠3=∠α,∠4=∠β, ∴, ∴与,之间的数量关系为. 【点睛】 本题主要考查了平行线的性质,解决问题的关键是过拐点作平行线,利用平行线的性质得出结论. 二十五、解答题 25.(1)①70;②∠F=∠BED,证明见解析;(2)2∠F+∠BED=360°;(3) 【分析】 (1)①过F作FG//AB,利用平行线的判定和性质定理得到∠DFB=∠DFG+∠BFG=∠CDF+∠A 解析:(1)①70;②∠F=∠BED,证明见解析;(2)2∠F+∠BED=360°;(3) 【分析】 (1)①过F作FG//AB,利用平行线的判定和性质定理得到∠DFB=∠DFG+∠BFG=∠CDF+∠ABF,利用角平分线的定义得到∠ABE+∠CDE=2∠ABF+2∠CDF=2(∠ABF+∠CDF),求得∠ABF+∠CDF=70,即可求解; ②分别过E、F作EN//AB,FM//AB,利用平行线的判定和性质得到∠BED=∠ABE+∠CDE,利用角平分线的定义得到∠BED=2(∠ABF+∠CDF),同理得到∠F=∠ABF+∠CDF,即可求解; (2)根据∠ABE的平分线与∠CDE的平分线相交于点F,过点E作EG∥AB,则∠BEG+∠ABE=180°,因为AB∥CD,EG∥AB,所以CD∥EG,所以∠DEG+∠CDE=180°,再结合①的结论即可说明∠BED与∠BFD之间的数量关系; (3)通过对的计算求得,利用角平分线的定义以及三角形外角的性质求得,即可求得. 【详解】 (1)①过F作FG//AB,如图: ∵AB∥CD,FG∥AB, ∴CD∥FG, ∴∠ABF=∠BFG,∠CDF=∠DFG, ∴∠DFB=∠DFG+∠BFG=∠CDF+∠ABF, ∵BF平分∠ABE, ∴∠ABE=2∠ABF, ∵DF平分∠CDE, ∴∠CDE=2∠CDF, ∴∠ABE+∠CDE=2∠ABF+2∠CDF=2(∠ABF+∠CDF)=60+80=140, ∴∠ABF+∠CDF=70, ∴∠DFB=∠ABF+∠CDF=70, 故答案为:70; ②∠F=∠BED, 理由是:分别过E、F作EN//AB,FM//AB, ∵EN//AB,∴∠BEN=∠ABE,∠DEN=∠CDE, ∴∠BED=∠ABE+∠CDE, ∵DF、BF分别是∠CDE的角平分线与∠ABE的角平分线, ∴∠ABE=2∠ABF,∠CDE=2∠CDF, 即∠BED=2(∠ABF+∠CDF); 同理,由FM//AB,可得∠F=∠ABF+∠CDF, ∴∠F=∠BED; (3)2∠F+∠BED=360°. 如图,过点E作EG∥AB, 则∠BEG+∠ABE=180°, ∵AB∥CD,EG∥AB, ∴CD∥EG, ∴∠DEG+∠CDE=180°, ∴∠BEG+∠DEG=360°-(∠ABE+∠CDE), 即∠BED=360°-(∠ABE+∠CDE), ∵BF平分∠ABE, ∴∠ABE=2∠ABF, ∵DF平分∠CDE, ∴∠CDE=2∠CDF, ∠BED=360°-2(∠ABF+∠CDF), 由①得:∠BFD=∠ABF+∠CDF, ∴∠BED=360°-2∠BFD, 即2∠F+∠BED=360°; (3)∵,∠F=α, ∴, 解得:, 如图, ∵∠CDE 为锐角,DF是∠CDE的角平分线, ∴∠CDH=∠DHB, ∴∠F∠DHB,即, ∴, 故答案为:. 【点睛】 本题考查了平行线的性质、角平分线的定义以及三角形外角性质的应用,在解答此题时要注意作出辅助线,构造出平行线求解.- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 人教版 中学 年级 下册 数学 期末 质量 监测 试卷 答案
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【快乐****生活】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【快乐****生活】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【快乐****生活】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【快乐****生活】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文