人教版八年级上学期压轴题强化数学试题含解析(一)[001].doc
《人教版八年级上学期压轴题强化数学试题含解析(一)[001].doc》由会员分享,可在线阅读,更多相关《人教版八年级上学期压轴题强化数学试题含解析(一)[001].doc(19页珍藏版)》请在咨信网上搜索。
人教版八年级上学期压轴题强化数学试题含解析(一) 1.如图1,在平面直角坐标系中,点A(a,0)、点B(b,0)为x轴上两点,点C在y轴的正半轴上,且a,b满足等式. (1)________; (2)如图2,若M,N是OC上的点,且,延长BN交AC于P,判断△APN的形状并说明理由; (3)如图3,若,点D为线段BC上的动点(不与B,C重合),过点D作于E,BG平分∠ABC交线段DE于点G,连AD,F为AD的中点,连接CG,CF,FG.试说明,CG与FG的数量关系. 2.(初步探索)(1)如图:在四边形中,,,、分别是、上的点,且,探究图中、、之间的数量关系. (1)(1)小明同学探究此问题的方法是:延长到点,使.连接,先证明,再证明,可得出结论,他的结论应是_____________; (2)(灵活运用)(2)如图2,若在四边形中,,,、分别是、上的点,且,上述结论是否仍然成立,并说明理由; 4.已知△ABC是等边三角形,△ADE的顶点D在边BC上 (1)如图1,若AD=DE,∠AED=60°,求∠ACE的度数; (2)如图2,若点D为BC的中点,AE=AC,∠EAC=90°,连CE,求证:CE=2BF; (3)如图3,若点D为BC的一动点,∠AED=90°,∠ADE=30°,已知△ABC的面积为4,当点D在BC上运动时,△ABE的面积是否发生变化?若不变,请求出其面积;若变化请说明理由. 4.已知,A(0,a),B(b,0),点为x轴正半轴上一个动点,AC=CD,∠ACD=90°. (1)已知a,b满足等式|a +b|+b2+4b=-4. ①求A点和B点的坐标; ②如图1,连BD交y轴于点H,求点H的坐标; (2)如图2,已知a+b=0,OC>OB,作点B关于y轴的对称点E,连DE,点F为DE的中点,连OF和CF,请补全图形,探究OF与CF有什么数量和位置关系,并证明你的结论. 5.如图,在平面直角坐标系中,已知点,,且,为轴上点右侧的动点,以为腰作等腰,使,,直线交轴于点. (1)求证:; (2)求证:; (3)当点运动时,点在轴上的位置是否发生变化,为什么? 6.完全平方公式:适当的变形,可以解决很多的数学问题. 例如:若,求的值. 解:因为 所以 所以 得. 根据上面的解题思路与方法,解决下列问题: (1)若,求的值; (2)①若,则 ; ②若则 ; (3)如图,点是线段上的一点,以为边向两边作正方形,设,两正方形的面积和,求图中阴影部分面积. 7.已知,. (1)若,作,点在内. ①如图1,延长交于点,若,,则的度数为 ; ②如图2,垂直平分,点在上,,求的值; (2)如图3,若,点在边上,,点在边上,连接,,,求的度数. 8.(1)如图1,已知:在ABC中,∠BAC=90°,AB=AC,直线m经过点A,BD⊥直线m,CE⊥直线m,垂足分别为点D、E. 证明:DE=BD+CE.(提示:由于DE=AD+AE,证明AD=CE,AE=BD即可) (2)如图2,将(1)中的条件改为:在ABC中,AB=AC,D、A、E三点都在直线m上,并且有∠BDA=∠AEC=∠BAC=,其中为任意钝角,请问结论DE=BD+CE是否成立?如成立,请你给出证明;若不成立,请说明理由. (3)如图3,D、E是D、A、E三点所在直线m上的两动点(D、A、E三点互不重合),点F为∠BAC平分线上的一点,且ABF和ACF均为等边三角形,连接BD、CE,若∠BDA=∠AEC=∠BAC,试证明DEF是等边三角形. 【参考答案】 2.(1)0 (2)等腰三角形,见解析 (3)CG=2FG 【分析】(1)由可得,得出a、b的值即可求解; (2)由OC垂直平分AB可得,再由外角可得 ,结合已知条件,等量代换即可得到结论; 解析:(1)0 (2)等腰三角形,见解析 (3)CG=2FG 【分析】(1)由可得,得出a、b的值即可求解; (2)由OC垂直平分AB可得,再由外角可得 ,结合已知条件,等量代换即可得到结论; (3)先延长GF至点M,使FM=FG,连接CG、CM、AM,可证,得到,再结合已知条件得到,可得是等腰三角形,利用等腰三角形的性质得出,最后证明 为等边三角形,即可得到结论. (1) 解得 (2) 是等腰三角形,理由如下: 由点A(a,0)、点B(b,0)为x轴上两点,且 可得,OA=OB OC垂直平分AB , 是等腰三角形 (3) ,理由如下: 如图,延长GF至点M,使FM=FG,连接CG、CM、AM F为AD的中点 在和中 垂直平分 ,BG平分 为等边三角形, 在和中 即是等腰三角形 为等边三角形 在 中, . 【点睛】本题是三角形的综合题目,考查了非负性求和、线段垂直平分线的性质、外角的性质、全等三角形的判定和性质、等腰三角形的性质、等边三角形的判定和性质及直角三角形的性质,涉及知识点多,能够合理添加辅助线并综合运用知识点是解题的关键. 3.(1)(初步探索)结论:∠BAE+∠FAD=∠EAF; (2)(灵活运用)成立,理由见解析 【分析】(1)延长FD到点G,使DG=BE,连接AG,可判定△ABE≌△ADG,进而得出∠BAE=∠D 解析:(1)(初步探索)结论:∠BAE+∠FAD=∠EAF; (2)(灵活运用)成立,理由见解析 【分析】(1)延长FD到点G,使DG=BE,连接AG,可判定△ABE≌△ADG,进而得出∠BAE=∠DAG,AE=AG,再判定△AEF≌△AGF,可得出∠EAF=∠GAF=∠DAG+∠DAF=∠BAE+∠DAF,据此得出结论; (2)延长FD到点G,使DG=BE,连接AG,先判定△ABE≌△ADG,进而得出∠BAE=∠DAG,AE=AG,再判定△AEF≌△AGF,可得出∠EAF=∠GAF=∠DAG+∠DAF=∠BAE+∠DAF. (1) 解:∠BAE+∠FAD=∠EAF. 理由:如图1,延长FD到点G,使DG=BE,连接AG, ∵, ∴, ∵DG=BE,, ∴△ABE≌△ADG, ∴∠BAE=∠DAG,AE=AG, ∵EF=BE+FD,DG=BE, ∴,且AE=AG,AF=AF, ∴△AEF≌△AGF, ∴∠EAF=∠GAF=∠DAG+∠DAF=∠BAE+∠DAF. 故答案为:∠BAE+∠FAD=∠EAF; (2) 如图2,延长FD到点G,使DG=BE,连接AG, ∵∠B+∠ADF=180°,∠ADG+∠ADF=180°, ∴∠B=∠ADG, 又∵AB=AD, ∴△ABE≌△ADG(SAS), ∴∠BAE=∠DAG,AE=AG, ∵EF=BE+FD=DG+FD=GF,AF=AF, ∴△AEF≌△AGF(SSS), ∴∠EAF=∠GAF=∠DAG+∠DAF=∠BAE+∠DAF 【点睛】本题考查了全等三角形的判定以及性质的综合应用,解决问题的关键是作辅助线构造全等三角形,根据全等三角形的对应角相等进行推导变形.解题时注意:同角的补角相等. 4.(1)60°;(2)见解析;(3)不变, 【分析】(1)由题意,先证△ADE是等边三角形,再证△BAD≌△CAE,得∠ACE=∠B=60°; (2)由题意,先求出∠BEC=30°,然后求出∠CF 解析:(1)60°;(2)见解析;(3)不变, 【分析】(1)由题意,先证△ADE是等边三角形,再证△BAD≌△CAE,得∠ACE=∠B=60°; (2)由题意,先求出∠BEC=30°,然后求出∠CFE=90°,利用直角三角形中30度角所对直角边等于斜边的一半,即可得证; (3)延长AE至F,使EF=AE,连DF、CF,先证明△ADF是等边三角形,然后证明△EGF≌△EHA,结合HG是定值,即可得到答案. 【详解】解:(1)根据题意, ∵AD=DE,∠AED=60°, ∴△ADE是等边三角形, ∴AD=AE,∠DAE=60°, ∵AB=AC,∠BAC=60°, ∴, 即, ∴△BAD≌△CAE, ∴∠ACE=∠B=60°; (2)连CF,如图: ∵AB=AC=AE, ∴∠AEB=∠ABE, ∵∠BAC=60°,∠EAC=90°, ∴∠BAE=150°, ∴∠AEB=∠ABE=15°; ∵△ACE是等腰直角三角形, ∴∠AEC=45°, ∴∠BEC=30°,∠EBC=45°, ∵AD垂直平分BC,点F在AD上, ∴CF=BF, ∴∠FCB=∠EBC=45°, ∴∠CFE=90°, 在直角△CEF中,∠CFE=90°,∠CEF=30°, ∴CE=2CF=2BF; (3)延长AE至F,使EF=AE,连DF、CF,如图: ∵∠AED=90°,EF=AE, ∴DE是中线,也是高, ∴△ADF是等腰三角形, ∵∠ADE=30°, ∴∠DAE=60°, ∴△ADF是等边三角形; 由(1)同理可求∠ACF=∠ABC=60°, ∴∠ACF=∠BAC=60°, ∴CF∥AB, 过E作EG⊥CF于G,延长GE交BA的延长线于点H, 易证△EGF≌△EHA, ∴EH=EG=HG, ∵HG是两平行线之间的距离,是定值, ∴S△ABE=S△ABC=; 【点睛】本题考查了等边三角形的判定和性质,等腰三角形的判定和性质,垂直平分线的性质,全等三角形的判定和性质,含30度角的直角三角形的性质,解题的关键是熟练掌握所学的知识,正确的作出辅助线,从而进行解题. 5.(1)①A(0,2),B(-2,0);②H(0,-2);(2)CF⊥OF,CF=OF,证明见解析. 【分析】(1)①利用绝对值、完全平方的非负性的应用,求出a、b的值,即可得到答案; ②过C作y 解析:(1)①A(0,2),B(-2,0);②H(0,-2);(2)CF⊥OF,CF=OF,证明见解析. 【分析】(1)①利用绝对值、完全平方的非负性的应用,求出a、b的值,即可得到答案; ②过C作y轴垂线交BA的延长线于E,然后证明△CEA≌△CBD,得到OB=OH,即可得到答案; (2)由题意,先证明△DFG≌△EFO,然后证明△DCG≌△ACO,得到△OCG是等腰直角三角形,再根据三线合一定理,即可得到结论成立. 【详解】解:(1)∵, ∴, ∴, ∴,, ∴, ∴, ∴A(0,2),B(2,0); ②过C作x轴垂线交BA的延长线于E, ∵OA=OB=2,∠AOB=90°, ∴△AOB是等腰直角三角形, ∴∠ABO=45°, ∵EC⊥BC, ∴△BCE是等腰直角三角形, ∴BC=EC,∠BCE=90°=∠ACD, ∴∠ACE=∠DCB, ∵AC=DC, ∴△CEA≌△CBD, ∴∠CBD=∠E=45°, ∴OH=OB=2, ∴H(0,2); (2)补全图形,如图: ∵点B、E关于y轴对称, ∴OB=OE, ∵a+b=0,即 ∴OA=OB=OE 延长OF至G使FG=OF,连DG,CG, ∵OF=FG,∠OFE=∠DFG,EF=DF ∴△DFG≌△EFO ∴DG=OE=OA,∠DGF=∠EOF ∴DG∥OE ∴∠CDG=∠DCO; ∵∠ACO+∠CAO=∠ACO+∠DCO=90°, ∴∠DCO=∠CAO; ∴∠CDG=∠DCO=∠CAO; ∵CD=AC,OA=DG ∴△DCG≌△ACO ∴OC=GC,∠DCG=∠ACO ∴∠OCG=90°, ∴∠COF=45°, ∴△OCG是等腰直角三角形, 由三线合一定理得CF⊥OF ∵∠OCF=∠COF=45°, ∴CF=OF; 【点睛】本题考查了等腰三角形的判定和性质,全等三角形的判定和性质,轴对称的性质,非负性的应用,解题的关键是熟练掌握所学的知识,正确的作出辅助线进行解题. 6.(1)见解析;(2)见解析;(3)不变,理由见解析 【分析】(1)先根据非负数的性质求出、的值,作于点,由定理得出,根据全等三角形的性质即可得出结论; (2)先根据,得出,再由定理即可得出; 解析:(1)见解析;(2)见解析;(3)不变,理由见解析 【分析】(1)先根据非负数的性质求出、的值,作于点,由定理得出,根据全等三角形的性质即可得出结论; (2)先根据,得出,再由定理即可得出; (3)设,由全等三角形的性质可得出,故为定值,再由,可知的长度不变,故可得出结论. 【详解】解:(1)证明:, ,解得, ,, 作于点, ,, ,, 在与中, , , ; (2)证明:, ,即, 在与中, , ; (3)点在轴上的位置不发生改变. 理由:设, 由(2)知,, , ,为定值,, 长度不变, 点在轴上的位置不发生改变. 【点睛】本题考查的是全等三角形的判定与性质,熟知全等三角形的判定定理是解答此题的关键. 7.(1)12;(2)①6;②17;(3) 【分析】(1)根据完全平方公式的变形应用,解决问题; (2)①两边平方,再将代入计算; ②两边平方,再将代入计算; (3)由题意可得:,,两边平方从而 解析:(1)12;(2)①6;②17;(3) 【分析】(1)根据完全平方公式的变形应用,解决问题; (2)①两边平方,再将代入计算; ②两边平方,再将代入计算; (3)由题意可得:,,两边平方从而得到,即可算出结果. 【详解】解:(1); ; ; 又; , , ∴. (2)①, ; 又, . ②由, ; 又, . (3)由题意可得,,; ,; , ; 图中阴影部分面积为直角三角形面积, , . 【点睛】本题主要考查了完全平方公式的适当变形灵活应用,(1)可直接应用公式变形解决问题.(2)①②小题都需要根据题意得出两个因式和或者差的结果,合并同类项得①,②是解决本题的关键,再根据完全平方公式变形应用得出答案.(3)根据几何图形可知选段,再根据两个正方形面积和为18,利用完全平方公式变形应用得到,再根据直角三角形面积公式得出答案. 8.(1)①15°;②;(2) 【分析】(1)①根据等腰直角三角形的性质,连接,得,,所对的直角边是斜边的一半,可得,所以可得,,,和是等腰三角形,由外角性质计算可得; ②构造“一线三垂直”模型,证 解析:(1)①15°;②;(2) 【分析】(1)①根据等腰直角三角形的性质,连接,得,,所对的直角边是斜边的一半,可得,所以可得,,,和是等腰三角形,由外角性质计算可得; ②构造“一线三垂直”模型,证明三角形,利用面积比等于等高的三角形的底边的比,结合已知条件即可解得. (2)构造等边,通过证明,等边代换,得出等腰三角形,代入角度计算即得. 【详解】(1)①连接AE,在,因为,, ,, ,, , , , ,, , , , 故答案为:. ②过C作交DF延长线于G,连接AE AD垂直平分BE, , , , , 故答案为:; (2)以AB向下构造等边,连接DK, 延长AD,BK交于点T, ,, , , ,, 等边中,,, ,, 在和中, , 等边三角形三线合一可知,BD是边AK的垂直平分线, , , , , 故答案为:. 【点睛】考查了等腰直角三角形的性质,外角的性质,等腰三角形的判定和性质,构造等边三角形的方法证明全等,全等三角形的性质应用很关键,熟记几何图形的性质和判定是解决图形问题的重要方法依据. 9.(1)见解析;(2)成立,见解析;(3)见解析 【分析】(1)运用AAS证明△ADB≌△CEA即可; (2)运用AAS证明△ADB≌△CEA即可; (3)运用SAS证明△DBF≌△EAF,后运 解析:(1)见解析;(2)成立,见解析;(3)见解析 【分析】(1)运用AAS证明△ADB≌△CEA即可; (2)运用AAS证明△ADB≌△CEA即可; (3)运用SAS证明△DBF≌△EAF,后运用有一个角是60°的等腰三角形是等边三角形证明即可. 【详解】(1)如图1,∵BD⊥直线m,CE⊥直线m, ∴∠BDA=∠CEA=90°, ∵∠BAC=90°, ∴∠BAD+∠CAE=90° ∵∠BAD+∠ABD=90°, ∴∠CAE=∠ABD, 在△ADB和△CEA中,, ∴△ADB≌△CEA(AAS), ∴AE=BD,AD=CE, ∴DE=AE+AD=BD+CE; (2)如图2, ∵∠BDA=∠BAC=α, ∴∠DBA+∠BAD=∠BAD+∠CAE=, ∴∠DBA=∠CAE, 在△ADB和△CEA中,, ∴△ADB≌△CEA(AAS), ∴AE=BD,AD=CE, ∴DE=AE+AD=BD+CE; (3)如图3, 由(2)可知,△ADB≌△CEA, ∴BD=AE,∠DBA=∠CAE, ∵△ABF和△ACF均为等边三角形, ∴∠ABF=∠CAF=60°,BF=AF, ∴∠DBA+∠ABF=∠CAE+∠CAF, ∴∠DBF=∠FAE, ∵在△DBF和△EAF中, , ∴△DBF≌△EAF(SAS), ∴DF=EF,∠BFD=∠AFE, ∴∠DFE=∠DFA+∠AFE=∠DFA+∠BFD=60°, ∴△DEF为等边三角形. 【点睛】本题考查了三角形全等的判定和性质,等边三角形的判定,熟练掌握三角形全等的判定是解题的关键.- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 001 人教版八 年级 上学 压轴 强化 数学试题 解析
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【快乐****生活】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【快乐****生活】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【快乐****生活】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【快乐****生活】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文