人教版七年级数学下册期末试卷(附答案).doc
《人教版七年级数学下册期末试卷(附答案).doc》由会员分享,可在线阅读,更多相关《人教版七年级数学下册期末试卷(附答案).doc(25页珍藏版)》请在咨信网上搜索。
人教版七年级数学下册期末试卷(附答案) 一、选择题 1.如图,下列各组角中是同位角的是( ) A.∠1和∠2 B.∠3和∠4 C.∠2和∠4 D.∠1和∠4 2.下列四幅名车标志设计中能用平移得到的是( ) A.奥迪 B.本田 C.奔驰 D.铃木 3.在平面直角坐标系中,点所在的位置是( ) A.轴 B.轴 C.第一象限 D.第四象限 4.下列说法中,错误的个数为( ). ①两条不相交的直线叫做平行线;②过一点有且只有一条直线与已知直线平行;③在同一平面内不平行的两条线段一定相交;④两条直线与第三条直线相交,那么这两条直线也相交. A.1个 B.2个 C.3个 D.4个 5.如图, ,若,,,则下列说法正确的是( ) A. B. C. D. 6.下列计算正确的是( ) A.=±2 B.(﹣3)0=0 C.(﹣2a2b)2=4a4b2 D.2a3÷(﹣2a)=﹣a3 7.如图,将一张长方形纸片折叠,若,则的度数是( ) A.80° B.70° C.60° D.50° 8.在平面直角坐标系中,对于点P(x,y),我们把点P’(-y+1,x+1)叫做点P的伴随点.已知点A1的伴随点为A2,点A2的伴随点为A3,点A3的伴随点为A4,…,这样依次得到点A1,A2,A3,…,An,….若点A1的坐标为(a,b),则点A2021的坐标为( ) A.(a,b) B.(-b+1,a+1) C.(-a,-b+2) D.(b-1,-a+1) 九、填空题 9.已知=8,则x的值是________________. 十、填空题 10.点A关于x轴的对称点的坐标为____________. 十一、填空题 11.如图,在中,,,是的角平分线,,垂足为,,则__________. 十二、填空题 12.如图,现将一块含有60°角的三角板的顶点放在直尺的一边上,若∠1=∠2,那么∠1的度数为__________. 十三、填空题 13.如图,将ABC沿着AC边翻折得到AB1C,连接BB1交AC于点E,过点B1作B1DAC交BC延长线于点D,交BA延长线于点F,连接DA,若∠CBE=45°,BD=6cm,则ADB1的面积为_________. 十四、填空题 14.若,且a,b是两个连续的整数,则a+b的值为_______ 十五、填空题 15.如图,在平面直角坐标系中,已知点,,连接,交y轴于B,且,,则点B坐标为__. 十六、填空题 16.如图,在平面直角坐标系中,轴,轴,点、、、在轴上,,,,,,把一条长为2021个单位长度且无弹性的细线(线的粗细忽略不计)的一端固定在处,并按的规律紧绕在图形“凸”的边上,则细线的另一端所在位置的点的坐标________. 十七、解答题 17.计算: (1)3-(-5)+(-6) (2) 十八、解答题 18.求下列各式中的x. (1)x2-81=0 (2)(x﹣1)3=8 十九、解答题 19.完成下面的证明: 已知:如图, , 和相交于点, 平分,和相交于点,. 求证:. 证明:(已知), (______________), ________(两直线平行,同位角相等). 又(已知), ______(________) (等量代换) . 平分(已知) , _______(角平分线的定义). (_________). 二十、解答题 20.已知在平面直角坐标系中有三点,,,请回答如下问题: (1)在平面直角坐标系内描出、、,连接三边得到; (2)将三点向下平移2个单位长度,再向左平移1个单位,得到;画出,并写出、、三点坐标; (3)求出的面积. 二十一、解答题 21.阅读下面的文字,解答问题. 大家知道是无理数,而无理数是无限不循环小数,因此的小数部分我们不可能全部地写出来,于是小明用来表示的小数部分,你同意小明的表示方法吗? 事实上,小明的表示方法是有道理,因为的整数部分是1,将这个数减去其整数部分,差就是小数部分. 请解答:(1)若的整数部分为,小数部分为,求的值. (2)已知:,其中是整数,且,求的值. 二十二、解答题 22.如图1,用两个边长相同的小正方形拼成一个大的正方形. (1)如图2,若正方形纸片的面积为1,则此正方形的对角线AC的长为 dm. (2)如图3,若正方形的面积为16,李明同学想沿这块正方形边的方向裁出一块面积为12的长方形纸片,使它的长和宽之比为3∶2,他能裁出吗?请说明理由. 二十三、解答题 23.如图1,MN∥PQ,点C、B分别在直线MN、PQ上,点A在直线MN、PQ之间. (1)求证:∠CAB=∠MCA+∠PBA; (2)如图2,CD∥AB,点E在PQ上,∠ECN=∠CAB,求证:∠MCA=∠DCE; (3)如图3,BF平分∠ABP,CG平分∠ACN,AF∥CG.若∠CAB=60°,求∠AFB的度数. 二十四、解答题 24.已知直线,M,N分别为直线,上的两点且,P为直线上的一个动点.类似于平面镜成像,点N关于镜面所成的镜像为点Q,此时. (1)当点P在N右侧时: ①若镜像Q点刚好落在直线上(如图1),判断直线与直线的位置关系,并说明理由; ②若镜像Q点落在直线与之间(如图2),直接写出与之间的数量关系; (2)若镜像,求的度数. 二十五、解答题 25.如图,直线,、是、上的两点,直线与、分别交于点、,点是直线上的一个动点(不与点、重合),连接、. (1)当点与点、在一直线上时,,,则_____. (2)若点与点、不在一直线上,试探索、、之间的关系,并证明你的结论. 【参考答案】 一、选择题 1.D 解析:D 【分析】 根据同位角的定义分析即可,两条直线被第三条直线所截,如果两个角分别在两条直线的同侧,且在第三条直线的同旁,那么这两个角叫做同位角. 【详解】 A. ∠1和∠2是邻补角,不符合题意; B. ∠3和∠4是同旁内角,不符合题意; C. ∠2和∠4没有关系,不符合题意; D. ∠1和∠4是同位角,符合题意; 故选D. 【点睛】 本题考查了同位角的定义,理解同位角的定义是解题的关键. 2.A 【分析】 根据平移的概念:在平面内,把一个图形整体沿着某一方向移动,这种图形的平行移动叫做平移变换,简称平移,由此即可求解. 【详解】 解:A、是经过平移得到的,故符合题意; B、不是经过平移得 解析:A 【分析】 根据平移的概念:在平面内,把一个图形整体沿着某一方向移动,这种图形的平行移动叫做平移变换,简称平移,由此即可求解. 【详解】 解:A、是经过平移得到的,故符合题意; B、不是经过平移得到的,故的符合题意; C、不是经过平移得到的,故不符合题意; D、不是经过平移得到的,故不符合题意; 故选A. 【点睛】 本题主要考查了图形的平移,解题的关键在于能够熟练掌握图形平移的概念. 3.A 【分析】 由于点的纵坐标为0,则可判断点在轴上. 【详解】 解:点的纵坐标为0, 故在轴上, 故选:A. 【点睛】 本题考查了点的坐标,解题的关键是记住各象限内的点的坐标特征和坐标轴上点的坐标特点. 4.D 【分析】 根据平行线的定义,平行线公理,同一平面内,直线的位置关系,逐一判断各个小题,即可得到答案. 【详解】 ①在同一平面内,两条不相交的直线叫做平行线,故本小题错误, ②过直线外一点有且只有一条直线与已知直线平行,故本小题错误, ③在同一平面内不平行的两条直线一定相交;故本小题错误, ④两条直线与第三条直线相交,那么这两条直线不一定相交,故本小题错误. 综上所述:错误的个数为4个. 故选D. 【点睛】 本题主要考查平行线的定义,平行线公理,掌握平行线的定义,平行线公理是解题的关键. 5.D 【分析】 根据平行线的性质进行求解即可得到答案. 【详解】 解:∵BE∥CD ∴∠ 2+∠C=180°,∠ 3+∠D=180° ∵∠ 2=50°,∠ 3=120° ∴∠C=130°,∠D=60° 又∵BE∥AF,∠ 1=40° ∴∠A=180°-∠ 1=140°,∠F=∠ 3=120° 故选D. 【点睛】 本题主要考查了平行线的性质,熟练掌握平行线的性质是解题的关键. 6.C 【分析】 根据整式的运算法则,立方根的概念,零指数幂的意义即可求出答案. 【详解】 A.原式=﹣2,故A错误; B.原式=1,故B错误; C、(﹣2a2b)2=4a4b2,计算正确; D、原式=﹣a2,故D错误; 故选C. 【点睛】 本题考查学生的运算能力,解题的关键是熟练运用运算法则,本题属于基础题型. 7.A 【分析】 先由折叠的性质得出∠4=∠2=50°,再根据矩形对边平行可以得出答案. 【详解】 解:如图, 由折叠性质知∠4=∠2=50°, ∴∠3=180°-∠4-∠2=80°, ∵AB∥CD, ∴∠1=∠3=80°, 故选:A. 【点睛】 本题主要考查平行线的性质,解题的关键是掌握两直线平行同位角相等的性质和折叠的性质. 8.A 【分析】 据“伴随点”的定义依次求出各点,不难发现,每4个点为一个循环组依次循环,用2021除以4,根据商和余数的情况确定点A2021的坐标即可. 【详解】 解:观察发现:A1(a,b),A2( 解析:A 【分析】 据“伴随点”的定义依次求出各点,不难发现,每4个点为一个循环组依次循环,用2021除以4,根据商和余数的情况确定点A2021的坐标即可. 【详解】 解:观察发现:A1(a,b),A2(-b+1,a+1),A3(-a,-b+2),A4(b-1,-a+1),A5(a,b),A6(-b+1,a+1)… ∴依此类推,每4个点为一个循环组依次循环, ∵2021÷4=505……1, ∴点A2021的坐标与A1的坐标相同,为(a,b), 故选:A. 【点睛】 本题是对点的变化规律的考查,读懂题目信息,理解“伴随点”的定义并求出每4个点为一个循环组依次循环是解题的关键,也是本题的难点. 九、填空题 9.65 【解析】 【分析】 根据算术平方根的定义确定x-1的值,解方程即可. 【详解】 ∵=8 ∴x-1=64 x=65 故答案为65 【点睛】 本题考查了算术平方根的定义,掌握算术平方根的定义是关键 解析:65 【解析】 【分析】 根据算术平方根的定义确定x-1的值,解方程即可. 【详解】 ∵=8 ∴x-1=64 x=65 故答案为65 【点睛】 本题考查了算术平方根的定义,掌握算术平方根的定义是关键. 十、填空题 10.(2,4) 【分析】 直接利用关于x轴对称点的坐标特点:横坐标不变,纵坐标互为相反数,即点P(x,y)关于x轴的对称点P′的坐标是(x,-y),进而得出答案. 【详解】 解:点A(2,-4)关于x轴 解析:(2,4) 【分析】 直接利用关于x轴对称点的坐标特点:横坐标不变,纵坐标互为相反数,即点P(x,y)关于x轴的对称点P′的坐标是(x,-y),进而得出答案. 【详解】 解:点A(2,-4)关于x轴对称点A1的坐标为:(2,4). 故答案为:(2,4). 【点睛】 此题主要考查了关于x轴对称点的性质,正确把握横纵坐标的关系是解题关键. 十一、填空题 11.【解析】 已知∠C=90°,AD是△ABC的角平分线,DE⊥AB,根据角平分线的性质可得DC=DE=1;因,根据30°直角三角形的性质可得BD=2DE=2,所以BC=CD+DB=1+2=3. 解析:【解析】 已知∠C=90°,AD是△ABC的角平分线,DE⊥AB,根据角平分线的性质可得DC=DE=1;因,根据30°直角三角形的性质可得BD=2DE=2,所以BC=CD+DB=1+2=3. 十二、填空题 12.【分析】 根据题意知:,得出,从而得出,从而求算∠1. 【详解】 解:如图: ∵ ∴ 又∵∠1=∠2, ∴,解得: 故答案为: 【点睛】 本题考查平行线的性质,掌握两直线平行,同位角相等是 解析: 【分析】 根据题意知:,得出,从而得出,从而求算∠1. 【详解】 解:如图: ∵ ∴ 又∵∠1=∠2, ∴,解得: 故答案为: 【点睛】 本题考查平行线的性质,掌握两直线平行,同位角相等是解题关键. 十三、填空题 13.cm² 【分析】 根据翻折变换的性质可知AC垂直平分BB1,且B1D平行AC,得到AC为三角形ADB中位线,从而求解. 【详解】 解:根据翻折变换的性质可知AC垂直平分BB1, ∵B1D∥AC, ∴ 解析:cm² 【分析】 根据翻折变换的性质可知AC垂直平分BB1,且B1D平行AC,得到AC为三角形ADB中位线,从而求解. 【详解】 解:根据翻折变换的性质可知AC垂直平分BB1, ∵B1D∥AC, ∴AC为三角形ADB中位线, ∴BC=CD=BD=3cm, 在Rt△BCE中,∠CBE=45°,BC=3cm, ∴CE2+BE2=BC2, 解得BE=CE=cm. ∴EB1=BE=, ∵CE为△BDB1中位线, ∴DB1=2CE=3cm, △ADB1的高与EB1相等, ∴S△ADB1=×DB1×EB1=××3=cm², 故答案为:cm². 【点睛】 本题主要考查了翻折变换的性质、三角形面积的求法,解题关键是能够明确AC为△ADB的中位线从而得出答案. 十四、填空题 14.13 【解析】 分析:先估算出的范围,求出a、b的值,再代入求出即可. 详解:∵6<<7,∴a=6,b=7,∴a+b=13. 故答案为13. 点睛:本题考查了估算无理数的大小,能估算出的范围是解答此 解析:13 【解析】 分析:先估算出的范围,求出a、b的值,再代入求出即可. 详解:∵6<<7,∴a=6,b=7,∴a+b=13. 故答案为13. 点睛:本题考查了估算无理数的大小,能估算出的范围是解答此题的关键. 十五、填空题 15.【分析】 由立方根及算术平方根、完全平方式求出,的值,得出,两点的坐标,连接,设,根据三角形的面积可求出的值,则答案可求出. 【详解】 解:(1),, ,,, ,, . 如图,连接,设, , , 解析: 【分析】 由立方根及算术平方根、完全平方式求出,的值,得出,两点的坐标,连接,设,根据三角形的面积可求出的值,则答案可求出. 【详解】 解:(1),, ,,, ,, . 如图,连接,设, , , , , , 点的坐标为, 故答案是:. 【点睛】 本题考查了立方根及算术平方根、完全平方公式、三角形的面积、坐标与图形的性质,解题的关键是利用分割的思想解答. 十六、填空题 16.【分析】 先求出“凸”形的周长为20,得到的余数为1,由此即可解决问题. 【详解】 解:,,,,, ∴, “凸”形的周长为20, 又∵的余数为1, 细线另一端所在位置的点在的中点处,坐标为. 故 解析: 【分析】 先求出“凸”形的周长为20,得到的余数为1,由此即可解决问题. 【详解】 解:,,,,, ∴, “凸”形的周长为20, 又∵的余数为1, 细线另一端所在位置的点在的中点处,坐标为. 故答案为:. 【点睛】 本题考查规律型:点的坐标,解题的关键是理解题意,求出“凸”形的周长,属于中考常考题型. 十七、解答题 17.(1)2;(2)-1 【分析】 (1)利用加减法法则计算即可得到结果; (2)先算乘方和平方根,再算乘法,最后进行加减计算即可得到结果. 【详解】 (1)解:3-(-5)+(-6) =3+5-6 解析:(1)2;(2)-1 【分析】 (1)利用加减法法则计算即可得到结果; (2)先算乘方和平方根,再算乘法,最后进行加减计算即可得到结果. 【详解】 (1)解:3-(-5)+(-6) =3+5-6 =2 (2)解:(-1)2- =1-4× =1-2 =-1 【点睛】 此题考查了实数的运算,熟练掌握运算法则是解本题的关键. 十八、解答题 18.(1)x=±9;(2)x=3 【分析】 (1)方程整理后,利用平方根定义开方即可求出解; (2)利用立方根定义开立方即可求出解. 【详解】 解:(1)方程整理得:x2=81, 开方得:x=±9; ( 解析:(1)x=±9;(2)x=3 【分析】 (1)方程整理后,利用平方根定义开方即可求出解; (2)利用立方根定义开立方即可求出解. 【详解】 解:(1)方程整理得:x2=81, 开方得:x=±9; (2)方程整理得:(x-1)3=8, 开立方得:x-1=2, 解得:x=3. 【点睛】 本题考查了平方根、立方根,熟练掌握各自的定义是解本题的关键. 十九、解答题 19.内错角相等,两直线平行;1;1;两直线平行,同位角相等;2;等量代换. 【分析】 由可判定,即得出,再根据得出,等量代换得到,再根据角平分线的定义等量代换即可得解. 【详解】 证明:(已知), (内 解析:内错角相等,两直线平行;1;1;两直线平行,同位角相等;2;等量代换. 【分析】 由可判定,即得出,再根据得出,等量代换得到,再根据角平分线的定义等量代换即可得解. 【详解】 证明:(已知), (内错角相等,两直线平行), (两直线平行,同位角相等). 又(已知), (两直线平行,同位角相等), (等量代换). 平分(已知), (角平分线的定义). (等量代换). 故答案为:内错角相等,两直线平行;1;1;两直线平行,同位角相等;2;等量代换. 【点睛】 本题考查了平行线的判定与性质,解题的关键是熟记“内错角相等,两直线平行”、“两直线平行,同位角相等”. 二十、解答题 20.(1)见详解;(2)图形见详解,(-4,-2)、(4,2)、(0,3);(3)12. 【分析】 (1)根据坐标在坐标图中描点连线即可; (2)按照平移方式描点连线并写出坐标点; (3)根据坐标点利用 解析:(1)见详解;(2)图形见详解,(-4,-2)、(4,2)、(0,3);(3)12. 【分析】 (1)根据坐标在坐标图中描点连线即可; (2)按照平移方式描点连线并写出坐标点; (3)根据坐标点利用割补法求面积即可. 【详解】 解:(1)如图: (2)平移后如图: 平移后坐标分别为:(-4,-2)、(4,2)、(0,3); (3)的面积: . 【点睛】 此题考查坐标系中坐标的平移和坐标图形的面积,难度一般,掌握平移的性质是关键. 二十一、解答题 21.(1)6;(2)12− 【分析】 (1)先求出的取值范围即可求出a和b的值,然后代入求值即可; (2)先求出的取值范围,即可求出10+的整数部分和小数部分,从而求出x和y,从而求出结论. 【详解】 解析:(1)6;(2)12− 【分析】 (1)先求出的取值范围即可求出a和b的值,然后代入求值即可; (2)先求出的取值范围,即可求出10+的整数部分和小数部分,从而求出x和y,从而求出结论. 【详解】 解:(1)∵ 3<<4, ∴ a=3,b=-3 ∴ =+-3- =6 (2) ∵1<<2. 又∵10+=x+y,其中x是整数,且0<y<1, ∴x=11, y=−1. ∴x−y=11−(−1)=12− 【点睛】 此题考查的是求无理数的整数部分、小数部分和实数的运算,掌握求无理数的取值范围是解决此题的关键. 二十二、解答题 22.(1);(2)不能,理由见解析 【分析】 (1)由正方形面积,可求得正方形边长,然后利用勾股定理即可求出对角线长; (2)利用方程思想求出长方形的长边,然后与正方形边长比较大小即可. 【详解】 解: 解析:(1);(2)不能,理由见解析 【分析】 (1)由正方形面积,可求得正方形边长,然后利用勾股定理即可求出对角线长; (2)利用方程思想求出长方形的长边,然后与正方形边长比较大小即可. 【详解】 解:(1)∵正方形纸片的面积为, ∴正方形的边长, ∴. 故答案为:. (2)不能; 根据题意设长方形的长和宽分别为和. ∴长方形面积为:, 解得:, ∴长方形的长边为. ∵, ∴他不能裁出. 【点睛】 本题考查了算术平方根在长方形和正方形面积中的应用,灵活的进行算术平方根计算及无理数大小比较是解题的关键. 二十三、解答题 23.(1)证明见解析;(2)证明见解析;(3)120°. 【分析】 (1)过点A作AD∥MN,根据两直线平行,内错角相等得到∠MCA=∠DAC,∠PBA=∠DAB,根据角的和差等量代换即可得解; (2) 解析:(1)证明见解析;(2)证明见解析;(3)120°. 【分析】 (1)过点A作AD∥MN,根据两直线平行,内错角相等得到∠MCA=∠DAC,∠PBA=∠DAB,根据角的和差等量代换即可得解; (2)由两直线平行,同旁内角互补得到∴、∠CAB+∠ACD=180°,由邻补角定义得到∠ECM+∠ECN=180°,再等量代换即可得解; (3)由平行线的性质得到,∠FAB=120°﹣∠GCA,再由角平分线的定义及平行线的性质得到∠GCA﹣∠ABF=60°,最后根据三角形的内角和是180°即可求解. 【详解】 解:(1)证明:如图1,过点A作AD∥MN, ∵MN∥PQ,AD∥MN, ∴AD∥MN∥PQ, ∴∠MCA=∠DAC,∠PBA=∠DAB, ∴∠CAB=∠DAC+∠DAB=∠MCA+∠PBA, 即:∠CAB=∠MCA+∠PBA; (2)如图2,∵CD∥AB, ∴∠CAB+∠ACD=180°, ∵∠ECM+∠ECN=180°, ∵∠ECN=∠CAB ∴∠ECM=∠ACD, 即∠MCA+∠ACE=∠DCE+∠ACE, ∴∠MCA=∠DCE; (3)∵AF∥CG, ∴∠GCA+∠FAC=180°, ∵∠CAB=60° 即∠GCA+∠CAB+∠FAB=180°, ∴∠FAB=180°﹣60°﹣∠GCA=120°﹣∠GCA, 由(1)可知,∠CAB=∠MCA+∠ABP, ∵BF平分∠ABP,CG平分∠ACN, ∴∠ACN=2∠GCA,∠ABP=2∠ABF, 又∵∠MCA=180°﹣∠ACN, ∴∠CAB=180°﹣2∠GCA+2∠ABF=60°, ∴∠GCA﹣∠ABF=60°, ∵∠AFB+∠ABF+∠FAB=180°, ∴∠AFB=180°﹣∠FAB﹣∠FBA =180°﹣(120°﹣∠GCA)﹣∠ABF =180°﹣120°+∠GCA﹣∠ABF =120°. 【点睛】 本题主要考查了平行线的性质,线段、角、相交线与平行线,准确的推导是解决本题的关键. 二十四、解答题 24.(1)①,证明见解析,②,(2)或. 【分析】 (1) ①根据和镜像证出,即可判断直线与直线的位置关系,②过点Q作QF∥CD,根据平行线的性质证即可; (2)过点Q作QF∥CD,根据点P的位置不同, 解析:(1)①,证明见解析,②,(2)或. 【分析】 (1) ①根据和镜像证出,即可判断直线与直线的位置关系,②过点Q作QF∥CD,根据平行线的性质证即可; (2)过点Q作QF∥CD,根据点P的位置不同,分类讨论,依据平行线的性质求解即可. 【详解】 (1)①, 证明:∵, ∴, ∵, ∴, ∴; ②过点Q作QF∥CD, ∵, ∴, ∴,, ∴, ∵, ∴; (2)如图,当点P在N右侧时,过点Q作QF∥CD, 同(1)得,, ∴,, ∵, ∴, ∴, ∵, ∴, ∴, 如图,当点P在N左侧时,过点Q作QF∥CD,同(1)得,, 同理可得,, ∵, ∴, ∴, ∵, ∴, ∴; 综上,的度数为或. 【点睛】 本题考查了平行线的性质与判定,解题关键是恰当的作辅助线,熟练利用平行线的性质推导角之间的关系. 二十五、解答题 25.(1)120°;(2)∠EPF =∠AEP+∠CFP或∠AEP=∠EPF+∠CFP,证明见详解. 【分析】 (1)根据题意,当点与点、在一直线上时,作出图形,由AB∥CD,∠FHP=60°,可以推出 解析:(1)120°;(2)∠EPF =∠AEP+∠CFP或∠AEP=∠EPF+∠CFP,证明见详解. 【分析】 (1)根据题意,当点与点、在一直线上时,作出图形,由AB∥CD,∠FHP=60°,可以推出=60°,计算∠PFD即可; (2)根据点P是动点,分三种情况讨论:①当点P在AB与CD之间时;②当点P在AB上方时;③当点P在CD下方时,分别求出∠AEP、∠EPF、∠CFP之间的关系即可. 【详解】 (1)当点与点、在一直线上时,作图如下, ∵AB∥CD,∠FHP=60°,, ∴=∠FHP=60°, ∴∠EFD=180°-∠GEP=180°-60°=120°, ∴∠PFD=120°, 故答案为:120°; (2)满足关系式为∠EPF =∠AEP+∠CFP或∠AEP=∠EPF+∠CFP. 证明:根据点P是动点,分三种情况讨论: ①当点P在AB与CD之间时, 过点P作PQ∥AB,如下图, ∵AB∥CD, ∴PQ∥AB∥CD, ∴∠AEP=∠EPQ,∠CFP=∠FPQ, ∴∠EPF=∠EPQ+∠FPQ=∠AEP+∠CFP, 即∠EPF =∠AEP+∠CFP; ②当点P在AB上方时,如下图所示, ∵∠AEP=∠EPF+∠EQP, ∵AB∥CD, ∴∠CFP=∠EQP, ∴∠AEP=∠EPF+∠CFP; ③当点P在CD下方时, ∵AB∥CD, ∴∠AEP=∠EQF, ∴∠EQF=∠EPF+∠CFP, ∴∠AEP=∠EPF+∠CFP, 综上所述,∠AEP、∠EPF、∠CFP之间满足的关系式为:∠EPF =∠AEP+∠CFP或∠AEP=∠EPF+∠CFP, 故答案为:∠EPF =∠AEP+∠CFP或∠AEP=∠EPF+∠CFP. 【点睛】 本题考查了平行线的性质,外角的性质,掌握平行线的性质是解题的关键,注意分情况讨论问题.- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 人教版 七年 级数 下册 期末试卷 答案
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【a199****6536】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【a199****6536】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【a199****6536】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【a199****6536】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文