上海松江二中集团初级中学八年级上册期末数学试卷含答案.doc
《上海松江二中集团初级中学八年级上册期末数学试卷含答案.doc》由会员分享,可在线阅读,更多相关《上海松江二中集团初级中学八年级上册期末数学试卷含答案.doc(18页珍藏版)》请在咨信网上搜索。
上海松江二中集团初级中学八年级上册期末数学试卷含答案 一、选择题 1、下列图形中,不是轴对称图形的是( ) A. B. C. D. 2、“春风不来,三月的柳絮不飞”,据测定,柳絮纤维的直径约是0.00000105米,将数据0.00000105用科学记数法表示为( ) A. B. C. D. 3、下列计算正确的是( ) A. B. C. D. 4、若式子有意义,则的取值范围为( ) A. B. C.且 D. 5、下列等式由左边到右边的变形中,属于因式分解的是( ) A. B. C. D. 6、若把分式中的x、y都扩大到原来的3倍,那么分式的值( ) A.不变 B.缩小到原来的 C.扩大到原来的3倍 D.扩大到原来的9倍 7、如图,能用ASA来判断△ACD≌△ABE,需要添加的条件是( ) A.∠AEB=∠ADC,AC=AB B.∠AEB=∠ADC,CD=BE C.AC=AB,AD=AE D.AC=AB,∠C=∠B 8、若关于x的分式方有增根,则m的值为( ) A.或2 B.1 C. D.或 9、在ABC中,已知D为直线BC上一点,若,,且,则β与α之间不可能存在的关系式是( ) A. B. C. D. 二、填空题 10、如图,两个正方形的边长分别为、,如果、满足,,则阴影部分的面积为( ) A. B.9 C.18 D.27 11、如果分式的值是0,则a的取值范围是__________. 12、点关于轴对称的点的坐标为_________. 13、已知,则的值是__________. 14、已知,,则______. 15、AD为等腰△ABC底边BC上的高,且AD=8,腰AB的垂直平分线EF交AC于F,M为线段EF上一动点,则BM+DM的最小值为 _____. 16、若关于x的多项式是完全平方式,则的值为______. 17、当,代数式的值是_______________. 18、如图,在中,,,,线段,,两点分别在和过点且垂直于的射线上运动,当__________时,和全等. 三、解答题 19、因式分解: (1)-2x3+ 2x ; (2)2x2y2-2xy-23、 20、解分式方程: 21、如图,△ABE≌△DCE,点A,C,B在一条直线上,∠AED和∠BEC相等吗?为什么? 22、(1)在图1中,已知△ABC中,∠B>∠C,AD⊥BC于D,AE平分∠BAC,∠B=70°,∠C=40°,求∠DAE的度数. (2)在图2中,∠B=x,∠C=y,其他条件不变,若把AD⊥BC于D改为F是AE上一点,FD⊥BC于D,试用x、y表示∠DFE= : (3)在图3中,当点F是AE延长线上一点,其余条件不变,则(2)中的结论还成立吗?若成立,请说明为什么;若不成立,请写出成立的结论,并说明为什么. (4)在图3中,分别作出∠BAE和∠EDF的角平分线,交于点P,如图3、试用x、y表示∠P= . 23、为进一步落实“德、智、体、美、劳”五有并举工作,某中学以体有为突破口,准备从体育用品商场一次性购买若干个足球和篮球,用于学校开展球类活动,已知篮球的单价比足球单价的2倍少30元,用1200元购买足球的数量是用900元购买篮球数量的2倍. (1)足球和篮球的单价各是多少元? (2)根据学校实际情况,需一次性购买足球和篮球共200个,总费用不超过15600元,学校最多可以购买多少个篮球? 24、任意一个正整数都可以进行这样的分解:(是正整数,且),正整数的所有这种分解中,如果两因数之差的绝对值最小,我们就称是正整数的最佳分解.并规定:.例如24可以分解成1×24,2×12,3×8或4×6,因为,所以4×6是24的最佳分解,所以. (1)求的值; (2)如果一个两位正整数,(为自然数),交换其个位上的数与十位上的数得到的新数减去原来的两位正整数所得的差记为,交换其个位上的数与十位上的数得到的新数加上原来的两位正整数所得的和记为,若为4752,那么我们称这个数为“最美数”,求所有“最美数”; (3)在(2)所得“最美数”中,求的最大值. 25、以点为顶点作等腰,等腰,其中,如图1所示放置,使得一直角边重合,连接、. (1)试判断、的数量关系,并说明理由; (2)延长交于点试求的度数; (3)把两个等腰直角三角形按如图2放置,(1)、(2)中的结论是否仍成立?请说明理由. 一、选择题 1、C 【解析】C 【分析】根据轴对称图形的概念求解,如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴 【详解】解:A、是轴对称图形,故此选项不符合题意; B、是轴对称图形,故此选项不符合题意; C、不是轴对称图形,故此选项符合题意; D、是轴对称图形,故此选项不符合题意; 故选:C. 【点睛】此题主要考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合. 2、C 【解析】C 【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数. 【详解】解:0.00000105=, 故选:C. 【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值. 3、D 【解析】D 【分析】根据整式的计算中的合并同类项、同底数幂相乘、幂的乘方、同底数幂相除的运算法则分别计算,即可得出正确答案. 【详解】解:A、,其中与不是同类项,不能相加减,故选项计算错误,不符合题意; B、,故选项计算错误,不符合题意; C、,故选项计算错误,不符合题意; D、,故选项计算正确,符合题意; 故选:D. 【点睛】本题考查了整式的计算中的合并同类项、同底数幂相乘、幂的乘方、同底数幂相除的运算法则,熟练掌握相关运算法则是解答本题的关键. 4、C 【解析】C 【分析】二次根式有意义的条件和分式分母有意义的条件即可解得. 【详解】∵式子有意义 ∴, 解得且 故选:C. 【点睛】此题考查了二次根式和分式有意义的条件,解题的关键是列出不等式求解. 5、A 【解析】A 【分析】利用因式分解的定义判断即可. 【详解】解:A、符合因式分解的定义,故A选项符合题意; B、等号左右两边式子不相等,故B选项不符合题意; C、是整式的乘法,不是因式分解,故C选项不符合题意; D、没有把多项式化为几个整式的积的形式,不是因式分解,故D选项不符合题意. 故选:. 【点睛】此题考查了因式分解,熟练掌握因式分解的定义是解本题的关键.分解因式的定义:把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做分解因式. 6、A 【解析】A 【分析】由题意可知x、y都扩大到原来的3倍分别为3x,3y,然后再进行计算即可判断. 【详解】解:由题意得:x、y都扩大到原来的3倍后分别为:3x,3y, ∴, ∴分式的值不变, 故选:A. 【点睛】本题考查了分式的基本性质,熟练掌握分式的基本性质是解题的关键. 7、D 【解析】D 【分析】根据全等三角形的判定定理可进行排除选项. 【详解】解:由图形可知:∠A=∠A,则有: 当添加∠AEB=∠ADC,AC=AB,满足“AAS”判定△ACD≌△ABE,故A选项不符合题意; 当添加∠AEB=∠ADC,CD=BE,满足“AAS”判定△ACD≌△ABE,故B选项不符合题意; 当添加AC=AB,AD=AE,满足“SAS”判定△ACD≌△ABE,故C选项不符合题意; 当添加AC=AB,∠C=∠B,满足“ASA”判定△ACD≌△ABE,故D选项符合题意; 故选D. 【点睛】本题主要考查全等三角形的判定定理,熟练掌握全等三角形的判定定理是解题的关键. 8、D 【解析】D 【分析】分式方程去分母转化为整式方程,由分式方程有增根求出x的值,代入整式方程计算即可求出m的值. 【详解】解:去分母得:2(x+2)+mx=x-1, ∵分式方程有增根, ∴(x-1)(x+2)=0, 解得:x=1或x=-2, 把x=1代入整式方程得:6+m=0,即m=-6; 把x=-2代入整式方程得:-2m=-3,即m=, 综上所述,m的值为-6或, 故选:D. 【点睛】此题考查了分式方程的增根,增根确定后可按如下步骤进行:①化分式方程为整式方程;②把增根代入整式方程即可求得相关字母的值. 9、D 【解析】D 【分析】需要分点在线段上,在延长线上,在延长线上讨论,根据三角形的外角等于和它不相邻的两个内角和及三角形内角和定理可求与的等量关系式. 【详解】解:当点在线段上, ,, , , , , , 即,故A不符合题意; 当点在线段的延长线上, 同理可得:,故B不符合题意; 当点在线段的延长线上, 同理可得:,故C不符合题意. 故选:D. 【点睛】本题考查了等腰三角形的判定与性质以及三角形外角的性质,解题的关键是注意分类思想的应用. 二、填空题 10、A 【解析】A 【分析】由两个正方形面积之和减去△BEF和△BCD的面积之和即可得到答案. 【详解】由图可得:, ∴, 将,代入得:, 故选:A. 【点睛】本题考查乘法公式在几何图形面积计算中的应用,准确表示各部分面积并结合乘法公式进行合理变形是解题关键. 11、≠2 【分析】根据分式的值为0的条件:分子等于0且分母不等于0即可得出答案. 【详解】解:∵分式的值是0, ∴x+1=0,2x+a≠0, ∴x=-1, ∴-2+a≠0, ∴a≠1、 故答案为:a≠1、 【点睛】本题考查了分式的值为0的条件,掌握分式的值为0的条件:分子等于0且分母不等于0是解题的关键. 12、(-2,3) 【分析】关于y轴对称的两点的坐标关系:纵坐标相同,横坐标互为相反数,据此解题. 【详解】解:点P(2,3)关于y轴对称的点的坐标为(-2,3), 故答案为:(-2,3). 【点睛】本题主要考查了坐标与图形变化——轴对称,解决问题的关键是平面直角坐标系中任意一点P(x,y)关于y轴的对称点的坐标是(-x,y),即纵坐标不变,横坐标变成相反数. 13、 【分析】先利用乘法公式算出的值,再根据分式的加法运算算出结果. 【详解】解:∵,, ∴, ∴. 故答案为:. 【点睛】本题考查分式的求值,解题的关键是掌握分式的加法运算法则. 14、2 【分析】根据同底数幂除法的逆运算求解即可. 【详解】解:∵,, ∴, 故答案为:1、 【点睛】本题主要考查了同底数幂除法的逆运算,熟知相关计算法则是解题的关键. 15、8 【分析】根据EF是线段AB的垂直平分线可知,点B关于直线EF的对称点为点A,故AD的长为BM+MD的最小值,由此即可得出结论. 【详解】解:∵EF是线段AB的垂直平分线, ∴点B关于直线EF的对 【解析】8 【分析】根据EF是线段AB的垂直平分线可知,点B关于直线EF的对称点为点A,故AD的长为BM+MD的最小值,由此即可得出结论. 【详解】解:∵EF是线段AB的垂直平分线, ∴点B关于直线EF的对称点为点A, ∴AD的长为BM+MD的最小值, ∴BM+DM最小值为8, 故答案为:7、 【点睛】本题考查最短路径问题,解题的关键是熟知线段垂直平分线的性质. 16、或 【分析】根据完全平方公式:,观察其构造,即可得出的值,再求的值; 【详解】解:, 当时,,则; 当时,,则; 故答案为:或. 【点睛】本题主要考查的是完全平方公式,观察公式的构成是解题的关键. 【解析】或 【分析】根据完全平方公式:,观察其构造,即可得出的值,再求的值; 【详解】解:, 当时,,则; 当时,,则; 故答案为:或. 【点睛】本题主要考查的是完全平方公式,观察公式的构成是解题的关键. 17、21 【分析】由,可得再两边平方可得:从而可得答案. 【详解】解:∵, ∴ ∴ ∴ 故答案为:21 【点睛】本题考查的是利用完全平方公式求解代数式的值,二次根式的乘法运算,灵活应用完全平方公式求 【解析】21 【分析】由,可得再两边平方可得:从而可得答案. 【详解】解:∵, ∴ ∴ ∴ 故答案为:21 【点睛】本题考查的是利用完全平方公式求解代数式的值,二次根式的乘法运算,灵活应用完全平方公式求值是解本题的关键. 18、5或10 【分析】当AP=5或10时,△ABC和△PQA全等,根据HL定理推出即可. 【详解】解:∵∠C=90°,AO⊥AC, ∴∠C=∠QAP=90°, ①当AP=5=BC时, 在Rt△ACB和R 【解析】5或10 【分析】当AP=5或10时,△ABC和△PQA全等,根据HL定理推出即可. 【详解】解:∵∠C=90°,AO⊥AC, ∴∠C=∠QAP=90°, ①当AP=5=BC时, 在Rt△ACB和Rt△QAP中 ∵, ∴Rt△ACB≌Rt△QAP(HL), ②当AP=10=AC时, 在Rt△ACB和Rt△PAQ中 , ∴Rt△ACB≌Rt△PAQ(HL), 故答案为:5或9、 【点睛】本题考查了全等三角形的判定定理的应用,注意:判定两直角三角形全等的方法有ASA,AAS,SAS,SSS,HL. 三、解答题 19、(1)2x(1+x)(1-x);(2)2(xy+3)(xy-4) 【分析】(1)先提公因式,然后利用平方差公式进行因式分解,即可得到答案; (2)先提公因式,然后利用进行因式分解,即可得到答案. 【 【解析】(1)2x(1+x)(1-x);(2)2(xy+3)(xy-4) 【分析】(1)先提公因式,然后利用平方差公式进行因式分解,即可得到答案; (2)先提公因式,然后利用进行因式分解,即可得到答案. 【详解】解:(1)原式=2x()=2x(1+x)(1x); (2)原式=2(x2y2xy12)= 2(xy+3)(xy4); 【点睛】本题考查了提公因式法、平方差公式、十字相乘法进行因式分解,解题的关键是掌握因式分解的方法进行解题. 20、【分析】先去分母得到,再去括号,移项合并同类项得到,再系数化为1即可得到答案. 【详解】 去分母得到, 去括号得到, 移项合并同类项得到, 系数化为1可得, 经检验是原方程的解, 故原方程的解为: 【解析】 【分析】先去分母得到,再去括号,移项合并同类项得到,再系数化为1即可得到答案. 【详解】 去分母得到, 去括号得到, 移项合并同类项得到, 系数化为1可得, 经检验是原方程的解, 故原方程的解为:. 【点睛】本题考查解分式方程,解题的关键是掌握解分式方程的基本步骤. 21、相等.见解析 【分析】根据全等三角形的对应角相等进一步减去同一个角后即可证得结论. 【详解】解:相等; 理由: ∵△ABE≌△DCE, ∴∠AEB=∠DEC, ∴∠DEC-∠AEC=∠AEB-∠AE 【解析】相等.见解析 【分析】根据全等三角形的对应角相等进一步减去同一个角后即可证得结论. 【详解】解:相等; 理由: ∵△ABE≌△DCE, ∴∠AEB=∠DEC, ∴∠DEC-∠AEC=∠AEB-∠AEC, 即:∠AED=∠BEC. 【点睛】本题考查了全等三角形的性质,解题的关键是了解全等三角形的对应角相等,难度不大. 22、(1)15°;(2);(3)结论应成立.(4). 【分析】(1)根据三角形内角和公式得出∠BAC=180°-∠B-∠C=180°-70°-40°=70°,根据AE平分∠BAC,得出∠BAE=,利用A 【解析】(1)15°;(2);(3)结论应成立.(4). 【分析】(1)根据三角形内角和公式得出∠BAC=180°-∠B-∠C=180°-70°-40°=70°,根据AE平分∠BAC,得出∠BAE=,利用AD⊥BC,得出∠BAD=90°-∠B=90°-70°=20°,然后用角的差计算即可; (2)根据三角形内角和得出∠BAC=180°-∠B-∠C=180°- x-y,根据AE平分∠BAC,得出∠EAC=,利用FD⊥BC,可得∠DFE+∠FED=90°,根据∠FED是△AEC的外角,可求∠FED=∠C+∠EAC=,利用余角求解即可; (3)结论应成立.过点A作AG⊥BC于G,根据三角形内角和得出∠BAC=180°-∠B-∠C=180°- x-y,根据AE平分∠BAC,得出∠BAE=,根据AG⊥BC,得出∠BAG=90°-∠B=90°-,可求∠GAE=∠BAE-∠BAG==,根据FD⊥BC,AG⊥BC,可证AG∥FD,利用平行线性质即可求解; (4)设AF与PD交于H,根据FD⊥BC,PD平分∠EDF,得出∠HDF=,根据PA平分∠BAE,∠BAE=,得出∠PAE=,根据对顶角性质∠AHP=∠FHD,结合三角形内角和得出∠P+∠PAE=∠HDF+∠EFD,即∠P+=45°+,求出∠P即可. 【详解】解:(1)∵∠B=70°,∠C=40°, ∴∠BAC=180°-∠B-∠C=180°-70°-40°=70°, ∵AE平分∠BAC, ∴∠BAE=, ∵AD⊥BC, ∴∠BDA=90°, ∴∠B+∠BAD=90°, ∴∠BAD=90°-∠B=90°-70°=20°, ∴∠DAE=∠BAE-∠BAD=35°-20°=15°; (2)∵∠B=x,∠C=y, ∴∠BAC=180°-∠B-∠C=180°- x-y, ∵AE平分∠BAC, ∴∠EAC=, ∵FD⊥BC, ∴∠EDE=90°, ∴∠DFE+∠FED=90°, ∵∠FED是△AEC的外角, ∴∠FED=∠C+∠EAC=, ∴∠DFE=90°-∠FED=, 故答案为:; (3)结论应成立. 过点A作AG⊥BC于G, ∵∠B=x,∠C=y, ∴∠BAC=180°-∠B-∠C=180°- x-y, ∵AE平分∠BAC, ∴∠BAE=, ∵AG⊥BC, ∴∠AGB=90°, ∴∠B+∠BAG=90°, ∴∠BAG=90°-∠B=90°-, ∴∠GAE=∠BAE-∠BAG==, ∵FD⊥BC,AG⊥BC, ∴AG∥FD, ∴∠EFD=∠GAE= (4)设AF与PD交于H, ∵FD⊥BC,PD平分∠EDF, ∴∠HDF=, ∵PA平分∠BAE,∠BAE=, ∴∠PAE=, ∵∠AHP=∠FHD,∠EFD= ∴∠P+∠PAE=∠HDF+∠EFD,即∠P+=45°+, ∴∠P=, 故答案为:. 【点睛】本题考查三角形内角和,角平分线定义,直角三角形两锐角互余,三角形外角性质,对顶角性质,平行线的判定与性质,掌握三角形内角和,角平分线定义,直角三角形两锐角互余,三角形外角性质,对顶角性质,平行线的判定与性质是解题关键. 23、(1)足球的单价是60元,篮球的单价是90元 (2)120个 【分析】(1)设足球的单价是元,则篮球的单价是元,由题意:用1200元购买足球的数量是用900元购买篮球数量的2倍,列出分式方程,解方程 【解析】(1)足球的单价是60元,篮球的单价是90元 (2)120个 【分析】(1)设足球的单价是元,则篮球的单价是元,由题意:用1200元购买足球的数量是用900元购买篮球数量的2倍,列出分式方程,解方程即可; (2)设学校可以购买篮球,则可以购买个足球,由总价单价数量,且购买足球和篮球的总费用不超过15600元,列出一元一次不等式,解不等式即可. (1) 解:设足球的单价是元,则篮球的单价是元, 依题意得:, 解得:, 经检验,是原方程的解,且符合题意, . 答:足球的单价是60元,篮球的单价是90元. (2) 设学校可以购买个篮球,则可以购买个足球, 依题意得:, 解得:, 答:学校最多可以购买120个篮球. 【点睛】本题考查了分式方程的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)根据各数量之间的关系,正确列出一元一次不等式. 24、(1);(2)“最美数”为48和17;(3). 【详解】试题分析: (1)由题意可得:,结合即可得到18的最佳分解是:,从而可得:; (2)由题意易到:,,由此可得:结合,可得,再结合都是自然数,且 【解析】(1);(2)“最美数”为48和17;(3). 【详解】试题分析: (1)由题意可得:,结合即可得到18的最佳分解是:,从而可得:; (2)由题意易到:,,由此可得:结合,可得,再结合都是自然数,且即可列出关于的二元一次方程组,解方程组即可求得符合条件的的值,从而可得“最美数”的值; (3)由(2)中所得结果结合(1)中的方法即可求得的最大值. 试题分析: (1)∵,且, ∴是的最佳分解, ∴; (2)由题意可知:, , ∴, ∴ ,即 , ∵为自然数,且, ∴ , 解得:, ∵为自然数,且, ∴或, ∴或, 即“最美数”为48和17; (3)当时,∵ ∴; 当时,∵17=1×17, ∴, ∵, ∴的最大值为:. 点睛:(1)通过阅读,弄明白“最佳分解”和“F(n)”的意义是解决本题的基础;(2)解第2小题时,有以下要点:①由题意用含“”的式子表达出;②由得到;③由为自然数,且结合列出关于“”的方程组;这样解方程组得到符合条件的“”的值,即可使问题得到解决. 25、(1)BD=CE,理由见解析;(2)90°;(3)成立,理由见解析. 【分析】(1)根据等腰直角三角形的性质得到AB=AC,∠BAD=∠EAC=90°,AD=AE,利用“SAS”可证明△ADB≌△A 【解析】(1)BD=CE,理由见解析;(2)90°;(3)成立,理由见解析. 【分析】(1)根据等腰直角三角形的性质得到AB=AC,∠BAD=∠EAC=90°,AD=AE,利用“SAS”可证明△ADB≌△AEC,则BD=CE; (2)由△ADB≌△AEC得到∠ACE=∠DBA,利用三角形内角和定理可得到∠BFC=180°-∠ACE-∠CDF=180°-∠DBA-∠BDA=∠DAB=90°; (3)与(1)一样可证明△ADB≌△AEC,得到BD=CE,∠ACE=∠DBA,利用三角形内角和定理得到∠BFC=∠DAB=90°. 【详解】(1)∵△ABC、△ADE是等腰直角三角形, ∴AB=AC,∠BAD=∠EAC=90°,AD=AE, ∵在△ADB和△AEC中, ∴△ADB≌△AEC(SAS),∴BD=CE; (2)∵△ADB≌△AEC,∴∠ACE=∠ABD, 而在△CDF中,∠BFC=180°-∠ACE-∠CDF, 又∵∠CDF=∠BDA, ∴∠BFC=180°-∠DBA-∠BDA=∠DAB=90°; (3)BD=CE成立,且两线段所在直线互相垂直,即∠BFC=90°.理由如下: ∵△ABC、△ADE是等腰直角三角形, ∴AB=AC,AD=AE,∠BAC=∠EAD=90°, ∵∠BAC+∠CAD=∠EAD+∠CAD, ∴∠BAD=∠CAE, 在△ADB和△AEC中, , ∴△ADB≌△AEC(SAS), ∴BD=CE,∠ACE=∠DBA, ∴∠BFC=∠DAB=90°. 【点睛】本题考查全等三角形的判定与性质.判定三角形全等的方法有“SSS”、“SAS”、“ASA”、“AAS”,熟知判定方法并根据题目条件选择合适的方法进行解答.- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 上海 松江 集团 初级中学 年级 上册 期末 数学试卷 答案
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【天****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【天****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【天****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【天****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文