人教版七年级下册数学期末解答题测试(含答案)(1).doc
《人教版七年级下册数学期末解答题测试(含答案)(1).doc》由会员分享,可在线阅读,更多相关《人教版七年级下册数学期末解答题测试(含答案)(1).doc(41页珍藏版)》请在咨信网上搜索。
人教版七年级下册数学期末解答题测试(含答案)(1) 一、解答题 1.如图,用两个面积为的小正方形纸片剪拼成一个大的正方形. (1)大正方形的边长是________; (2)请你探究是否能将此大正方形纸片沿着边的方向裁出一个面积为的长方形纸片,使它的长宽之比为,若能,求出这个长方形纸片的长和宽,若不能,请说明理由. 2.如图,这是由8个同样大小的立方体组成的魔方,体积为64. (1)求出这个魔方的棱长; (2)图中阴影部分是一个正方形ABCD,求出阴影部分的边长. 3.如图,8块相同的小长方形地砖拼成一个大长方形, (1)每块小长方形地砖的长和宽分别是多少?(要求列方程组进行解答) (2)小明想用一块面积为7平方米的正方形桌布,沿着边的方向裁剪出一块新的长方形桌布,用来盖住这块长方形木桌,你帮小明算一算,他能剪出符合要求的桌布吗? 4.小丽想用一块面积为400cm2的正方形纸片,沿着边的方向裁处一块面积为300cm2的长方形纸片. (1)请帮小丽设计一种可行的裁剪方案; (2)若使长方形的长宽之比为3:2,小丽能用这块纸片裁处符合要求的纸片吗?若能,请帮小丽设计一种裁剪方案,若不能,请简要说明理由. 5.如图用两个边长为cm的小正方形纸片拼成一个大的正方形纸片,沿着大正方形纸片的边的方向截出一个长方形纸片,能否使截得的长方形纸片长宽之比为,且面积为cm2?请说明理由. 二、解答题 6.已知AB//CD. (1)如图1,E为AB,CD之间一点,连接BE,DE,得到∠BED.求证:∠BED=∠B+∠D; (2)如图,连接AD,BC,BF平分∠ABC,DF平分∠ADC,且BF,DF所在的直线交于点F. ①如图2,当点B在点A的左侧时,若∠ABC=50°,∠ADC=60°,求∠BFD的度数. ②如图3,当点B在点A的右侧时,设∠ABC=α,∠ADC=β,请你求出∠BFD的度数.(用含有α,β的式子表示) 7.如图1,已知直线CD∥EF,点A,B分别在直线CD与EF上.P为两平行线间一点. (1)若∠DAP=40°,∠FBP=70°,则∠APB= (2)猜想∠DAP,∠FBP,∠APB之间有什么关系?并说明理由; (3)利用(2)的结论解答: ①如图2,AP1,BP1分别平分∠DAP,∠FBP,请你写出∠P与∠P1的数量关系,并说明理由; ②如图3,AP2,BP2分别平分∠CAP,∠EBP,若∠APB=β,求∠AP2B.(用含β的代数式表示) 8.如图,已知直线,点在直线上,点在直线上,点在点的右侧,平分平分,直线交于点. (1)若时,则___________; (2)试求出的度数(用含的代数式表示); (3)将线段向右平行移动,其他条件不变,请画出相应图形,并直接写出的度数.(用含的代数式表示) 9.已知,定点,分别在直线,上,在平行线,之间有一动点. (1)如图1所示时,试问,,满足怎样的数量关系?并说明理由. (2)除了(1)的结论外,试问,,还可能满足怎样的数量关系?请画图并证明 (3)当满足,且,分别平分和, ①若,则__________°. ②猜想与的数量关系.(直接写出结论) 10.已知:如图,直线AB//CD,直线EF交AB,CD于P,Q两点,点M,点N分别是直线CD,EF上一点(不与P,Q重合),连接PM,MN. (1)点M,N分别在射线QC,QF上(不与点Q重合),当∠APM+∠QMN=90°时, ①试判断PM与MN的位置关系,并说明理由; ②若PA平分∠EPM,∠MNQ=20°,求∠EPB的度数.(提示:过N点作AB的平行线) (2)点M,N分别在直线CD,EF上时,请你在备用图中画出满足PM⊥MN条件的图形,并直接写出此时∠APM与∠QMN的关系.(注:此题说理时不能使用没有学过的定理) 三、解答题 11.将两块三角板按如图置,其中三角板边,,,. (1)下列结论:正确的是_______. ①如果,则有; ②; ③如果,则平分. (2)如果,判断与是否相等,请说明理由. (3)将三角板绕点顺时针转动,直到边与重合即停止,转动的过程中当两块三角板恰有两边平行时,请直接写出所有可能的度数. 12.问题情境 (1)如图1,已知,求的度数.佩佩同学的思路:过点作,进而,由平行线的性质来求,求得 ; 问题迁移 (2)图2,图3均是由一块三角板和一把直尺拼成的图形,三角板的两直角边与直尺的两边重合与相交于点,有一动点在边上运动,连接,记. ①如图2,当点在两点之间运动时,请直接写出与之间的数量关系; ②如图3,当点在两点之间运动时,与之间有何数量关系?请判断并说明理由. 13.如图,已知是直线间的一点,于点交于点. (1)求的度数; (2)如图2,射线从出发,以每秒的速度绕P点按逆时针方向旋转,当垂直时,立刻按原速返回至后停止运动:射线从出发,以每秒的速度绕E点按逆时针方向旋转至后停止运动,若射线,射线同时开始运动,设运动间为t秒. ①当时,求的度数; ②当时,求t的值. 14.已知两条直线l1,l2,l1∥l2,点A,B在直线l1上,点A在点B的左边,点C,D在直线l2上,且满足. (1)如图①,求证:AD∥BC; (2)点M,N在线段CD上,点M在点N的左边且满足,且AN平分∠CAD; (Ⅰ)如图②,当时,求∠DAM的度数; (Ⅱ)如图③,当时,求∠ACD的度数. 15.如图,直线,一副三角板(,,)按如图①放置,其中点在直线上,点均在直线上,且平分. (1)求的度数. (2)如图②,若将三角形绕点以每秒的速度按逆时针方向旋转(的对应点分别为).设旋转时间为秒. ①在旋转过程中,若边,求的值; ②若在三角形绕点旋转的同时,三角形绕点以每秒的速度按顺时针方向旋转(的对应点分别为).请直接写出当边时的值. 四、解答题 16.(1)如图1,∠BAD的平分线AE与∠BCD的平分线CE交于点E,AB∥CD,∠ADC=50°,∠ABC=40°,求∠AEC的度数; (2)如图2,∠BAD的平分线AE与∠BCD的平分线CE交于点E,∠ADC=α°,∠ABC=β°,求∠AEC的度数; (3)如图3,PQ⊥MN于点O,点A是平面内一点,AB、AC交MN于B、C两点,AD平分∠BAC交PQ于点D,请问的值是否发生变化?若不变,求出其值;若改变,请说明理由. 17.如图①,平分,⊥,∠B=450,∠C=730. (1) 求的度数; (2) 如图②,若把“⊥”变成“点F在DA的延长线上,”,其它条件不变,求 的度数; (3) 如图③,若把“⊥”变成“平分”,其它条件不变,的大小是否变化,并请说明理由. 18.直线MN与直线PQ垂直相交于O,点A在射线OP上运动,点B 在射线OM上运动,A、B不与点O重合,如图1,已知AC、BC分别是∠BAP和∠ABM角的平分线, (1)点A、B在运动的过程中,∠ACB的大小是否发生变化?若发生变化,请说明理由;若不发生变化,试求出∠ACB的大小. (2)如图2,将△ABC沿直线AB折叠,若点C落在直线PQ上,则∠ABO=________, 如图3,将△ABC沿直线AB折叠,若点C落在直线MN上,则∠ABO=________ (3)如图4,延长BA至G,已知∠BAO、∠OAG的角平分线与∠BOQ的角平分线及其反向延长线交于E、F,则∠EAF= ;在△AEF中,如果有一个角是另一个角的倍,求∠ABO的度数. 19.如果三角形的两个内角与满足,那么我们称这样的三角形是“准互余三角形”. (1)如图1,在中,,是的角平分线,求证:是“准互余三角形”; (2)关于“准互余三角形”,有下列说法: ①在中,若,,,则是“准互余三角形”; ②若是“准互余三角形”,,,则; ③“准互余三角形”一定是钝角三角形. 其中正确的结论是___________(填写所有正确说法的序号); (3)如图2,,为直线上两点,点在直线外,且.若是直线上一点,且是“准互余三角形”,请直接写出的度数. 20.如图,直线,一副直角三角板中,. (1)若如图1摆放,当平分时,证明:平分. (2)若如图2摆放时,则 (3)若图2中固定,将沿着方向平移,边与直线相交于点,作和的角平分线相交于点(如图3),求的度数. (4)若图2中的周长,现将固定,将沿着方向平移至点与重合,平移后的得到,点的对应点分别是,请直接写出四边形的周长. (5)若图2中固定,(如图4)将绕点顺时针旋转,分钟转半圈,旋转至与直线首次重合的过程中,当线段与的一条边平行时,请直接写出旋转的时间. 【参考答案】 一、解答题 1.(1)4;(2)不能,理由见解析. 【分析】 (1)根据已知正方形的面积求出大正方形的边长即可; (2)先设未知数根据面积=14(cm2)列方程,求出长方形的边长,将长方形的长与正方形边长比较大小再 解析:(1)4;(2)不能,理由见解析. 【分析】 (1)根据已知正方形的面积求出大正方形的边长即可; (2)先设未知数根据面积=14(cm2)列方程,求出长方形的边长,将长方形的长与正方形边长比较大小再判断即可. 【详解】 解:(1)两个正方形面积之和为:2×8=16(cm2), ∴拼成的大正方形的面积=16(cm2), ∴大正方形的边长是4cm; 故答案为:4; (2)设长方形纸片的长为2xcm,宽为xcm, 则2x•x=14, 解得:, 2x=2>4, ∴不存在长宽之比为且面积为的长方形纸片. 【点睛】 本题考查了算术平方根,能够根据题意列出算式是解此题的关键. 2.(1)棱长为4;(2)边长为:(或) 【分析】 (1)由立方体的体积为棱长的立方可以得到答案;(2)用勾股定理直接计算得到答案. 【详解】 解:(1)设正方体的棱长为,则,所以,即正方体的棱长为4. 解析:(1)棱长为4;(2)边长为:(或) 【分析】 (1)由立方体的体积为棱长的立方可以得到答案;(2)用勾股定理直接计算得到答案. 【详解】 解:(1)设正方体的棱长为,则,所以,即正方体的棱长为4. (2)因为正方体的棱长为4,所以AB=. 【点睛】 本题考查的是立方根与算术平方根的理解与计算,由实际的情境去理解问题本身就是求一个数的立方根与算术平方根是关键. 3.(1) 长是1.5m,宽是0.5m.;(2)不能. 【解析】 【分析】 (1)设每块小长方形地砖的长为xm,宽为ym,列方程组求解即可; (2)把正方形的边长与大长方形的长比较即可. 【详解】 解: 解析:(1) 长是1.5m,宽是0.5m.;(2)不能. 【解析】 【分析】 (1)设每块小长方形地砖的长为xm,宽为ym,列方程组求解即可; (2)把正方形的边长与大长方形的长比较即可. 【详解】 解:(1)设每块小长方形地砖的长为xm,宽为ym,由题意得: , 解得:, ∴长是1.5m,宽是0.5m. (2)∵正方形的面积为7平方米, ∴正方形的边长是米, ∵<3, ∴他不能剪出符合要求的桌布. 【点睛】 本题考查了二元一次方程组的应用,算术平方根的应用,找出等量关系列出方程组是解(1)的关键,求出正方形的边长是解(2)的关键. 4.(1)可以以正方形一边为长方形的长,在其邻边上截取长为15cm的线段作为宽即可裁出符合要求的长方形;(2)不能,理由见解析. 【解析】 (1)解:设面积为400cm2的正方形纸片的边长为a cm ∴ 解析:(1)可以以正方形一边为长方形的长,在其邻边上截取长为15cm的线段作为宽即可裁出符合要求的长方形;(2)不能,理由见解析. 【解析】 (1)解:设面积为400cm2的正方形纸片的边长为a cm ∴a2=400 又∵a>0 ∴a=20 又∵要裁出的长方形面积为300cm2 ∴若以原正方形纸片的边长为长方形的长, 则长方形的宽为:300÷20=15(cm) ∴可以以正方形一边为长方形的长,在其邻边上截取长为15cm的线段作为宽即可裁出符合要求的长方形 (2)∵长方形纸片的长宽之比为3:2 ∴设长方形纸片的长为3xcm,则宽为2xcm ∴6x 2=300 ∴x 2=50 又∵x>0 ∴x = ∴长方形纸片的长为 又∵>202 即:>20 ∴小丽不能用这块纸片裁出符合要求的纸片 5.不能截得长宽之比为,且面积为cm2的长方形纸片,见解析 【分析】 根据拼图求出大正方形的边长,再根据长方形的长、宽之比为3:2,计算长方形的长与宽进行验证即可. 【详解】 解:不能, 因为大正方形纸 解析:不能截得长宽之比为,且面积为cm2的长方形纸片,见解析 【分析】 根据拼图求出大正方形的边长,再根据长方形的长、宽之比为3:2,计算长方形的长与宽进行验证即可. 【详解】 解:不能, 因为大正方形纸片的面积为()2+()2=36(cm2), 所以大正方形的边长为6cm, 设截出的长方形的长为3b cm,宽为2b cm, 则6b2=30, 所以b=(取正值), 所以3b=3=>, 所以不能截得长宽之比为3:2,且面积为30cm2的长方形纸片. 【点睛】 本题考查了算术平方根,理解算术平方根的意义是正确解答的关键. 二、解答题 6.(1)见解析;(2)55°;(3) 【分析】 (1)根据平行线的判定定理与性质定理解答即可; (2)①如图2,过点作,当点在点的左侧时,根据,,根据平行线的性质及角平分线的定义即可求的度数; ②如图 解析:(1)见解析;(2)55°;(3) 【分析】 (1)根据平行线的判定定理与性质定理解答即可; (2)①如图2,过点作,当点在点的左侧时,根据,,根据平行线的性质及角平分线的定义即可求的度数; ②如图3,过点作,当点在点的右侧时,,,根据平行线的性质及角平分线的定义即可求出的度数. 【详解】 解:(1)如图1,过点作, 则有, , , , ; (2)①如图2,过点作, 有. , . . . 即, 平分,平分, ,, . 答:的度数为; ②如图3,过点作, 有. , , . . . 即, 平分,平分, ,, . 答:的度数为. 【点睛】 本题考查了平行线的判定与性质,解决本题的关键是熟练掌握平行线的判定与性质. 7.(1)110°;(2)猜想:∠APB=∠DAP+∠FBP,理由见解析;(3)①∠P=2∠P1,理由见解析;②∠AP2B=. 【分析】 (1)过P作PM∥CD,根据两直线平行,内错角相等可得∠APM= 解析:(1)110°;(2)猜想:∠APB=∠DAP+∠FBP,理由见解析;(3)①∠P=2∠P1,理由见解析;②∠AP2B=. 【分析】 (1)过P作PM∥CD,根据两直线平行,内错角相等可得∠APM=∠DAP,再根据平行公理求出CD∥EF然后根据两直线平行,内错角相等可得∠MPB=∠FBP,最后根据∠APM+∠MPB=∠DAP+∠FBP等量代换即可得证; (2)结论:∠APB=∠DAP+∠FBP. (3)①根据(2)的规律和角平分线定义解答; ②根据①的规律可得∠APB=∠DAP+∠FBP,∠AP2B=∠CAP2+∠EBP2,然后根据角平分线的定义和平角等于180°列式整理即可得解. 【详解】 (1)证明:过P作PM∥CD, ∴∠APM=∠DAP.(两直线平行,内错角相等), ∵CD∥EF(已知), ∴PM∥CD(平行于同一条直线的两条直线互相平行), ∴∠MPB=∠FBP.(两直线平行,内错角相等), ∴∠APM+∠MPB=∠DAP+∠FBP.(等式性质) 即∠APB=∠DAP+∠FBP=40°+70°=110°. (2)结论:∠APB=∠DAP+∠FBP. 理由:见(1)中证明. (3)①结论:∠P=2∠P1; 理由:由(2)可知:∠P=∠DAP+∠FBP,∠P1=∠DAP1+∠FBP1, ∵∠DAP=2∠DAP1,∠FBP=2∠FBP1, ∴∠P=2∠P1. ②由①得∠APB=∠DAP+∠FBP,∠AP2B=∠CAP2+∠EBP2, ∵AP2、BP2分别平分∠CAP、∠EBP, ∴∠CAP2=∠CAP,∠EBP2=∠EBP, ∴∠AP2B=∠CAP+∠EBP, = (180°-∠DAP)+ (180°-∠FBP), =180°- (∠DAP+∠FBP), =180°- ∠APB, =180°- β. 【点睛】 本题考查了平行线的性质,角平分线的定义,熟记性质与概念是解题的关键,此类题目,难点在于过拐点作平行线. 8.(1)60°;(2)n°+40°;(3)n°+40°或n°-40°或220°-n° 【分析】 (1)过点E作EF∥AB,然后根据两直线平行内错角相等,即可求∠BED的度数; (2)同(1)中方法求解 解析:(1)60°;(2)n°+40°;(3)n°+40°或n°-40°或220°-n° 【分析】 (1)过点E作EF∥AB,然后根据两直线平行内错角相等,即可求∠BED的度数; (2)同(1)中方法求解即可; (3)分当点B在点A左侧和当点B在点A右侧,再分三种情况,讨论,分别过点E作EF∥AB,由角平分线的定义,平行线的性质,以及角的和差计算即可. 【详解】 解:(1)当n=20时,∠ABC=40°, 过E作EF∥AB,则EF∥CD, ∴∠BEF=∠ABE,∠DEF=∠CDE, ∵BE平分∠ABC,DE平分∠ADC, ∴∠BEF=∠ABE=20°,∠DEF=∠CDE=40°, ∴∠BED=∠BEF+∠DEF=60°; (2)同(1)可知: ∠BEF=∠ABE=n°,∠DEF=∠CDE=40°, ∴∠BED=∠BEF+∠DEF=n°+40°; (3)当点B在点A左侧时,由(2)可知:∠BED=n°+40°; 当点B在点A右侧时, 如图所示,过点E作EF∥AB, ∵BE平分∠ABC,DE平分∠ADC,∠ABC=2n°,∠ADC=80°, ∴∠ABE=∠ABC=n°,∠CDG=∠ADC=40°, ∵AB∥CD∥EF, ∴∠BEF=∠ABE=n°,∠CDG=∠DEF=40°, ∴∠BED=∠BEF-∠DEF=n°-40°; 如图所示,过点E作EF∥AB, ∵BE平分∠ABC,DE平分∠ADC,∠ABC=2n°,∠ADC=80°, ∴∠ABE=∠ABC=n°,∠CDG=∠ADC=40°, ∵AB∥CD∥EF, ∴∠BEF=180°-∠ABE=180°-n°,∠CDE=∠DEF=40°, ∴∠BED=∠BEF+∠DEF=180°-n°+40°=220°-n°; 如图所示,过点E作EF∥AB, ∵BE平分∠ABC,DE平分∠ADC,∠ABC=n°,∠ADC=70°, ∴∠ABG=∠ABC=n°,∠CDE=∠ADC=40°, ∵AB∥CD∥EF, ∴∠BEF=∠ABG=n°,∠CDE=∠DEF=40°, ∴∠BED=∠BEF-∠DEF=n°-40°; 综上所述,∠BED的度数为n°+40°或n°-40°或220°-n°. 【点睛】 此题考查了平行线的判定与性质,以及角平分线的定义,正确应用平行线的性质得出各角之间关系是解题关键. 9.(1)∠AEP+∠PFC=∠EPF;(2)∠AEP+∠EPF+∠PFC=360°;(3)①150°或30;②∠EPF+2∠EQF=360°或∠EPF=2∠EQF 【分析】 (1)由于点是平行线,之间 解析:(1)∠AEP+∠PFC=∠EPF;(2)∠AEP+∠EPF+∠PFC=360°;(3)①150°或30;②∠EPF+2∠EQF=360°或∠EPF=2∠EQF 【分析】 (1)由于点是平行线,之间有一动点,因此需要对点的位置进行分类讨论:如图1,当点在的左侧时,,,满足数量关系为:; (2)当点在的右侧时,,,满足数量关系为:; (3)①若当点在的左侧时,;当点在的右侧时,可求得; ②结合①可得,由,得出;可得,由,得出. 【详解】 解:(1)如图1,过点作, , , , , , ; (2)如图2,当点在的右侧时,,,满足数量关系为:; 过点作, , , , , , ; (3)①如图3,若当点在的左侧时, , , ,分别平分和, ,, ; 如图4,当点在的右侧时, , , ; 故答案为:或30; ②由①可知:, ; , . 综合以上可得与的数量关系为:或. 【点睛】 本题主要考查了平行线的性质,平行公理和及推论等知识点,作辅助线后能求出各个角的度数,是解此题的关键. 10.(1)①PM⊥MN,理由见解析;②∠EPB的度数为125°;(2)∠APM +∠QMN=90°或∠APM -∠QMN=90°. 【分析】 (1)①利用平行线的性质得到∠APM=∠PMQ,再根据已知条 解析:(1)①PM⊥MN,理由见解析;②∠EPB的度数为125°;(2)∠APM +∠QMN=90°或∠APM -∠QMN=90°. 【分析】 (1)①利用平行线的性质得到∠APM=∠PMQ,再根据已知条件可得到PM⊥MN; ②过点N作NH∥CD,利用角平分线的定义以及平行线的性质求得∠MNH=35°,即可求解; (2)分三种情况讨论,利用平行线的性质即可解决. 【详解】 解:(1)①PM⊥MN,理由见解析: ∵AB//CD, ∴∠APM=∠PMQ, ∵∠APM+∠QMN=90°, ∴∠PMQ +∠QMN=90°, ∴PM⊥MN; ②过点N作NH∥CD, ∵AB//CD, ∴AB// NH∥CD, ∴∠QMN=∠MNH,∠EPA=∠ENH, ∵PA平分∠EPM, ∴∠EPA=∠ MPA, ∵∠APM+∠QMN=90°, ∴∠EPA +∠MNH=90°,即∠ENH +∠MNH=90°, ∴∠MNQ +∠MNH +∠MNH=90°, ∵∠MNQ=20°, ∴∠MNH=35°, ∴∠EPA=∠ENH=∠MNQ +∠MNH=55°, ∴∠EPB=180°-55°=125°, ∴∠EPB的度数为125°; (2)当点M,N分别在射线QC,QF上时,如图: ∵PM⊥MN,AB//CD, ∴∠PMQ +∠QMN=90°,∠APM=∠PMQ, ∴∠APM +∠QMN=90°; 当点M,N分别在射线QC,线段PQ上时,如图: ∵PM⊥MN,AB//CD, ∴∠PMN=90°,∠APM=∠PMQ, ∴∠PMQ -∠QMN=90°, ∴∠APM -∠QMN=90°; 当点M,N分别在射线QD,QF上时,如图: ∵PM⊥MN,AB//CD, ∴∠PMQ +∠QMN=90°,∠APM+∠PMQ=180°, ∴∠APM+90°-∠QMN=180°, ∴∠APM -∠QMN=90°; 综上,∠APM +∠QMN=90°或∠APM -∠QMN=90°. 【点睛】 本题主要考查了平行线的判定与性质,熟练掌握两直线平行,内错角相等;两直线平行,同旁内角互补;两直线平行,同位角相等等知识是解题的关键. 三、解答题 11.(1)②③;(2)相等,理由见解析;(3)30°或45°或75°或120°或135° 【分析】 (1)根据平行线的判定和性质分别判定即可; (2)利用角的和差,结合∠CAB=∠DAE=90°进行判断 解析:(1)②③;(2)相等,理由见解析;(3)30°或45°或75°或120°或135° 【分析】 (1)根据平行线的判定和性质分别判定即可; (2)利用角的和差,结合∠CAB=∠DAE=90°进行判断; (3)依据这两块三角尺各有一条边互相平行,分五种情况讨论,即可得到∠EAB角度所有可能的值. 【详解】 解:(1)①∵∠BFD=60°,∠B=45°, ∴∠BAD+∠D=∠BFD+∠B=105°, ∴∠BAD=105°-30°=75°, ∴∠BAD≠∠B, ∴BC和AD不平行,故①错误; ②∵∠BAC+∠DAE=180°, ∴∠BAE+∠CAD=∠BAE+∠CAE+∠DAE=180°,故②正确; ③若BC∥AD, 则∠BAD=∠B=45°, ∴∠BAE=45°, 即AB平分∠EAD,故③正确; 故答案为:②③; (2)相等,理由是: ∵∠CAD=150°, ∴∠BAE=180°-150°=30°, ∴∠BAD=60°, ∵∠BAD+∠D=∠BFD+∠B, ∴∠BFD=60°+30°-45°=45°=∠C; (3)若AC∥DE, 则∠CAE=∠E=60°, ∴∠EAB=90°-60°=30°; 若BC∥AD, 则∠B=∠BAD=45°, ∴∠EAB=45°; 若BC∥DE, 则∠E=∠AFB=60°, ∴∠EAB=180°-60°-45°=75°; 若AB∥DE, 则∠D=∠DAB=30°, ∴∠EAB=30°+90°=120°; 若AE∥BC, 则∠C=∠CAE=45°, ∴∠EAB=45°+90°=135°; 综上:∠EAB的度数可能为30°或45°或75°或120°或135°. 【点睛】 本题考查了平行线的判定和性质,角平分线的定义,解题的关键是理解题意,分情况画出图形,学会用分类讨论的思想思考问题. 12.(1)80;(2)①;② 【分析】 (1)过点P作PG∥AB,则PG∥CD,由平行线的性质可得∠BPC的度数; (2)①过点P作FD的平行线,依据平行线的性质可得∠APE与∠α,∠β之间的数量关系; 解析:(1)80;(2)①;② 【分析】 (1)过点P作PG∥AB,则PG∥CD,由平行线的性质可得∠BPC的度数; (2)①过点P作FD的平行线,依据平行线的性质可得∠APE与∠α,∠β之间的数量关系; ②过P作PQ∥DF,依据平行线的性质可得∠β=∠QPA,∠α=∠QPE,即可得到∠APE=∠APQ-∠EPQ=∠β-∠α. 【详解】 解:(1)过点P作PG∥AB,则PG∥CD, 由平行线的性质可得∠B+∠BPG=180°,∠C+∠CPG=180°, 又∵∠PBA=125°,∠PCD=155°, ∴∠BPC=360°-125°-155°=80°, 故答案为:80; (2)①如图2, 过点P作FD的平行线PQ, 则DF∥PQ∥AC, ∴∠α=∠EPQ,∠β=∠APQ, ∴∠APE=∠EPQ+∠APQ=∠α+∠β, ∠APE与∠α,∠β之间的数量关系为∠APE=∠α+∠β; ②如图3,∠APE与∠α,∠β之间的数量关系为∠APE=∠β-∠α;理由: 过P作PQ∥DF, ∵DF∥CG, ∴PQ∥CG, ∴∠β=∠QPA,∠α=∠QPE, ∴∠APE=∠APQ-∠EPQ=∠β-∠α. 【点睛】 本题主要考查了平行线的性质,解决问题的关键是过拐点作平行线,利用平行线的性质得出结论. 13.(1);(2)①或;②秒或或秒 【分析】 (1)通过延长作辅助线,根据平行线的性质,得到,再根据外角的性质可计算得到结果; (2)①当时,分两种情况,Ⅰ当在和之间,Ⅱ当在和之间,由,计算出的运动时间 解析:(1);(2)①或;②秒或或秒 【分析】 (1)通过延长作辅助线,根据平行线的性质,得到,再根据外角的性质可计算得到结果; (2)①当时,分两种情况,Ⅰ当在和之间,Ⅱ当在和之间,由,计算出的运动时间,根据运动时间可计算出,由已知可计算出的度数; ②根据题意可知,当时,分三种情况, Ⅰ射线由逆时针转动,,根据题意可知,,再平行线的性质可得,再根据三角形外角和定理可列等量关系,求解即可得出结论; Ⅱ射线垂直时,再顺时针向运动时,,根据题意可知,,,,可计算射线的转动度数,再根据转动可列等量关系,即可求出答案; Ⅲ射线垂直时,再顺时针向运动时,,根据题意可知,,,根据(1)中结论,,,可计算出与代数式,再根据平行线的性质,可列等量关系,求解可得出结论. 【详解】 解:(1)延长与相交于点, 如图1, , , , ; (2)①Ⅰ如图2, ,, , 射线运动的时间(秒, 射线旋转的角度, 又, ; Ⅱ如图3所示, ,, , 射线运动的时间(秒, 射线旋转的角度, 又, ; 的度数为或; ②Ⅰ当由运动如图4时, 与相交于点, 根据题意可知,经过秒, ,, , , 又, , 解得(秒; Ⅱ当运动到,再由运动到如图5时, 与相交于点, 根据题意可知,经过秒, , , ,, 运动的度数可得,, 解得; Ⅲ当由运动如图6时,, 根据题意可知,经过秒, ,, ,, ,, 又, , , 解得(秒), 当的值为秒或或秒时,. 【点睛】 本题主要考查平行线性质,合理添加辅助线和根据题意画出相应的图形时解决本题的关键. 14.(1)证明见解析;(2)(Ⅰ);(Ⅱ). 【分析】 (1)先根据平行线的性质可得,再根据角的和差可得,然后根据平行线的判定即可得证; (2)(Ⅰ)先根据平行线的性质可得,从而可得,再根据角的和差可得 解析:(1)证明见解析;(2)(Ⅰ);(Ⅱ). 【分析】 (1)先根据平行线的性质可得,再根据角的和差可得,然后根据平行线的判定即可得证; (2)(Ⅰ)先根据平行线的性质可得,从而可得,再根据角的和差可得,然后根据即可得; (Ⅱ)设,从而可得,先根据角平分线的定义可得,再根据角的和差可得,然后根据建立方程可求出x的值,从而可得的度数,最后根据平行线的性质即可得. 【详解】 (1), , 又, , ; (2)(Ⅰ), , , , 由(1)已得:, , ; (Ⅱ)设,则, 平分, , , , , 由(1)已得:, ,即, 解得, , 又, . 【点睛】 本题考查了平行线的判定与性质、角的和差、角平分线的定义、一元一次方程的几何应用等知识点,熟练掌握平行线的判定与性质是解题关键. 15.(1)60°;(2)①6s;②s或s 【分析】 (1)利用平行线的性质角平分线的定义即可解决问题. (2)①首先证明∠GBC=∠DCN=30°,由此构建方程即可解决问题. ②分两种情形:如图③中,当 解析:(1)60°;(2)①6s;②s或s 【分析】 (1)利用平行线的性质角平分线的定义即可解决问题. (2)①首先证明∠GBC=∠DCN=30°,由此构建方程即可解决问题. ②分两种情形:如图③中,当BG∥HK时,延长KH交MN于R.根据∠GBN=∠KRN构建方程即可解决问题.如图③-1中,当BG∥HK时,延长HK交MN于R.根据∠GBN+∠KRM=180°构建方程即可解决问题. 【详解】 解:(1)如图①中, ∵∠ACB=30°, ∴∠ACN=180°-∠ACB=150°, ∵CE平分∠ACN, ∴∠ECN=∠ACN=75°, ∵PQ∥MN, ∴∠QEC+∠ECN=180°, ∴∠QEC=180°-75°=105°, ∴∠DEQ=∠QEC-∠CED=105°-45°=60°. (2)①如图②中, ∵BG∥CD, ∴∠GBC=∠DCN, ∵∠DCN=∠ECN-∠ECD=75°-45°=30°, ∴∠GBC=30°, ∴5t=30, ∴t=6s. ∴在旋转过程中,若边BG∥CD,t的值为6s. ②如图③中,当BG∥HK时,延长KH交MN于R. ∵BG∥KR, ∴∠GBN=∠KRN, ∵∠QEK=60°+4t,∠K=∠QEK+∠KRN, ∴∠KRN=90°-(60°+4t)=30°-4t, ∴5t=30°-4t, ∴t=s. 如图③-1中,当BG∥HK时,延长HK交MN于R. ∵BG∥KR, ∴∠GBN+∠KRM=180°, ∵∠QEK=60°+4t,∠EKR=∠PEK+∠KRM, ∴∠KRM=90°-(180°-60°-4t)=4t-30°, ∴5t+4t-30°=180°, ∴t=s. 综上所述,满足条件的t的值为s或s. 【点睛】 本题考查几何变换综合题,考查了平行线的性质,旋转变换,角平分线的定义等知识,解题的关键是理解题意,学会用分类讨论的思想思考问题,学会利用参数构建方程解决问题,属于中考压轴题. 四、解答题 16.(1)∠E=45°;(2)∠E=;(3)不变化, 【分析】 (1)由三角形内角和定理,可得∠D+∠ECD=∠E+∠EAD,∠B+∠EAB=∠E+∠ECB,由角平分线的性质,可得∠ECD=∠ECB=∠ 解析:(1)∠E=45°;(2)∠E=;(3)不变化, 【分析】 (1)由三角形内角和定理,可得∠D+∠ECD=∠E+∠EAD,∠B+∠EAB=∠E+∠ECB,由角平分线的性质,可得∠ECD=∠ECB=∠BCD,∠EAD=∠EAB=∠BAD,则可得∠E= (∠D+∠B),继而求得答案; (2)首先延长BC交AD于点F,由三角形外角的性质,可得∠BCD=∠B+∠BAD+∠D,又由角平分线的性质,即可求得答案. (3)由三角形内角和定理,可得,利用角平分线的性质与三角形的外角的性质可得答案. 【详解】 解:(1)∵CE平分∠BCD,AE平分∠BAD ∴∠ECD=∠ECB=∠BCD,∠EAD=∠EAB=∠BAD, ∵∠D+∠ECD=∠E+∠EAD,∠B+∠EAB=∠E+∠ECB, ∴∠D+∠ECD+∠B+∠EAB=∠E+∠EAD+∠E+∠ECB ∴∠D+∠B=2∠E, ∴∠E=(∠D+∠B), ∵∠ADC=50°,∠ABC=40°, ∴∠AEC= ×(50°+40°)=45°; (2)延长BC交AD于点F, ∵∠BFD=∠B+∠BAD, ∴∠BCD=∠BFD+∠D=∠B+∠BAD+∠D, ∵CE平分∠BCD,AE平分∠BAD ∴∠ECD=∠ECB=∠BCD,∠EAD=∠EAB=∠BAD, ∵∠E+∠ECB=∠B+∠EAB, ∴∠E=∠B+∠EAB-∠ECB=∠B+∠BAE-∠BCD =∠B+∠BAE-(∠B+∠BAD+∠D) = (∠B-∠D), ∠ADC=α°,∠ABC=β°, 即∠AEC= (3)的值不发生变化, 理由如下: 如图,记与交于,与交于, ①, ②, ①-②得: AD平分∠BAC, 【点睛】 此题考查了三角形内角和定理、三角形外角的性质以及角平分线的定义.此题难度较大,注意掌握整体思想与数形结合思想的应用. 17.(1)∠DAE =14°;(2)∠DFE =14°;(3)∠DAE 的大小不变,∠DAE =14°,证明详见解析. 【分析】 (1)求出∠ADE的度数,利用∠DAE=90°-∠ADE即可求出∠DAE 解析:(1)∠DAE =14°;(2)∠DFE =14°;(3)∠DAE 的大小不变,∠DAE =14°,证明详见解析. 【分析】 (1)求出∠ADE的度数,利用∠DAE=90°-∠ADE即可求出∠DAE的度数. (2)求出∠A- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 人教版七 年级 下册 数学 期末 解答 测试 答案
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【a199****6536】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【a199****6536】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【a199****6536】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【a199****6536】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文