人教版八年级上册压轴题强化数学试卷.doc
《人教版八年级上册压轴题强化数学试卷.doc》由会员分享,可在线阅读,更多相关《人教版八年级上册压轴题强化数学试卷.doc(22页珍藏版)》请在咨信网上搜索。
人教版八年级上册压轴题强化数学试卷 1.如图,是等边三角形,点分别是射线、射线上的动点,点D从点A出发沿着射线移动,点E从点B出发沿着射线移动,点同时出发并且移动速度相同,连接. (1)如图①,当点D移动到线段的中点时,与的长度关系是:_______. (2)如图②,当点D在线段上移动但不是中点时,探究与之间的数量关系,并证明你的结论. (3)如图③,当点D移动到线段的延长线上,并且时,求的度数. 2.已知:AD为△ABC的中线,分别以AB和AC为一边在△ABC的外部作等腰三角形ABE和等腰三角形ACF,且AE=AB,AF=AC,连接EF,∠EAF+∠BAC=180°. (1)如图1,若∠ABE=65°,∠ACF=75°,求∠BAC的度数. (2)如图1,求证:EF=2AD. (3)如图2,设EF交AB于点G,交AC于点R,FC与EB交于点M,若点G为EF中点,且∠BAE=60°,请探究∠GAF和∠CAF的数量关系,并证明你的结论. 3.等边中,点、分别在边、上,且,连接、交于点. (1)如图1,求的度数; 图1 (2)连接,若,求的值; (3)如图2,若点为边的中点,连接,且,则的大小是___________. 图2 4.在平面直角坐标系中,A(a,0),B(0,b)分别是x轴负半轴和y轴正半轴上一点,点C与点A关于y轴对称,点P是x轴正半轴上C点右侧一动点. (1)当2a2+4ab+4b2+2a+1=0时,求A,B的坐标; (2)当a+b=0时, ①如图1,若D与P关于y轴对称,PE⊥DB并交DB延长线于E,交AB的延长线于F,求证:PB=PF; ②如图2,把射线BP绕点B顺时针旋转45o,交x轴于点Q,当CP=AQ时,求∠APB的大小. 5.在平面直角坐标系中,点A(a,0),点B(0,b),已知a,b满足. (1)求点A和点B的坐标; (2)如图1,点E为线段OB的中点,连接AE,过点A在第二象限作,且,连接BF交x轴于点D,求点D和点F的坐标;: (3)在(2)的条件下,如图2,过点E作交AB于点P,M是EP延长线上一点,且,连接MO,作,ON交BA的延长线于点N,连接MN,求点N的坐标. 6.如图,△ABC 中,AB=AC=BC,∠BDC=120°且BD=DC,现以D为顶点作一个60°角,使角两边分别交AB,AC边所在直线于M,N两点,连接MN,探究线段BM、MN、NC之间的关系,并加以证明. (1)如图1,若∠MDN的两边分别交AB,AC边于M,N两点.猜想:BM+NC=MN.延长AC到点E,使CE=BM,连接DE,再证明两次三角形全等可证.请你按照该思路写出完整的证明过程; (2)如图2,若点M、N分别是AB、CA的延长线上的一点,其它条件不变,再探究线段BM,MN,NC之间的关系,请直接写出你的猜想(不用证明). 7.在平面直角坐标系中,点A在x轴的负半轴上,点B在y轴的正半轴上,点A与点C关于y轴对称. (1)如图1,OA=OB,AF平分∠BAC交BC于F,BE⊥AF交AC于E,请直接写出EF与EC的数量关系为 ; (2)如图2,AF平分∠BAC交BC于F,若AF=2OB,求∠ABC的度数; (3)如图3,OA=OB,点G在BO的垂直平分线上,作∠GOH=45°交BA的延长线于H,连接GH,试探究OG与GH的数量和位置关系. 8.在Rt△中,,∠,点是上一点. (1)如图,平分∠,求证; (2)如图,点在线段上,且∠,∠,求证; (3)如图3,BM⊥AM,M是△ABC的中线AD延长线上一点,N在AD上,AN=BM,若DM=2,则MN= (直接写出结果). 【参考答案】 2.(1) (2),证明见详解 (3) 【分析】(1)由题意可知,所以,由等边三角形及中点可知,而,所以可证,进一步可证; (2)猜测,在射线AB上截取,如图(见详解),利用等边三角形的性质及可 解析:(1) (2),证明见详解 (3) 【分析】(1)由题意可知,所以,由等边三角形及中点可知,而,所以可证,进一步可证; (2)猜测,在射线AB上截取,如图(见详解),利用等边三角形的性质及可知为等边三角形,再利用边角边即可证明,最后根据全等三角形的性质即可证明; (3)按照第(2)问的思路,作出类似的辅助线:在射线CB上截取,如图(见详解),用同样的方法证明,再根据ED⊥DC,证出为等腰直角三角形,即可求出∠DEC的度数. (1) 解:, 证明过程如下:由题意可知, ∵D为AB的中点, ∴, ∴, ∴. ∵为等边三角形,, ∴. ∵, ∴, ∴, ∴. (2) 解:, 理由如下:在射线AB上截取,连接EF,如图所示, ∵为等边三角形, ∴,. ∵,, ∴为等边三角形, ∴,. 由题意知, ∴, ∴. 即. ∵, ∴. 在和中,, ∴, ∴DE与DC之间的数量关系是. (3) 如图,在射线CB上截取,连接DF,如图所示, ∵为等边三角形, ∴,. ∵,, ∴为等边三角形, ∴,, ∴. 由题意知, ∵, ∴, 即. ∵, ∴. 在和中,, ∴, ∴. ∵ED⊥DC, ∴为等腰直角三角形, ∴. 【点睛】本题主要考查了等腰三角形,等边三角形,以及全等三角形的判定及性质,能够作出辅助线,并合理利用等边三角形的性质是解题的关键. 3.(1)∠BAC=50° (2)见解析 (3)∠GAF﹣∠CAF=60°,理由见解析 【分析】(1)利用三角形的内角和定理求出∠EAB,∠CAF,再根据∠EAF+∠BAC=180°构建方程即可解 解析:(1)∠BAC=50° (2)见解析 (3)∠GAF﹣∠CAF=60°,理由见解析 【分析】(1)利用三角形的内角和定理求出∠EAB,∠CAF,再根据∠EAF+∠BAC=180°构建方程即可解决问题; (2)延长AD至H,使DH=AD,连接BH,想办法证明△ABH≌△EAF即可解决问题; (3)结论:∠GAF﹣∠CAF=60°.想办法证明△ACD≌△FAG,推出∠ACD=∠FAG,再证明∠BCF=150°即可. (1) 解:∵AE=AB, ∴∠AEB=∠ABE=65°, ∴∠EAB=50°, ∵AC=AF, ∴∠ACF=∠AFC=75°, ∴∠CAF=30°, ∵∠EAF+∠BAC=180°, ∴∠EAB+2∠ABC+∠FAC=180°, ∴50°+2∠BAC+30°=180°, ∴∠BAC=50°. (2) 证明:证明:如图,延长AD至点H,使DH=AD,连接BH ∵AD是△ABC的中线, ∴BD=DC, 又∵DH=AD,∠BDH=∠ADC ∴△ADC≌△HDB(SAS), ∴BH=AC,∠BHD=∠DAC, ∴BH=AF, ∵∠BHD=∠DAC, ∴BH∥AC, ∴∠BAC+∠ABH=180°, 又∵∠EAF+∠BAC=180°, ∴∠ABH=∠EAF, 又∵AB=AE,BH=AF, ∴△AEF≌△BAH(SAS), ∴EF=AH=2AD, ∴EF=2AD; (3) 结论:∠GAF﹣∠CAF=60°. 理由:由(2)得,AD=EF,又点G为EF中点, ∴EG=AD, 由(2)△AEF≌△BAH, ∴∠AEG=∠BAD, 在△EAG和△ABD中, , ∴△EAG≌△ABD, ∴∠EAG=∠ABC=60°,AG=BD, ∴△AEB是等边三角形,AG=CD, ∴∠ABE=60°, ∴∠CBM=60°, 在△ACD和△FAG中, , ∴△ACD≌△FAG, ∴∠ACD=∠FAG, ∵AC=AF, ∴∠ACF=∠AFC, 在四边形ABCF中,∠ABC+∠BCF+∠CFA+∠BAF=360°, ∴60°+2∠BCF=360°, ∴∠BCF=150°, ∴∠BCA+∠ACF=150°, ∴∠GAF+(180°﹣∠CAF)=150°, ∴∠GAF﹣∠CAF=60°. 【点睛】本题考查三角形综合题、全等三角形的判定和性质、等腰三角形的性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考压轴题. 4.(1);(2);(3) 【分析】(1)由是等边三角形,可得出,,再利用,可证,得出,由可求出,最后由补角定义求出. (2)在上取点,使,由可证,再利用,,可证明,进而求出,再用补角的性质得知,在 解析:(1);(2);(3) 【分析】(1)由是等边三角形,可得出,,再利用,可证,得出,由可求出,最后由补角定义求出. (2)在上取点,使,由可证,再利用,,可证明,进而求出,再用补角的性质得知,在中利用外角的性质可求出,进而证出为等腰三角形,最后可证出即可求解. (3)延长至,使为等边三角形,延长交于,可得出,进而得出,利用角的和差得出,则证出,进而证出,再利用,证出为等边三角形,进而证出. 【详解】(1)∵是等边三角形, ∴,, 在和中, ,,, ∴, ∴, ∴, ∴. (2)在上取点,使. 由(1)知, 又, ∴. 在和中, ∵,,, ∴, ∴, ∴, ∵, ∴, ∴, ∴, ∵, ∴, ∴, ∴. (3). 提示:目测即得答案.详细理由如下: 由(1)知.延长至,使为等边三角形. 延长交于. ∵ , ∴, 在和中, , ∴, ∴. ∴, ∴. ∴, 在和中, , ∴, ∴. ∵,, ∴, ∵ ∴为等边三角形, ∴ ∴. 【点睛】此题是三角形综合题,主要考查了全等三角形的判定和性质,等边三角形的判定和性质,熟练掌握全等三角形的判定和性质及等边三角形的判定和性质是解题的关键. 5.(1);(2)①见解析;②∠APB=22.5° 【分析】(1)利用非负数的性质求解即可; (2)①想办法证明∠PBF=∠F,可得结论;②如图2中,过点Q作QF⊥QB交PB于F,过点F作FH⊥x轴 解析:(1);(2)①见解析;②∠APB=22.5° 【分析】(1)利用非负数的性质求解即可; (2)①想办法证明∠PBF=∠F,可得结论;②如图2中,过点Q作QF⊥QB交PB于F,过点F作FH⊥x轴于H,可得等腰直角△BQF,证明△FQH≌△QBO(AAS),再证明FQ=FP即可解决问题. 【详解】解:(1)∵2a2+4ab+4b2+2a+1=0, ∴(a+2b)2+(a+1)2=0, ∵(a+2b)2≥0 ,(a+1)2≥0, ∴a+2b=0,a+1=0, ∴a=﹣1,b=, ∴A(﹣1,0),B(0,). (2)①证明:如图1中, ∵a+b=0, ∴a=﹣b, ∴OA=OB, 又∵∠AOB=90°, ∴∠BAO=∠ABO=45°, ∵D与P关于y轴对称, ∴BD=BP, ∴∠BDP=∠BPD, 设∠BDP=∠BPD=α, 则∠PBF=∠BAP+∠BPA=45°+α, ∵PE⊥DB, ∴∠BEF=90°, ∴∠F=90°﹣∠EBF, 又∠EBF=∠ABD=∠BAO﹣∠BDP=45°﹣α, ∴∠F=45°+α, ∴∠PBF=∠F, ∴PB=PF. ②解:如图2中,过点Q作QF⊥QB交PB于F,过点F作FH⊥x轴于H.可得等腰直角△BQF, ∵∠BOQ=∠BQF=∠FHQ=90°, ∴∠BQO+∠FQH=90°,∠FQH+∠QFH=90°, ∴∠BQO=∠QFH, ∵QB=QF, ∴△FQH≌△QBO(AAS), ∴HQ=OB=OA, ∴HO=AQ=PC, ∴PH=OC=OB=QH, ∴FQ=FP, 又∠BFQ=45°, ∴∠APB=22.5°. 【点睛】本题考查完全平方公式、实数的非负性、全等三角形的判定与性质、等腰直角三角形的判定与性质,解题的关键是综合运用相关知识解题. 6.(1),;(2)D(-1,0),F(-2,4);(3)N(-6,2) 【分析】(1)结合题意,根据绝对值和乘方的性质,得,,通过求解一元一次方程,得,;结合坐标的性质分析,即可得到答案; (2) 解析:(1),;(2)D(-1,0),F(-2,4);(3)N(-6,2) 【分析】(1)结合题意,根据绝对值和乘方的性质,得,,通过求解一元一次方程,得,;结合坐标的性质分析,即可得到答案; (2)如图,过点F作FH⊥AO于点H,根据全等三角形的性质,通过证明,得AH=EO=2,FH=AO=4,从而得OH =2,即可得点F坐标;通过证明,推导得HD=OD=1,即可得到答案; (3)过点N分别作NQ⊥ON交OM的延长线于点Q,NG⊥PN交EM的延长线于点G,再分别过点Q和点N作QR⊥EG于点R,NS⊥EG于点S,根据余角和等腰三角形的性质,通过证明等腰和等腰,推导得,再根据全等三角形的性质,通过证明,得等腰,再通过证明,得NS=EM=4,MS=OE=2,即可完成求解. 【详解】(1)∵, ∴. ∵, ∴, ∴, ∴, ∴,. (2)如图,过点F作FH⊥AO于点H ∵AF⊥AE ∴∠FHA=∠AOE=90°, ∵ ∴∠AFH=∠EAO 又∵AF=AE, 在和中 ∴ ∴AH=EO=2,FH=AO=4 ∴OH=AO-AH=2 ∴F(-2,4) ∵OA=BO, ∴FH=BO 在和中 ∴ ∴HD=OD ∵ ∴HD=OD=1 ∴D(-1,0) ∴D(-1,0),F(-2,4); (3)如图,过点N分别作NQ⊥ON交OM的延长线于点Q,NG⊥PN交EM的延长线于点G,再分别过点Q和点N作QR⊥EG于点R,NS⊥EG于点S ∴ ∴, ∴ ∴ ∴ ∴等腰 ∴NQ=NO, ∵NG⊥PN, NS⊥EG ∴ ∴, ∴ ∵, ∴ ∵点E为线段OB的中点 ∴ ∴ ∴ ∴ ∴ ∴ ∴ ∴等腰 ∴NG=NP, ∵ ∴ ∴∠QNG=∠ONP 在和中 ∴ ∴∠NGQ=∠NPO,GQ=PO ∵, ∴PO=PB ∴∠POE=∠PBE=45° ∴∠NPO=90° ∴∠NGQ=90° ∴∠QGR=45°. 在和中 ∴. ∴QR=OE 在和中 ∴ ∴QM=OM. ∵NQ=NO, ∴NM⊥OQ ∵ ∴等腰 ∴ ∵ ∴ 在和中 ∴ ∴NS=EM=4,MS=OE=2 ∴N(-6,2). 【点睛】本题考查了直角坐标系、全等三角形、直角三角形、等腰三角形、绝对值、乘方的知识;解题的关键是熟练掌握直角坐标系、全等三角形、等腰三角形的性质,从而完成求解. 7.(1)过程见解析;(2)MN= NC﹣BM. 【分析】(1)延长AC至E,使得CE=BM并连接DE,根据△BDC为等腰三角形,△ABC为等边三角形,可以证得△MBD≌△ECD,可得MD=DE,∠B 解析:(1)过程见解析;(2)MN= NC﹣BM. 【分析】(1)延长AC至E,使得CE=BM并连接DE,根据△BDC为等腰三角形,△ABC为等边三角形,可以证得△MBD≌△ECD,可得MD=DE,∠BDM=∠CDE,再根据∠MDN =60°,∠BDC=120°,可证∠MDN =∠NDE=60°,得出△DMN≌△DEN,进而得到MN=BM+NC. (2)在CA上截取CE=BM,利用(1)中的证明方法,先证△BMD≌△CED(SAS),再证△MDN≌△EDN(SAS),即可得出结论. 【详解】解:(1)如图示,延长AC至E,使得CE=BM,并连接DE. ∵△BDC为等腰三角形,△ABC为等边三角形, ∴BD=CD,∠DBC=∠DCB,∠MBC=∠ACB=60°, 又BD=DC,且∠BDC=120°, ∴∠DBC=∠DCB=30° ∴∠ABC+∠DBC=∠ACB+∠DCB=60°+30°=90°, ∴∠MBD=∠ECD=90°, 在△MBD与△ECD中, ∵ , ∴△MBD≌△ECD(SAS), ∴MD=DE,∠BDM=∠CDE ∵∠MDN =60°,∠BDC=120°, ∴∠CDE+∠NDC =∠BDM+∠NDC=120°-60°=60°, 即:∠MDN =∠NDE=60°, 在△DMN与△DEN中, ∵ , ∴△DMN≌△DEN(SAS), ∴MN=NE=CE+NC=BM+NC. (2)如图②中,结论:MN=NC﹣BM. 理由:在CA上截取CE=BM. ∵△ABC是正三角形, ∴∠ACB=∠ABC=60°, 又∵BD=CD,∠BDC=120°, ∴∠BCD=∠CBD=30°, ∴∠MBD=∠DCE=90°, 在△BMD和△CED中 ∵ , ∴△BMD≌△CED(SAS), ∴DM= DE,∠BDM=∠CDE ∵∠MDN =60°,∠BDC=120°, ∴∠NDE=∠BDC-(∠BDN+∠CDE)=∠BDC-(∠BDN+∠BDM)=∠BDC-∠MDN=120°-60°=60°, 即:∠MDN =∠NDE=60°, 在△MDN和△EDN中 ∵ , ∴△MDN≌△EDN(SAS), ∴MN =NE=NC﹣CE=NC﹣BM. 【点睛】此题考查了全等三角形的判定与性质、等边三角形的性质、等腰三角形的性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题. 8.(1)EF=EC (2)72° (3)GH=GO,GH⊥GO 【分析】(1)如图1中,设AF交BE于点J.首先证明AB=AE,再证明∠AEF=∠ABF=90°,可得结论; (2)如图2中,取 解析:(1)EF=EC (2)72° (3)GH=GO,GH⊥GO 【分析】(1)如图1中,设AF交BE于点J.首先证明AB=AE,再证明∠AEF=∠ABF=90°,可得结论; (2)如图2中,取CF的中点T,连接OT.由OA=OC,BO⊥AC,推出BA=BC,推出∠BAC=∠BCA,∠ABO=∠CBO,设∠BAC=∠BCA=2α,利用三角形内角和定理,构建方程求解即可; (3)结论:OG=GH,OG⊥GH.如图3中,连接GB,在BA上取一点H′,使得GB=GH′,连接OH′,设AB交DG于点W,交OG于点K,连接OW.证明∠GOH′=GOH=45°,推出点H与点H′重合,可得结论. (1)解:(1)结论:EF=EC.理由:如图1中,设AF交BE于点J.∵AF平分∠BAC,∴∠BAF=∠CAF,∵BE⊥AF,∴∠BAF+∠ABE=90°,∠CAF+∠AEB=90°,∴∠ABE=∠AEB,∴AB=AE,∵A,C关于y轴对称,∴OA=OC,∵OA=OB,∴OA=OB=OC,∴∠OAB=∠OBA=45°,∠OCB=∠OBC=45°,∴∠ABC=90°,在△ABF和△AEF中,,∴△ABF≌△AEF(SAS),∴∠AEF=∠ABF=90°,∴∠CEF=90°,∴∠ECF=∠EFC=45°,∴EF=EC; (2)解:如图2中,取CF的中点T,连接OT.∵AO=OC,FT=TC,∴OT∥AF,OT=AF,∵AF=2OB,∴OB=OT,∴∠OBT=∠OTB,∵OA=OC,BO⊥AC,∴BA=BC,∴∠BAC=∠BCA,∠ABO=∠CBO,设∠BAC=∠BCA=2α,∵AF平分∠BAC,∴∠BAF=∠CAF=α,∵OT∥AF,∴∠TOC=∠CAF=α,∴∠OBT=∠OTB=∠TOC+∠TCO=3α,∵∠OBC+∠OCB=90°,∴5α=90°,∴α=18°,∴∠OBC=36°,∴∠ABC=2∠OBC=72°; (3)解:结论:OG=GH,OG⊥GH.理由:如图3中,连接GB,在BA上取一点H′,使得GB=GH′,连接OH′,设AB交DG于点W,交OG于点K,连接OW.设∠OGB=m,∠OGH′=n,∵GD垂直平分线段OB,∴GB=GO,∠DGB=∠DGO=m,∵GB=GO=GH′,∴∠GH′O=(180°-n)=90°-n,∠GH′B=(180°-m-n)=90°-m-n,∴∠KH′O=∠GH′O-∠GH′B=90°-n-(90°-m-n)=m,∴∠KH′O=∠KGW,∵∠GKW=∠H′KO,∴∠H′OK=∠GWK,∵DG∥OA,∴∠GWK=∠OAB=45°,∴∠COH′=45°,∵∠COH=45°,∴∠COH=∠COH′,∴点H与点H′重合,∴OG=GH,∴∠GHO=∠GOH=45°,∴∠OGH=90°,∴GH=GO,GH⊥GO. 【点睛】本题考查了等腰直角三角形的判定和性质,全等三角形的判定和性质,等腰三角形的性质等知识,第三个问题比较难,采用了同一法解决问题. 9.(1)见解析 (2)见解析 (3)8 【分析】(1)如图1中,作DH⊥AB于H.证明△ADC≌△ADH即可解决问题. (2)如图2中,过点C作CM⊥CE交AD的延长线于M,连接BM.证明△A 解析:(1)见解析 (2)见解析 (3)8 【分析】(1)如图1中,作DH⊥AB于H.证明△ADC≌△ADH即可解决问题. (2)如图2中,过点C作CM⊥CE交AD的延长线于M,连接BM.证明△ACE≌△BCM(SAS),推出AE=BM,再利用直角三角形30度角的性质即可解决问题. (3)如图3中,作CH⊥MN于H.证明得到,进一步证明即可解决问题. (1) 证明:如图1中,作DH⊥AB于H. ∵∠ACD=∠AHD=90°,AD=AD,∠DAC=∠DAH, ∴△ADC≌△ADH(ASA), ∴AC=AH,DC=DH, ∵CA=CB,∠C=90°, ∴∠B=45°, ∵∠DHB=90°, ∴∠HDB=∠B=45°, ∴HD=HB, ∴BH=CD, ∴AB=AH+BH=AC+CD. (2) 如图2中,作CM⊥CE交AD的延长线于M,连接BM. , , , , , ∵∠ACB=∠ECM=90°, , , ∵CA=CB,CE=CM, ∴△ACE≌△BCM(SAS), ∴AE=BM, ∵在Rt△EMB中,∠MEB=30°, ∴BE=2BM=2AE. (3) 解:如图3中,作CH⊥MN于H. , , , , , , , ,, , , , , 是的中线, , ,, , , , . 【点睛】本题属于三角形综合题,考查了等腰直角三角形的判定和性质,全等三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题.- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 人教版八 年级 上册 压轴 强化 数学试卷
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【w****g】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【w****g】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【w****g】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【w****g】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文