2023年人教版中学七7年级下册数学期末复习卷含答案word.doc
《2023年人教版中学七7年级下册数学期末复习卷含答案word.doc》由会员分享,可在线阅读,更多相关《2023年人教版中学七7年级下册数学期末复习卷含答案word.doc(25页珍藏版)》请在咨信网上搜索。
2023年人教版中学七7年级下册数学期末复习卷含答案word 一、选择题 1.9的算术平方根是() A.-3 B.3 C. D. 2.下列汽车商标图案中,可以由一个“基本图案”通过连续平移得到的是( ) A. B. C. D. 3.在平面直角坐标系中,点(﹣1,+1)一定在( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限 4.下列命题是假命题的是( ) A.两个角的和等于平角时,这两个角互为补角 B.内错角相等 C.两条平行线被第三条直线所截,内错角相等 D.对顶角相等 5.如图, ,若,,,则下列说法正确的是( ) A. B. C. D. 6.按如图所示的程序计算,若开始输入的x的值是64,则输出的y的值是( ) A. B. C.2 D.3 7.如图,和相交于点O,则下列结论正确的是( ) A. B. C. D. 8.如图,在平面直角坐标系内原点O(0,0)第一次跳动到点A1(0,1),第二次从点A1跳动到点A2(1,2),第三次从点A2跳动到点A3(-1,3),第四次从点A3跳动到点A4(-1,4),……,按此规律下去,则点A2021的坐标是( ). A.(673,2021) B.(674,2021) C.(-673,2021) D.(-674,2021) 九、填空题 9.已知x,y为实数,且,则x-y=___________. 十、填空题 10.已知点在第四象限,,则点A关于y轴对称的坐标是__________. 十一、填空题 11.如图,在中,,,是的角平分线,,垂足为,,则__________. 十二、填空题 12.如图所示,把一个长方形纸片沿EF折叠后,点D,C分别落在D′,C′的位置.若∠EFB=72°,则∠AED′=__. 十三、填空题 13.图,直线,直线l与直线AB,CD相交于点E、F,点P是射线EA上的一个动点(不包括端点E),将沿PF折叠,使顶点E落在点Q处.若∠PEF=75°,2∠CFQ=∠PFC,则________. 十四、填空题 14.若,,…,是从0,1,2,这三个数中取值的一列数,,,则在,,…,中,取值为2的个数为___________. 十五、填空题 15.已知点,且点到两坐标轴的距离相等,则点的坐标是____. 十六、填空题 16.在平面直角坐标系中,一蚂蚁从原点O出发,按向上、向右、向下、向右的方向依次不断移动,每次移动1个单位;其行走路线如图所示.则点的坐标为__________. 十七、解答题 17.计算: (1) (2) 十八、解答题 18.求满足下列各式x的值 (1)2x2﹣8=0; (2)(x﹣1)3=﹣4. 十九、解答题 19.如图,∠1+∠2=180°,∠C=∠D.求证:ADBC. 证明:∵∠1+∠2=180°,∠2+∠AED=180°, ∴∠1=∠AED( ), ∴AC ( ), ∴∠D=∠DAF( ). ∵∠C=∠D, ∴∠DAF= (等量代换). ∴ADBC( ). 二十、解答题 20.在平面坐标系中描出下列各点且标该点字母: (1)点,,,; (2)点在轴上,位于原点右侧,距离原点2个单位长度; (3)点在轴下方,轴左侧,距离每条坐标轴都是3个单位长度. 二十一、解答题 21.实数在数轴上的对应点的位置如图所示,. (1)求的值; (2)已知的小数部分是,的小数部分是,求的平方根. 二十二、解答题 22.如图,用两个边长为10的小正方形拼成一个大的正方形. (1)求大正方形的边长? (2)若沿此大正方形边的方向出一个长方形,能否使裁出的长方形的长宽之比为3:2,且面积为480cm2? 二十三、解答题 23.综合与探究 (问题情境) 王老师组织同学们开展了探究三角之间数量关系的数学活动 (1)如图1,,点、分别为直线、上的一点,点为平行线间一点,请直接写出、和之间的数量关系; (问题迁移) (2)如图2,射线与射线交于点,直线,直线分别交、于点、,直线分别交、于点、,点在射线上运动, ①当点在、(不与、重合)两点之间运动时,设,.则,,之间有何数量关系?请说明理由. ②若点不在线段上运动时(点与点、、三点都不重合),请你画出满足条件的所有图形并直接写出,,之间的数量关系. 二十四、解答题 24.已知射线射线CD,P为一动点,AE平分,CE平分,且AE与CE相交于点E.(注意:此题不允许使用三角形,四边形内角和进行解答) (1)在图1中,当点P运动到线段AC上时,.直接写出的度数; (2)当点P运动到图2的位置时,猜想与之间的关系,并加以说明; (3)当点P运动到图3的位置时,(2)中的结论是否还成立?若成立,请说明理由:若不成立,请写出与之间的关系,并加以证明. 二十五、解答题 25.如图,在中,是高,是角平分线,,. ()求、和的度数. ()若图形发生了变化,已知的两个角度数改为:当,,则__________. 当,时,则__________. 当,时,则__________. 当,时,则__________. ()若和的度数改为用字母和来表示,你能找到与和之间的关系吗?请直接写出你发现的结论. 【参考答案】 一、选择题 1.B 解析:B 【分析】 根据算术平方根的概念可直接进行求解. 【详解】 解:∵, ∴9的算术平方根是3; 故选B. 【点睛】 本题主要考查算术平方根,熟练掌握求一个数的算术平方根是解题的关键. 2.B 【分析】 根据旋转变换,平移变换,轴对称变换对各选项分析判断后利用排除法求解. 【详解】 解:A、可以由一个“基本图案”旋转得到,故本选项错误; B、可以由一个“基本图案”平移得到,故把本选项正 解析:B 【分析】 根据旋转变换,平移变换,轴对称变换对各选项分析判断后利用排除法求解. 【详解】 解:A、可以由一个“基本图案”旋转得到,故本选项错误; B、可以由一个“基本图案”平移得到,故把本选项正确; C、是轴对称图形,不是基本图案的组合图形,故本选项错误; D、是轴对称图形,不是基本图案的组合图形,故本选项错误. 故选:B. 【点睛】 本题考查了生活中的平移现象,仔细观察各选项图形是解题的关键. 3.B 【分析】 根据非负数的性质判断出点的纵坐标是正数,再根据各象限点的特点解答. 【详解】 解:≥0, ∴+1>0, ∴点(-1,+1)一定在第二象限, 故选B. 【点睛】 本题考查了点的坐标,记住各象限内点的坐标的符号并判断出点的纵坐标是负数是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-). 4.B 【分析】 根据内错角、对顶角、补角的定义一一判断即可. 【详解】 解:A、两个角的和等于平角时,这两个角互为补角,为真命题; B、两直线平行,内错角相等,故错误,为假命题; C、两条平行线被第三条直线所截,内错角相等,为真命题; D、对顶角相等,为真命题; 故选:B. 【点睛】 本题考查命题与定理、内错角、对顶角、补角的定义等知识,解题的关键是熟练掌握基本概念,属于基础题. 5.D 【分析】 根据平行线的性质进行求解即可得到答案. 【详解】 解:∵BE∥CD ∴∠ 2+∠C=180°,∠ 3+∠D=180° ∵∠ 2=50°,∠ 3=120° ∴∠C=130°,∠D=60° 又∵BE∥AF,∠ 1=40° ∴∠A=180°-∠ 1=140°,∠F=∠ 3=120° 故选D. 【点睛】 本题主要考查了平行线的性质,熟练掌握平行线的性质是解题的关键. 6.A 【分析】 根据计算程序图计算即可. 【详解】 解:∵当x=64时,,,2是有理数, ∴当x=2时,算术平方根为是无理数, ∴y=, 故选:A. 【点睛】 此题考查计算程序的应用,正确理解计算程序图的计算步骤,会正确计算数的算术平方根及立方根,能正确判断有理数及无理数是解题的关键. 7.A 【分析】 根据对顶角的性质和平行线的性质判断即可. 【详解】 解:A、∵和是对顶角, ∴,选项正确,符合题意; B、∵与OB相交于点A, ∴与OB不平行, ∴,选项错误,不符合题意; C、∵AO与BC相交于点B, ∴AO与BC不平行, ∴,选项错误,不符合题意; D、∵OD与BC相交于点C, ∴OD与BC不平行, ∴,选项错误,不符合题意. 故选:A. 【点睛】 此题考查了对顶角的性质,平行线的性质,解题的关键是熟练掌握对顶角的性质和平行线的性质.对顶角相等. 8.B 【分析】 根据已知点的坐标寻找规律并应用解答即可. 【详解】 解:∵A1(0,1),A2(1,2),A3(-1,3),A4(-1,4), ∴A5(2,5),A6(-2,6),A7(-2,7),A 解析:B 【分析】 根据已知点的坐标寻找规律并应用解答即可. 【详解】 解:∵A1(0,1),A2(1,2),A3(-1,3),A4(-1,4), ∴A5(2,5),A6(-2,6),A7(-2,7),A8(3,8), ∴A3n-1(n,3n-1),A3n(-n,3n),A3n+1(-n,3n+1)(n为正整数), ∵3×674-1=2021, ∴n=674,所以A 2021(674,2021). 故选B. 【点睛】 本题主要考查了点的坐标规律,根据已知点坐标找到A3n-1(n,3n-1),A3n(-n,3n),A3n+1(-n,3n+1)(n为正整数)的规律是解答本题的关键. 九、填空题 9.-1 【分析】 根据算术平方根的非负性和平方的非负性即可求出x和y,代入求值即可. 【详解】 解:∵, ∴ 解得: ∴x-y=-1 故答案为:-1. 【点睛】 此题考查的是非负性的应用,掌握算术平方 解析:-1 【分析】 根据算术平方根的非负性和平方的非负性即可求出x和y,代入求值即可. 【详解】 解:∵, ∴ 解得: ∴x-y=-1 故答案为:-1. 【点睛】 此题考查的是非负性的应用,掌握算术平方根的非负性和平方的非负性是解决此题的关键. 十、填空题 10.【分析】 由第四象限点的坐标符号是(+,-),可得,关于y轴对称的点,纵坐标相同,横坐标互为相反数,即可求解. 【详解】 解:因为在第四象限,则,所以, 又因为关于y轴对称,x值相反,y值不变, 解析: 【分析】 由第四象限点的坐标符号是(+,-),可得,关于y轴对称的点,纵坐标相同,横坐标互为相反数,即可求解. 【详解】 解:因为在第四象限,则,所以, 又因为关于y轴对称,x值相反,y值不变, 所以点A关于y轴对称点坐标为. 故答案为. 【点睛】 本题考查点的坐标的意义和对称的特点.关键是掌握点的坐标的变化规律. 十一、填空题 11.【解析】 已知∠C=90°,AD是△ABC的角平分线,DE⊥AB,根据角平分线的性质可得DC=DE=1;因,根据30°直角三角形的性质可得BD=2DE=2,所以BC=CD+DB=1+2=3. 解析:【解析】 已知∠C=90°,AD是△ABC的角平分线,DE⊥AB,根据角平分线的性质可得DC=DE=1;因,根据30°直角三角形的性质可得BD=2DE=2,所以BC=CD+DB=1+2=3. 十二、填空题 12.36° 【分析】 根据平行线的性质可知∠DEF=∠EFB=72°,由折叠的性质求出∠D′EF72°,然后可求∠AED′的值. 【详解】 解:∵四边形ABCD为长方形, ∴AD//BC, ∴∠DEF= 解析:36° 【分析】 根据平行线的性质可知∠DEF=∠EFB=72°,由折叠的性质求出∠D′EF72°,然后可求∠AED′的值. 【详解】 解:∵四边形ABCD为长方形, ∴AD//BC, ∴∠DEF=∠EFB=72°, 又由折叠的性质可得∠D′EF=∠DEF=72°, ∴∠AED′=180°﹣72°﹣72°=36°, 故答案为:36°. 【点睛】 本题考查了平行线的性质,折叠的性质,熟练掌握折叠的性质是解答本题的关键. 十三、填空题 13.或 【分析】 分两种情形:①当点Q在平行线AB,CD之间时.②当点Q在CD下方时,分别构建方程即可解决问题. 【详解】 解:①当点Q在平行线AB,CD之间时,如图1. ∵AB//CD ∴∠PEF+ 解析:或 【分析】 分两种情形:①当点Q在平行线AB,CD之间时.②当点Q在CD下方时,分别构建方程即可解决问题. 【详解】 解:①当点Q在平行线AB,CD之间时,如图1. ∵AB//CD ∴∠PEF+∠CFE=180° 设∠PFQ=x,由折叠可知∠EFP=x, ∵2∠CFQ=∠CFP, ∴∠PFQ=∠CFQ=x, ∴75°+3x=180°, ∴x=35°, ∴∠EFP=35°. ②当点Q在CD下方时,如图2 设∠PFQ=x,由折叠可知∠EFP=x, ∵2∠CFQ=∠CFP, ∴∠PFC=x, ∴75°+x+x=180°, 解得x=63°, ∴∠EFP=63°. 故答案为:或 【点睛】 本题主要考查了平行线的性质以及翻折问题的综合应用,正确掌握平行线的性质和轴对称的性质是解题的关键. 十四、填空题 14.508 【分析】 通过,,…,是从0,1,2,这三个数中取值的一列数,,从而得到1的个数,再由得到2的个数. 【详解】 解:∵, 又∵,,…,是从0,1,2,这三个数中取值的一列数, ∴,,…,中为 解析:508 【分析】 通过,,…,是从0,1,2,这三个数中取值的一列数,,从而得到1的个数,再由得到2的个数. 【详解】 解:∵, 又∵,,…,是从0,1,2,这三个数中取值的一列数, ∴,,…,中为1的个数是2019−1510=509, ∵, ∴2的个数为(1525−509)÷2=508个. 故答案为:508. 【点睛】 此题考查完全平方的性质,找出,,…,中为1的个数是解决问题的关键. 十五、填空题 15.或; 【分析】 根据点A到两坐标轴的距离相等,列出绝对值方程,解方程即可得到答案. 【详解】 解:∵点A到两坐标轴的距离相等,且点A为, ∴, ∴或, 解得:或, ∴点A的坐标为:或; 故答案为:或 解析:或; 【分析】 根据点A到两坐标轴的距离相等,列出绝对值方程,解方程即可得到答案. 【详解】 解:∵点A到两坐标轴的距离相等,且点A为, ∴, ∴或, 解得:或, ∴点A的坐标为:或; 故答案为:或; 【点睛】 本题考查了点的坐标:直角坐标系中点与有序实数对一一对应;在x轴上点的纵坐标为0,在y轴上点的横坐标为0;记住各象限点的坐标特点. 十六、填空题 16.(1010,1) 【分析】 根据图象先计算出A4和A8的坐标,进而得出点A4n的坐标为(2n,0),再用2020÷4=505,可得出点A2021的坐标. 【详解】 解:由图可知A4,A8都在x轴上, 解析:(1010,1) 【分析】 根据图象先计算出A4和A8的坐标,进而得出点A4n的坐标为(2n,0),再用2020÷4=505,可得出点A2021的坐标. 【详解】 解:由图可知A4,A8都在x轴上, ∵蚂蚁每次移动1个单位, ∴OA4=2,OA8=4, ∴A4(2,0),A8(4,0), ∴OA4n=4n÷2=2n, ∴点A4n的坐标为(2n,0). ∵2020÷4=505, ∴点A2020的坐标是(1010,0). ∴点A2021的坐标是(1010,1). 故答案为:(1010,1). 【点睛】 本题考查了规律型问题在点的坐标问题中的应用,数形结合并正确得出规律是解题的关键. 十七、解答题 17.(1);(2) 【分析】 (1)根据算术平方根,立方根的求法结合实数混合运算法则计算即可; (2)先根据绝对值的意义化简绝对值,然后根据算术平方根的求法以及实数混合运算法则计算即可. 【详解】 解: 解析:(1);(2) 【分析】 (1)根据算术平方根,立方根的求法结合实数混合运算法则计算即可; (2)先根据绝对值的意义化简绝对值,然后根据算术平方根的求法以及实数混合运算法则计算即可. 【详解】 解:(1)原式==; (2)原式=. 【点睛】 本题考查了实数的混合运算,算术平方根以及立方根的求法,绝对值等知识点,题目比较基础,熟练掌握基础知识点是关键. 十八、解答题 18.(1)或者;(2) 【分析】 (1)根据求一个数的平方根解方程 (2)根据求一个数的立方根解方程 【详解】 (1)2x2﹣8=0, , , 解得或者; (2)(x﹣1)3=﹣4, , , 解得. 【 解析:(1)或者;(2) 【分析】 (1)根据求一个数的平方根解方程 (2)根据求一个数的立方根解方程 【详解】 (1)2x2﹣8=0, , , 解得或者; (2)(x﹣1)3=﹣4, , , 解得. 【点睛】 本题考查了求一个数的平方根和立方根,掌握平方根和立方根的概念是解题的关键. 十九、解答题 19.同角的补角相等;DE;内错角相等,两直线平行;两直线平行,内错角相等;∠C;同位角相等,两直线平行. 【分析】 根据平行线的判定和性质定理即可得到结论. 【详解】 证明:,, (同角的补角相等), 解析:同角的补角相等;DE;内错角相等,两直线平行;两直线平行,内错角相等;∠C;同位角相等,两直线平行. 【分析】 根据平行线的判定和性质定理即可得到结论. 【详解】 证明:,, (同角的补角相等), (内错角相等,两直线平行), (两直线平行,内错角相等), , (等量代换), (同位角相等,两直线平行). 故答案为:同角的补角相等;DE;内错角相等,两直线平行;两直线平行,内错角相等;;同位角相等,两直线平行. 【点睛】 本题考查了平行线的判定与性质,熟记“内错角相等,两直线平行”、“同位角相等,两直线平行”及“两直线平行,内错角相等”是解题的关键. 二十、解答题 20.(1)见解析;(2)见解析;(3)见解析 【分析】 (1)直接在平面直角坐标系内描出各点即可; (2)根据题意确定点 的坐标,然后在平面直角坐标系内描出各点即可; (3)根据题意确定点 的坐标,然后 解析:(1)见解析;(2)见解析;(3)见解析 【分析】 (1)直接在平面直角坐标系内描出各点即可; (2)根据题意确定点 的坐标,然后在平面直角坐标系内描出各点即可; (3)根据题意确定点 的坐标,然后在平面直角坐标系内描出各点即可. 【详解】 解:(1)如图 , (2)∵点在轴上,位于原点右侧,距离原点2个单位长度, ∴点 ; (3)点在轴下方,轴左侧,距离每条坐标轴都是3个单位长度, ∴点 . 【点睛】 本题主要考查了平面直角坐标系内点的坐标,正确把握点的坐标的性质是解题的关键. 二十一、解答题 21.(1);(2) 【分析】 (1)根据A点在数轴上的位置,可以知道2<a<3,根据a的范围去绝对值化简即可; (2)先求出b+2,得到它的整数部分,用b+2减去整数部分就是小数部分,从而求出m;同理可 解析:(1);(2) 【分析】 (1)根据A点在数轴上的位置,可以知道2<a<3,根据a的范围去绝对值化简即可; (2)先求出b+2,得到它的整数部分,用b+2减去整数部分就是小数部分,从而求出m;同理可求出n.然后求出2m+2n+1,再求平方根. 【详解】 解:(1)由图知:, ,, ; (2), 整数部分是3, ; 的整数部分是6, , , 的平方根为. 【点睛】 本题主要考查了无理数的估算,考核学生的运算能力,解题时注意一个正数的平方根有两个. 二十二、解答题 22.(1)大正方形的边长是;(2)不能 【分析】 (1)根据已知正方形的面积求出大正方形的面积,即可求出边长; (2)先求出长方形的边长,再判断即可. 【详解】 (1)大正方形的边长是 (2)设长方形纸 解析:(1)大正方形的边长是;(2)不能 【分析】 (1)根据已知正方形的面积求出大正方形的面积,即可求出边长; (2)先求出长方形的边长,再判断即可. 【详解】 (1)大正方形的边长是 (2)设长方形纸片的长为3xcm,宽为2xcm, 则3x•2x=480, 解得:x= 因为,所以沿此大正方形边的方向剪出一个长方形,不能使剪出的长方形纸片的长宽之比为2:3,且面积为480cm2. 【点睛】 本题考查算术平方根,解题的关键是能根据题意列出算式. 二十三、解答题 23.(1);(2)①,理由见解析;②图见解析,或 【分析】 (1)作PQ∥EF,由平行线的性质,即可得到答案; (2)①过作交于,由平行线的性质,得到,,即可得到答案; ②根据题意,可对点P进行分类讨论 解析:(1);(2)①,理由见解析;②图见解析,或 【分析】 (1)作PQ∥EF,由平行线的性质,即可得到答案; (2)①过作交于,由平行线的性质,得到,,即可得到答案; ②根据题意,可对点P进行分类讨论:当点在延长线时;当在之间时;与①同理,利用平行线的性质,即可求出答案. 【详解】 解:(1)作PQ∥EF,如图: ∵, ∴, ∴,, ∵ ∴; (2)①; 理由如下:如图, 过作交于, ∵, ∴, ∴,, ∴; ②当点在延长线时,如备用图1: ∵PE∥AD∥BC, ∴∠EPC=,∠EPD=, ∴; 当在之间时,如备用图2: ∵PE∥AD∥BC, ∴∠EPD=,∠CPE=, ∴. 【点睛】 本题考查了平行线的性质,解题的关键是熟练掌握两直线平行同旁内角互补,两直线平行内错角相等,从而得到角的关系. 二十四、解答题 24.(1);(2),证明见解析;(3),证明见解析. 【分析】 (1)过点作,先根据平行线的性质、平行公理推论可得,从而可得,再根据平行线的性质可得,然后根据角平分线的定义可得,最后根据角的和差即可得; 解析:(1);(2),证明见解析;(3),证明见解析. 【分析】 (1)过点作,先根据平行线的性质、平行公理推论可得,从而可得,再根据平行线的性质可得,然后根据角平分线的定义可得,最后根据角的和差即可得; (2)过点作,过点作,先根据(1)可得,再根据(1)同样的方法可得,由此即可得出结论; (3)过点作,过点作,先根据(1)可得,再根据平行线的性质、平行公理推论可得,然后根据角的和差、等量代换即可得出结论. 【详解】 解:(1)如图,过点作, , , , , , 又,且点运动到线段上, , 平分,平分, , ; (2)猜想,证明如下: 如图,过点作,过点作, 由(1)已得:, 同理可得:, ; (3),证明如下: 如图,过点作,过点作, 由(1)已得:, 即, , ,即, , , ,即, , , , , 即. 【点睛】 本题考查了平行线的性质、平行公理推论、角平分线的定义等知识点,熟练掌握平行线的性质是解题关键. 二十五、解答题 25.(1)30°,70°,20°;(2)15°,5°,0°,5°;(3)当时,;当时,. 【分析】 (1)先利用三角形内角和定理求出的度数,再根据角平分线和高的性质分别得出和的度数,进而可求和的度数; 解析:(1)30°,70°,20°;(2)15°,5°,0°,5°;(3)当时,;当时,. 【分析】 (1)先利用三角形内角和定理求出的度数,再根据角平分线和高的性质分别得出和的度数,进而可求和的度数; (2)先利用三角形内角和定理求出的度数,再根据角平分线和高的性质分别得出和的度数,则前三问利用即可得出答案,第4问利用即可得出答案; (3)按照(2)的方法,将相应的数换成字母即可得出答案. 【详解】 (1)∵,, ∴ . ∵平分, ∴. ∵是高, , , , . (2)当,时, ∵,, ∴. ∵平分, ∴. ∵是高, , , ; 当,时, ∵,, ∴ . ∵平分, ∴. ∵是高, , , ; 当,时, ∵,, ∴. ∵平分, ∴. ∵是高, , , ; 当,时, ∵,, ∴. ∵平分, ∴. ∵是高, , , . (3)当 时,即时, ∵,, ∴ . ∵平分, ∴. ∵是高, , , ; 当 时,即时, ∵,, ∴ . ∵平分, ∴. ∵是高, , , ; 综上所述,当时,;当时,. 【点睛】 本题主要考查三角形内角和定理和三角形的角平分线,高,掌握三角形内角和定理和直角三角形两锐角互余是解题的关键.- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2023 年人教版 中学 年级 下册 数学 期末 复习 答案 word
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【天****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【天****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【天****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【天****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文