人教版七年级数学下册期末学业水平.doc
《人教版七年级数学下册期末学业水平.doc》由会员分享,可在线阅读,更多相关《人教版七年级数学下册期末学业水平.doc(27页珍藏版)》请在咨信网上搜索。
人教版七年级数学下册期末学业水平 一、选择题 1.如图所示,下列说法正确的是( ) A.和是内错角 B.和是同旁内角 C.和是同位角 D.和是内错角 2.下列所示的车标图案,其中可以看作由基本图案经过平移得到的是( ) A. B. C. D. 3.若点在第二象限,则点在第( )象限 A.一 B.二 C.三 D.四 4.下列句子中,属于命题的是( ) ①三角形的内角和等于180度;②对顶角相等;③过一点作已知直线的垂线;④两点确定一条直线. A.①④ B.①②④ C.①②③ D.②③ 5.如图,直线,,则的度数为( ) A. B. C. D. 6.下列说法中正确的是( ) A.的平方根是 B.的算术平方根是 C.与相等 D.的立方根是 7.在同一个平面内,为50°,的两边分别与的两边平行,则的度数为( ). A.50° B.40°或130° C.50°或130° D.40° 8.如图,小球起始时位于(3,0)处,沿所示的方向击球,小球运动的轨迹如图所示.如果小球起始时位于(1,0)处,仍按原来方向击球,小球第一次碰到球桌边时,小球的位置是(0,1),那么小球第2021次碰到球桌边时,小球的位置是( ) A.(3,4) B.(5,4) C.(7,0) D.(8,1) 九、填空题 9.已知,则a+b为_____. 十、填空题 10.若点与关于轴对称,则____________________________. 十一、填空题 11.如图,△ABC的角平分线CD、BE相交于F,∠A=90°,EG∥BC,且CG⊥EG于G,下列结论:①∠CEG=2∠DCB;②∠BFD=45°;③∠ADC=∠GCD;④CA平分∠BCG.其中正确的结论是______(填序号). 十二、填空题 12.如图,直线AB∥CD,OA⊥OB,若∠1=140°,则∠2=_____度. 十三、填空题 13.如图,在△ABC中,∠ACB=90°,∠A<∠B,点D为AB边上一点且不与A、B重合,将△ACD沿CD翻折得到△ECD,直线CE与直线AB相交于点F.若∠A=α,当△DEF为等腰三角形时,∠ACD=__________________.(用α的代数式表示∠ACD) 十四、填空题 14.a是不为2的有理数,我们把2称为a的“文峰数”如:3的“文峰数”是,-2的“文峰数”是,已知a1=3,a2是a1的“文峰数”, a3是a2的“文峰数”, a4是a3的“文峰数”,……,以此类推,则a2020=______ 十五、填空题 15.已知点A在x轴上方,y轴左侧,到x轴的距离是3,到y轴的距离是4,那么点A的坐标是______________. 十六、填空题 16.在平面直角坐标系中,,,,,,…,按照此规律排列下去,点的坐标为________. 十七、解答题 17.(1) (2) (3) 十八、解答题 18.求下列各式中的的值. (1); (2). 十九、解答题 19.完成下面的说理过程:如图,在四边形中,E、F分别是,延长线上的点,连接,分别交,于点G、H.已知,,对和说明理由. 理由:∵(已知), ( ), ∴(等量代换). ∴( ). ∵( ). ∵(已知), ∴.( ). ∴( ). 二十、解答题 20.在由边长为1个单位长度的小正方形组成的网格中建立如图所示平面直角坐标系,原点O及△ABC的顶点都在格点上. (1)将△ ABC先向下平移2个单位长度,再向右平移5个单位长度得到△ A1B1C1,画出△ A1B1C1. (2)求△ A1B1C1的面积. 二十一、解答题 21.已知:是的小数部分,是的小数部分. (1)求的值; (2)求的平方根. 二十二、解答题 22.如图所示的正方形纸板是由两张大小相同的长方形纸板拼接而成的,已知一个长方形纸板的面积为162平方厘米,求正方形纸板的边长. 二十三、解答题 23.如图1,把一块含30°的直角三角板ABC的BC边放置于长方形直尺DEFG的EF边上. (1)根据图1填空:∠1= °,∠2= °; (2)现把三角板绕B点逆时针旋转n°. ①如图2,当n=25°,且点C恰好落在DG边上时,求∠1、∠2的度数; ②当0°<n<180°时,是否会存在三角板某一边所在的直线与直尺(有四条边)某一边所在的直线垂直?如果存在,请直接写出所有n的值和对应的那两条垂线;如果不存在,请说明理由. 二十四、解答题 24.如图,AB⊥AK,点A在直线MN上,AB、AK分别与直线EF交于点B、C,∠MAB+∠KCF=90°. (1)求证:EF∥MN; (2)如图2,∠NAB与∠ECK的角平分线交于点G,求∠G的度数; (3)如图3,在∠MAB内作射线AQ,使∠MAQ=2∠QAB,以点C为端点作射线CP,交直线AQ于点T,当∠CTA=60°时,直接写出∠FCP与∠ACP的关系式. 二十五、解答题 25.(1)如图1,∠BAD的平分线AE与∠BCD的平分线CE交于点E,AB∥CD,∠ADC=50°,∠ABC=40°,求∠AEC的度数; (2)如图2,∠BAD的平分线AE与∠BCD的平分线CE交于点E,∠ADC=α°,∠ABC=β°,求∠AEC的度数; (3)如图3,PQ⊥MN于点O,点A是平面内一点,AB、AC交MN于B、C两点,AD平分∠BAC交PQ于点D,请问的值是否发生变化?若不变,求出其值;若改变,请说明理由. 【参考答案】 一、选择题 1.B 解析:B 【分析】 利用“三线八角”的定义分别判断后即可确定正确的选项. 【详解】 解:A、∠1和∠2是同旁内角,故错误; B、∠1和∠2是同旁内角,正确; C、∠1和∠5不是同位角,故错误; D、∠1和∠4不是同旁内角,故错误, 故选:B. 【点睛】 本题考查了同位角、内错角及同旁内角的定义,解题的关键是了解三类角的定义,难度不大. 2.C 【分析】 根据平移的概念:在平面内,把一个图形整体沿某一的方向移动,这种图形的平行移动,叫做平移变换,简称平移,即可选出答案. 【详解】 解:根据平移的概念,观察图形可知图案B通过平移后可以得到 解析:C 【分析】 根据平移的概念:在平面内,把一个图形整体沿某一的方向移动,这种图形的平行移动,叫做平移变换,简称平移,即可选出答案. 【详解】 解:根据平移的概念,观察图形可知图案B通过平移后可以得到. 故选C. 【点睛】 本题考查生活中的平移现象,仔细观察各选项图形是解题的关键. 3.C 【分析】 应根据点P的坐标特征先判断出点Q的横纵坐标的符号,进而判断点Q所在的象限. 【详解】 解:∵点在第二象限, ∴1+a<0,1-b>0; ∴a<-1, b-1<0, 即点在第三象限. 故选:C. 【点睛】 解决本题的关键是牢记平面直角坐标系中各个象限内点的符号特征:第一象限正正,第二象限负正,第三象限负负,第四象限正负. 4.B 【分析】 根据命题的定义即表示对一件事情进行判断的语句叫命题,分别对每一项是否是命题进行判断即可. 【详解】 解: ①三角形的内角和等于180°,是三角形内角和定理,是命题; ②对顶角相等,是对顶角的性质,是命题; ③过一点作已知直线的垂线,是作图,不是命题; ④两点确定一条直线,是直线的性质,是命题, 综上所述,属于命题是①②④. 故选:B. 【点睛】 此题考查了命题的定义,解题的关键是能根据命题的定义对每一项进行判断. 5.B 【分析】 记∠1顶点为A,∠2顶点为B,∠3顶点为C,过点B作BD∥l1,由平行线的性质可得∠3+∠DBC=180°,∠ABD+(180°-∠1)=180°,由此得到∠3+∠2+(180°-∠1)=360°,再结合已知条件即可求出结果. 【详解】 如图,过点B作BD∥l1, ∵, ∴BD∥l1∥l2, ∴∠3+∠DBC=180°,∠ABD+(180°-∠1)=180°, ∴∠3+∠DBC+∠ABD+(180°-∠1)=360°,即∠3+∠2+(180°-∠1)=360°, 又∵∠2+∠3=216°, ∴216°+(180°-∠1)=360°, ∴∠1=36°. 故选:B. 【点睛】 本题考查了平行线的性质,正确作出辅助线,熟练掌握平行线性质是解题的关键. 6.C 【分析】 根据平方根,立方根,算术平方根的定义解答即可. 【详解】 A.的平方根为,故选项错误; B.的算术平方根是,故选项错误; C.,故选项正确; D.的立方根是,故选项错误; 故选:C. 【点睛】 本题考查了平方根,立方根,算术平方根的定义,熟练掌握是解题关键. 7.C 【分析】 如图,分两种情况进行讨论求解即可. 【详解】 解:①如图所示,AC∥BF,AD∥BE, ∴∠A=∠FOD,∠B=∠FOD, ∴∠B=∠A=50°; ②如图所示,AC∥BF,AD∥BE, ∴∠A=∠BOD,∠B+∠BOD=180°, ∴∠B+∠A=180°, ∴∠B=130°, 故选C. 【点睛】 本题主要考查了平行线的性质,解题的关键在于能够熟练掌握相关知识进行求解. 8.B 【分析】 根据题意,可以画出相应的图形,然后即可发现点所在位置的变化特点,即可得到小球第2021次碰到球桌边时,小球的位置. 【详解】 解:由图可得, 点(1,0)第一次碰撞后的点的坐标为(0 解析:B 【分析】 根据题意,可以画出相应的图形,然后即可发现点所在位置的变化特点,即可得到小球第2021次碰到球桌边时,小球的位置. 【详解】 解:由图可得, 点(1,0)第一次碰撞后的点的坐标为(0,1), 第二次碰撞后的点的坐标为(3,4), 第三次碰撞后的点的坐标为(7,0), 第四次碰撞后的点的坐标为(8,1), 第五次碰撞后的点的坐标为(5,4), 第六次碰撞后的点的坐标为(1,0), …, ∵2021÷6=336…5, ∴小球第2021次碰到球桌边时,小球的位置是(5,4), 故选:B. 【点睛】 本题考查了坐标确定位置,解答本题的关键是明确题意,发现点的坐标位置的变化特点,利用数形结合的思想解答. 九、填空题 9.-6 【解析】 试题分析:∵,∴,解得=1,b=-7,∴.故应填为:-6. 考点:非负数的性质:算术平方根;非负数的性质:绝对值. 点评:本题要求掌握非负数的性质:几个非负数的和为0时,这几个非负数 解析:-6 【解析】 试题分析:∵,∴,解得=1,b=-7,∴.故应填为:-6. 考点:非负数的性质:算术平方根;非负数的性质:绝对值. 点评:本题要求掌握非负数的性质:几个非负数的和为0时,这几个非负数都为0. 十、填空题 10.0 【分析】 根据平面直角坐标系中关于轴对称的两点,横坐标互为相反数,纵坐标相等的特点进行解题即可. 【详解】 ∵点与关于轴对称 ∴ ∴, 故答案为:0. 【点睛】 本题主要考查了平面直角坐标系内点 解析:0 【分析】 根据平面直角坐标系中关于轴对称的两点,横坐标互为相反数,纵坐标相等的特点进行解题即可. 【详解】 ∵点与关于轴对称 ∴ ∴, 故答案为:0. 【点睛】 本题主要考查了平面直角坐标系内点的轴对称,熟练掌握相关点的轴对称特征是解决本题的关键. 十一、填空题 11.①②③. 【分析】 由EG∥BC,且CG⊥EG于G,可得∠GEC=∠BCA,由CD平分∠BCA,可得∠GEC=∠BCA=2∠DCB,可判定①;由CD,BE平分∠BCA,∠ABC,根据外角性质可得∠B 解析:①②③. 【分析】 由EG∥BC,且CG⊥EG于G,可得∠GEC=∠BCA,由CD平分∠BCA,可得∠GEC=∠BCA=2∠DCB,可判定①;由CD,BE平分∠BCA,∠ABC,根据外角性质可得∠BFD=∠BCF+∠CBF=45°,可判定②;根据同角的余角性质可得∠GCE=∠ABC,由角的和差∠GCD=∠ABC+∠ACD=∠ADC,可判定③;由∠GCE+∠ACB=90°,可得∠GCE与∠ACB互余,可得CA平分∠BCG不正确,可判定④. 【详解】 解:∵EG∥BC,且CG⊥EG于G, ∴∠BCG+∠G=180°, ∵∠G=90°, ∴∠BCG=180°﹣∠G=90°, ∵GE∥BC, ∴∠GEC=∠BCA, ∵CD平分∠BCA, ∴∠GEC=∠BCA=2∠DCB, ∴①正确. ∵CD,BE平分∠BCA,∠ABC ∴∠BFD=∠BCF+∠CBF=(∠BCA+∠ABC)=45°, ∴②正确. ∵∠GCE+∠ACB=90°,∠ABC+∠ACB=90°, ∴∠GCE=∠ABC, ∵∠GCD=∠GCE+∠ACD=∠ABC+∠ACD,∠ADC=∠ABC+∠BCD, ∴∠ADC=∠GCD, ∴③正确. ∵∠GCE+∠ACB=90°, ∴∠GCE与∠ACB互余, ∴CA平分∠BCG不正确, ∴④错误. 故答案为:①②③. 【点睛】 本题考查平行线的性质,角平分线定义,垂线性质,角的和差,掌握平行线的性质,角平分线定义,垂线性质,角的和差是解题关键. 十二、填空题 12.50 【分析】 先根据垂直的定义得出∠O=90°,再由三角形外角的性质得出∠3=∠1﹣∠O=50°,然后根据平行线的性质可求∠2. 【详解】 ∵OA⊥OB, ∴∠O=90°, ∵∠1=∠3+∠O=1 解析:50 【分析】 先根据垂直的定义得出∠O=90°,再由三角形外角的性质得出∠3=∠1﹣∠O=50°,然后根据平行线的性质可求∠2. 【详解】 ∵OA⊥OB, ∴∠O=90°, ∵∠1=∠3+∠O=140°, ∴∠3=∠1﹣∠O=140°﹣90°=50°, ∵AB∥CD, ∴∠2=∠3=50°, 故答案为:50. 【点睛】 此题主要考查三角形外角的性质以及平行线的性质,熟练掌握,即可解题. 十三、填空题 13.或或 【分析】 若为等腰三角形,则,根据三角形外角的性质以及三角形内角和定理即可求得结果. 【详解】 解:由翻折的性质可知,, 如图1, 当时,则, ,, , , 当时,为等腰三角形, 故答案 解析:或或 【分析】 若为等腰三角形,则,根据三角形外角的性质以及三角形内角和定理即可求得结果. 【详解】 解:由翻折的性质可知,, 如图1, 当时,则, ,, , , 当时,为等腰三角形, 故答案为. 当时,; , , ,; , , 如图2, 当时,; ,, ; 当或或时,为等腰三角形, 故答案为:或或. 【点睛】 本题考查翻折变换、等腰三角形的性质、三角形外角的性质以及三角形内角和定理等知识,解题的关键是熟练掌握三角形外角的性质以及三角形内角和定理. 十四、填空题 14.. 【分析】 先根据题意求得、、、,发现规律即可求解. 【详解】 解:∵a1=3 ∴,,,, ∴该数列为每4个数为一周期循环, ∵ ∴a2020=. 故答案为:. 【点睛】 此题主要考查规律的探索, 解析:. 【分析】 先根据题意求得、、、,发现规律即可求解. 【详解】 解:∵a1=3 ∴,,,, ∴该数列为每4个数为一周期循环, ∵ ∴a2020=. 故答案为:. 【点睛】 此题主要考查规律的探索,解题的关键是根据题意发现规律. 十五、填空题 15.(-4,3) . 【分析】 到x轴的距离表示点的纵坐标的绝对值;到y轴的距离表示点的横坐标的绝对值. 【详解】 解:根据题意可得点在第二象限,第二象限中的点横坐标为负数,纵坐标为正数. 所以点A的坐 解析:(-4,3) . 【分析】 到x轴的距离表示点的纵坐标的绝对值;到y轴的距离表示点的横坐标的绝对值. 【详解】 解:根据题意可得点在第二象限,第二象限中的点横坐标为负数,纵坐标为正数. 所以点A的坐标为(-4,3) 故答案为:(-4,3) . 【点睛】 本题考查点的坐标,利用数形结合思想解题是关键. 十六、填空题 16.【分析】 观察前面几个点的坐标得到的横坐标为,纵坐标为,即可求解. 【详解】 解:观察前面几个点的坐标得到的横坐标为,纵坐标为, 将代入得 ∴ 故答案为: 【点睛】 此题考查了平面直角坐标系中点坐 解析: 【分析】 观察前面几个点的坐标得到的横坐标为,纵坐标为,即可求解. 【详解】 解:观察前面几个点的坐标得到的横坐标为,纵坐标为, 将代入得 ∴ 故答案为: 【点睛】 此题考查了平面直角坐标系中点坐标规律的探索,根据已知点找到规律是解题的关键. 十七、解答题 17.(1);(2);(3) 【分析】 (1)先化简后计算即可; (2)先化简后计算即可; (3)首先去括号,然后再合并即可. 【详解】 解:(1)原式 (2)原式 (3)原式 【点睛】 此题主要考查了实 解析:(1);(2);(3) 【分析】 (1)先化简后计算即可; (2)先化简后计算即可; (3)首先去括号,然后再合并即可. 【详解】 解:(1)原式 (2)原式 (3)原式 【点睛】 此题主要考查了实数运算,关键是掌握数的开方,正确化简各数. 十八、解答题 18.(1)或;(2). 【分析】 (1)两边开平方即可得出两个一元一次方程,求出方程的解即可; (2)先整理变形为(x﹣2)3=8,开立方根得出x﹣2=2,求出即可. 【详解】 解:(1), , , 或 解析:(1)或;(2). 【分析】 (1)两边开平方即可得出两个一元一次方程,求出方程的解即可; (2)先整理变形为(x﹣2)3=8,开立方根得出x﹣2=2,求出即可. 【详解】 解:(1), , , 或; (2), , , , . 【点睛】 本题是根据平方根和立方根的定义解方程,将方程系数化为1变形为:x2=a(a≥0)或x3=b的形式,再根据定义开平方或开立方,注意开平方时,有两个解. 十九、解答题 19.对顶角相等;同位角相等,两直线平行;两直线平行,同位角相等;等量代换;内错角相等,两直线平行. 【分析】 先根据同位角相等,两直线平行,判定AD∥BC,进而得到∠ADE=∠C,再根据内错角相等,两直 解析:对顶角相等;同位角相等,两直线平行;两直线平行,同位角相等;等量代换;内错角相等,两直线平行. 【分析】 先根据同位角相等,两直线平行,判定AD∥BC,进而得到∠ADE=∠C,再根据内错角相等,两直线平行,即可得到AB∥CD. 【详解】 证明:∵∠1=∠2(已知) ∠1=∠AGH(对顶角相等) ∴∠2=∠AGH(等量代换) ∴AD∥BC(同位角相等,两直线平行) ∴∠ADE=∠C(两直线平行,同位角相等) ∵∠A=∠C(已知) ∴∠ADE=∠A ∴AB∥CD(内错角相等,两直线平行). 【点睛】 本题考查了平行线的判定与性质,解题时注意:平行线的判定是由角的数量关系判断两直线的位置关系;平行线的性质是由平行关系来寻找角的数量关系. 二十、解答题 20.(1)见解析;(2) 【分析】 (1)直接利用平移的性质得出对应点位置进而得出答案; (2)依据割补法进行计算,即可得到三角形ABC的面积. 【详解】 解:(1)如图所示,三角形A1B1C1即为所求 解析:(1)见解析;(2) 【分析】 (1)直接利用平移的性质得出对应点位置进而得出答案; (2)依据割补法进行计算,即可得到三角形ABC的面积. 【详解】 解:(1)如图所示,三角形A1B1C1即为所求; (2)如图所示,△A1B1C1的面积==. 【点睛】 本题考查了根据平移变换作图,解答本题的关键是根据网格结构作出对应点的位置,然后顺次连接. 二十一、解答题 21.(1),;(2)±3. 【分析】 (1)首先得出1<<2,进而得出a,b的值; (2)根据平方根即可解答. 【详解】 (1)∵1<<2 ∴10<<11,7<<8 ∴的整数部分为10,的整数部分为7, 解析:(1),;(2)±3. 【分析】 (1)首先得出1<<2,进而得出a,b的值; (2)根据平方根即可解答. 【详解】 (1)∵1<<2 ∴10<<11,7<<8 ∴的整数部分为10,的整数部分为7, , ,; (2)原式 的平方根为:. 【点睛】 此题主要考查了估算无理数的大小,正确得出a,b的值是解题关键. 二十二、解答题 22.正方形纸板的边长是18厘米 【分析】 根据正方形的面积公式进行解答. 【详解】 解:设小长方形的宽为x厘米,则小长方形的长为厘米,即得正方形纸板的边长是厘米,根据题意得: , ∴, 取正值,可得, 解析:正方形纸板的边长是18厘米 【分析】 根据正方形的面积公式进行解答. 【详解】 解:设小长方形的宽为x厘米,则小长方形的长为厘米,即得正方形纸板的边长是厘米,根据题意得: , ∴, 取正值,可得, ∴答:正方形纸板的边长是18厘米. 【点评】 本题考查了算术平方根的实际应用,解题的关键是熟悉正方形的面积公式. 二十三、解答题 23.(1)120,90;(2)①∠1=120°-n°,∠2=90°+n°;②见解析 【分析】 (1)根据邻补角的定义和平行线的性质解答; (2)①根据邻补角的定义求出∠ABE,再根据两直线平行,同位角相 解析:(1)120,90;(2)①∠1=120°-n°,∠2=90°+n°;②见解析 【分析】 (1)根据邻补角的定义和平行线的性质解答; (2)①根据邻补角的定义求出∠ABE,再根据两直线平行,同位角相等可得∠1=∠ABE,根据两直线平行,同旁内角互补求出∠BCG,然后根据周角等于360°计算即可得到∠2; ②结合图形,分AB、BC、AC三条边与直尺垂直讨论求解. 【详解】 解:(1)∠1=180°-60°=120°, ∠2=90°; 故答案为:120,90; (2)①如图2, ∵∠ABC=60°, ∴∠ABE=180°-60°-n°=120°-n°, ∵DG∥EF, ∴∠1=∠ABE=120°-n°, ∠BCG=180°-∠CBF=180°-n°, ∵∠ACB+∠BCG+∠2=360°, ∴∠2=360°-∠ACB-∠BCG =360°-90°-(180°-n°) =90°+n°; ②当n=30°时,∵∠ABC=60°, ∴∠ABF=30°+60°=90°, AB⊥DG(EF); 当n=90°时, ∠C=∠CBF=90°, ∴BC⊥DG(EF),AC⊥DE(GF); 当n=120°时, ∴AB⊥DE(GF). 【点睛】 本题考查了平行线角的计算,垂线的定义,主要利用了平行线的性质,直角三角形的性质,读懂题目信息并准确识图是解题的关键. 二十四、解答题 24.(1)见解析;(2)∠CGA=45°;(3)∠FCP=2∠ACP或∠FCP+2∠ACP=180°. 【分析】 (1)有垂直定义可得∠MAB+∠KCN=90°,然后根据同角的余角相等可得∠KAN=∠K 解析:(1)见解析;(2)∠CGA=45°;(3)∠FCP=2∠ACP或∠FCP+2∠ACP=180°. 【分析】 (1)有垂直定义可得∠MAB+∠KCN=90°,然后根据同角的余角相等可得∠KAN=∠KCF,从而判断两直线平行; (2)设∠KAN=∠KCF=α,过点G作GH∥EF,结合角平分线的定义和平行线的判定及性质求解; (3)分CP交射线AQ及射线AQ的反向延长线两种情况结合角的和差关系分类讨论求解. 【详解】 解:(1)∵AB⊥AK ∴∠BAC=90° ∴∠MAB+∠KAN=90° ∵∠MAB+∠KCF=90° ∴∠KAN=∠KCF ∴EF∥MN (2)设∠KAN=∠KCF=α 则∠BAN=∠BAC+∠KAN=90°+α ∠KCB=180°-∠KCF=180°-α ∵AG平分∠NAB,CG平分∠ECK ∴∠GAN=∠BAN=45°+α,∠KCG=∠KCB=90°-α ∴∠FCG=∠KCG+∠KCF=90°+α 过点G作GH∥EF ∴∠HGC=∠FCG=90°+α 又∵MN∥EF ∴MN∥GH ∴∠HGA=∠GAN=45°+α ∴∠CGA=∠HGC-∠HGA=(90°+α)-(45°+α)=45° (3)①当CP交射线AQ于点T ∵ ∴ 又∵ ∴ 由(1)可得:EF∥MN ∴ ∵ ∴ ∵, ∴ ∴ 即∠FCP+2∠ACP=180° ②当CP交射线AQ的反向延长线于点T,延长BA交CP于点G ,由EF∥MN得 ∴ 又∵,, ∴ ∵, ∴ ∴ ∴ 由①可得 ∴ ∴ 综上,∠FCP=2∠ACP或∠FCP+2∠ACP=180°. 【点睛】 本题考查平行线的判定和性质以及角的和差关系,准确理解题意,正确推理计算是解题关键. 二十五、解答题 25.(1)∠E=45°;(2)∠E=;(3)不变化, 【分析】 (1)由三角形内角和定理,可得∠D+∠ECD=∠E+∠EAD,∠B+∠EAB=∠E+∠ECB,由角平分线的性质,可得∠ECD=∠ECB=∠ 解析:(1)∠E=45°;(2)∠E=;(3)不变化, 【分析】 (1)由三角形内角和定理,可得∠D+∠ECD=∠E+∠EAD,∠B+∠EAB=∠E+∠ECB,由角平分线的性质,可得∠ECD=∠ECB=∠BCD,∠EAD=∠EAB=∠BAD,则可得∠E= (∠D+∠B),继而求得答案; (2)首先延长BC交AD于点F,由三角形外角的性质,可得∠BCD=∠B+∠BAD+∠D,又由角平分线的性质,即可求得答案. (3)由三角形内角和定理,可得,利用角平分线的性质与三角形的外角的性质可得答案. 【详解】 解:(1)∵CE平分∠BCD,AE平分∠BAD ∴∠ECD=∠ECB=∠BCD,∠EAD=∠EAB=∠BAD, ∵∠D+∠ECD=∠E+∠EAD,∠B+∠EAB=∠E+∠ECB, ∴∠D+∠ECD+∠B+∠EAB=∠E+∠EAD+∠E+∠ECB ∴∠D+∠B=2∠E, ∴∠E=(∠D+∠B), ∵∠ADC=50°,∠ABC=40°, ∴∠AEC= ×(50°+40°)=45°; (2)延长BC交AD于点F, ∵∠BFD=∠B+∠BAD, ∴∠BCD=∠BFD+∠D=∠B+∠BAD+∠D, ∵CE平分∠BCD,AE平分∠BAD ∴∠ECD=∠ECB=∠BCD,∠EAD=∠EAB=∠BAD, ∵∠E+∠ECB=∠B+∠EAB, ∴∠E=∠B+∠EAB-∠ECB=∠B+∠BAE-∠BCD =∠B+∠BAE-(∠B+∠BAD+∠D) = (∠B-∠D), ∠ADC=α°,∠ABC=β°, 即∠AEC= (3)的值不发生变化, 理由如下: 如图,记与交于,与交于, ①, ②, ①-②得: AD平分∠BAC, 【点睛】 此题考查了三角形内角和定理、三角形外角的性质以及角平分线的定义.此题难度较大,注意掌握整体思想与数形结合思想的应用.- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 人教版 七年 级数 下册 期末 学业 水平
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【快乐****生活】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【快乐****生活】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【快乐****生活】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【快乐****生活】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文