2024年人教版中学七7年级下册数学期末测试试卷含解析.doc
《2024年人教版中学七7年级下册数学期末测试试卷含解析.doc》由会员分享,可在线阅读,更多相关《2024年人教版中学七7年级下册数学期末测试试卷含解析.doc(27页珍藏版)》请在咨信网上搜索。
2024年人教版中学七7年级下册数学期末测试试卷含解析 一、选择题 1.1.96的算术平方根是() A.0.14 B.1.4 C. D.±1.4 2.下列生活现象中,不是平移现象的是( ) A.人站在运行着的电梯上 B.推拉窗左右推动 C.小明在荡秋千 D.小明躺在直线行驶的火车上睡觉 3.平面直角坐标系中有一点,则点在( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限 4.下列命题是假命题的是( ) A.对顶角相等 B.两直线平行,同旁内角相等 C.过直线外一点有且只有一条直线与已知直线平行 D.同位角相等,两直线平行 5.如图,直线,点分别在直线上,P为两平行线间一点,那么等于( ) A. B. C. D. 6.下列计算正确的是( ) A. B. C. D. 7.已知直线,将一块含30°角的直角三角板按如图所示方式放置(∠ABC=30°),其中A,B两点分别落在直线m,n上,若∠1=25°,则∠2的度数为( ) A.55° B.45° C.30° D.25° 8.若点在轴上,则点的坐标为( ) A. B. C. D. 九、填空题 9.若=0,则=________ . 十、填空题 10.在平面直角坐标系中,点P(-2,3)关于直线y=x-1对称的点的坐标是_______. 十一、填空题 11.如图,已知//,,∠和∠的角平分线交于点F,∠=__________°. 十二、填空题 12.如图所示,已知AB∥CD,EF平分∠CEG,∠1=80°,则∠2的度数为______. 十三、填空题 13.如图,将长方形纸片沿折叠,使得点落在边上的点处,点落在点处,若,则的度数为______. 十四、填空题 14.请阅读下列材料,现在规定一种新的运算:,例如:.按照这种计算的规定,当,x的值为___. 十五、填空题 15.如图,在平面直角坐标系中,已知点,,连接,交y轴于B,且,,则点B坐标为__. 十六、填空题 16.如图,在平面直角坐标系中,轴,轴,点、、、在轴上,,,,,,把一条长为2021个单位长度且无弹性的细线(线的粗细忽略不计)的一端固定在处,并按的规律紧绕在图形“凸”的边上,则细线的另一端所在位置的点的坐标________. 十七、解答题 17.计算: (1) (2) 十八、解答题 18.已知,,求下列各式的值 ; 十九、解答题 19.如图所示,于点,于点,若,则吗?下面是推理过程,请你填空或填写理由. 证明:∵于点,于点(已知), ∴(____________), ∴(________________________), ∴(________________________), ∵(已知) ∴(____________) ∵, ∴______(______________________________). ∴____________(等量代换) 二十、解答题 20.如图,一只甲虫在5×5的方格(每小格边长为1)上沿着网格线运动.它从A处出发去看望B、C、D处的其它甲虫,规定:向上向右走为正,向下向左走为负.如果从A到B记为:A→B(+1,+4),从B到A记为:A→B(﹣1,﹣4),其中第一个数表示左右方向,第二个数表示上下方向,那么图中 (1)A→C( , ),B→D( , ),C→ (+1, ); (2)若这只甲虫从A处去甲虫P处的行走路线依次为(+2,+2),(+1,﹣1),(﹣2,+3),(﹣1,﹣2),请在图中标出P的位置. 二十一、解答题 21.请回答下列问题: (1)介于连续的两个整数和之间,且,那么 , ; (2)是的小数部分,是的整数部分,求 , ; (3)求的平方根. 二十二、解答题 22.如图,在3×3的方格中,有一阴影正方形,设每一个小方格的边长为1个单位.请解决下面的问题. (1)阴影正方形的面积是________?(可利用割补法求面积) (2)阴影正方形的边长是________? (3)阴影正方形的边长介于哪两个整数之间?请说明理由. 二十三、解答题 23.汛期即将来临,防汛指挥部在某水域一危险地带两岸各安置了一探照灯,便于夜间查看河水及两岸河堤的情况.如图1,灯射出的光束自顺时针旋转至便立即回转,灯射出的光束自顺时针旋转至便立即回转,两灯不停交叉照射巡视.若灯射出的光束转动的速度是/秒,灯射出的光束转动的速度是/秒,且、满足.假定这一带水域两岸河堤是平行的,即,且. (1)求、的值; (2)如图2,两灯同时转动,在灯射出的光束到达之前,若两灯射出的光束交于点,过作交于点,若,求的度数; (3)若灯射线先转动30秒,灯射出的光束才开始转动,在灯射出的光束到达之前,灯转动几秒,两灯的光束互相平行? 二十四、解答题 24.已知:直线∥,A为直线上的一个定点,过点A的直线交 于点B,点C在线段BA的延长线上.D,E为直线上的两个动点,点D在点E的左侧,连接AD,AE,满足∠AED=∠DAE.点M在上,且在点B的左侧. (1)如图1,若∠BAD=25°,∠AED=50°,直接写出ÐABM的度数 ; (2)射线AF为∠CAD的角平分线. ① 如图2,当点D在点B右侧时,用等式表示∠EAF与∠ABD之间的数量关系,并证明; ② 当点D与点B不重合,且∠ABM+∠EAF=150°时,直接写出∠EAF的度数 . 二十五、解答题 25.互动学习课堂上某小组同学对一个课题展开了探究. 小亮:已知,如图三角形,点是三角形内一点,连接,,试探究与,,之间的关系. 小明:可以用三角形内角和定理去解决. 小丽:用外角的相关结论也能解决. (1)请你在横线上补全小明的探究过程: ∵,(______) ∴,(等式性质) ∵, ∴, ∴.(______) (2)请你按照小丽的思路完成探究过程; (3)利用探究的结果,解决下列问题: ①如图①,在凹四边形中,,,求______; ②如图②,在凹四边形中,与的角平分线交于点,,,则______; ③如图③,,的十等分线相交于点、、、…、,若,,则的度数为______; ④如图④,,的角平分线交于点,则,与之间的数量关系是______; ⑤如图⑤,,的角平分线交于点,,,求的度数. 【参考答案】 一、选择题 1.B 解析:B 【分析】 根据算术平方根的定义:一般地,如果一个正数x的平方等于a,即x2=a,那么这个正数x叫做a的算术平方根即可得出答案. 【详解】 解:∵, ∴1.96的算术平方根是1.4, 故选:B. 【点睛】 本题考查了算术平方根,掌握算术平方根的定义是解题的关键,如果一个正数x的平方等于a,即x2=a,那么这个正数x叫做a的算术平方根. 2.C 【分析】 根据平移是某图形沿某一直线方向移动一定的距离,平移不改变图形的形状和大小,解答即可. 【详解】 解:根据平移的性质,A、B、D都正确,而C小明在荡秋千,荡秋千的运动过程中,方向不断的发 解析:C 【分析】 根据平移是某图形沿某一直线方向移动一定的距离,平移不改变图形的形状和大小,解答即可. 【详解】 解:根据平移的性质,A、B、D都正确,而C小明在荡秋千,荡秋千的运动过程中,方向不断的发生变化,不是平移运动. 故选:C. 【点睛】 本题考查了图形的平移,解题的关键是掌握图形的平移只改变图形的位置,而不改变图形的形状和大小. 3.D 【分析】 根据平面直角坐标系内各象限内点的坐标符号特征判定即可. 【详解】 解:根据平面直角坐标系内各象限内点的坐标符号特征可知: 在第四象限 故选D. 【点睛】 本题考查了各象限内点的坐标的符号特征,第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).记住各象限内点的坐标的符号是解决的关键. 4.B 【分析】 真命题就是正确的命题,条件和结果相矛盾的命题是假命题. 【详解】 解:A. 对顶角相等是真命题,故A不符合题意; B. 两直线平行,同旁内角互补,故B是假命题,符合题意; C. 过直线外一点有且只有一条直线与已知直线平行,是真命题,故C不符合题意; D. 同位角相等,两直线平行,是真命题,故D不符合题意, 故选:B. 【点睛】 本题考查真假命题,是基础考点,掌握相关知识是解题关键. 5.A 【分析】 过点P作PE∥a.则可得出PE∥a∥b,结合“两直线平行,内错角相等”可得出∠2=∠AMP+∠BNP,再结合邻补角的即可得出结论. 【详解】 解:过点P作PE∥a,如图所示. ∵PE∥a,a∥b, ∴PE∥a∥b, ∴∠AMP=∠MPE,∠BNP=∠NPE, ∴∠2=∠MPE+∠NPE=∠AMP+∠BNP. ∵∠1+∠AMP=180°,∠3+∠BNP=180°, ∴∠1+∠2+∠3=180°+180°=360°. 故选:A. 【点睛】 本题考查了平行线的性质以及角的计算,解题的关键是找出∠2=∠AMP+∠BNP.本题属于基础题,难度不大,解决该题型题目时,根据平行线的性质得出相等(或互补)的角是关键. 6.B 【分析】 直接利用算术平方根的定义、立方根的定义以及绝对值的性质、合并同类项法则分别化简得出答案. 【详解】 A、=3,故此选项错误; B、,故此选项正确; C、|a|﹣a=0(a≥0),故此选项错误; D、4a﹣a=3a,故此选项错误; 故选:B. 【点睛】 此题主要考查了算术平方根的定义、立方根的定义以及绝对值的性质、合并同类项,正确掌握相关运算法则是解题关键. 7.A 【分析】 易求的度数,再利用平行线的性质即可求解. 【详解】 解:,, , 直线, , 故选:A. 【点睛】 本题主要考查平行线的性质,掌握平行线的性质是解题的关键. 8.C 【分析】 点在轴上,则纵坐标为零,列式计算,得到 的值,从而代入横坐标得到点M 的坐标. 【详解】 解:∵在轴上 ∴ ∴ ∴ ∴点的坐标为 故选:C 【点睛】 本题考查平面直角坐标系中,坐标 解析:C 【分析】 点在轴上,则纵坐标为零,列式计算,得到 的值,从而代入横坐标得到点M 的坐标. 【详解】 解:∵在轴上 ∴ ∴ ∴ ∴点的坐标为 故选:C 【点睛】 本题考查平面直角坐标系中,坐标轴上点的特征,根据知识点切入解题是关键. 九、填空题 9.9 【解析】 试题分析:根据非负数之和为零则每个非负数都为零可得:m+3=0,n-2=0,解得:m=-3,n=2,则==9. 考点:非负数的性质. 解析:9 【解析】 试题分析:根据非负数之和为零则每个非负数都为零可得:m+3=0,n-2=0,解得:m=-3,n=2,则==9. 考点:非负数的性质. 十、填空题 10.【分析】 如图,设点P关于直线y=x-1的对称点是点Q,过点P作PA∥x轴交直线y=x-1于点A,连接AQ,先由直线y=x-1与两坐标轴的交点坐标确定△OBC是等腰直角三角形,然后根据平行线的性质 解析: 【分析】 如图,设点P关于直线y=x-1的对称点是点Q,过点P作PA∥x轴交直线y=x-1于点A,连接AQ,先由直线y=x-1与两坐标轴的交点坐标确定△OBC是等腰直角三角形,然后根据平行线的性质和轴对称的性质可得AP=AQ,∠PAQ=90°,由于点P坐标已知,故可求出点A的坐标,进而可求出点Q坐标. 【详解】 解:如图,设点P关于直线y=x-1的对称点是点Q,过点P作PA∥x轴交直线y=x-1于点A,连接AQ, 设直线y=x-1交x轴于点B,交y轴于点C,则点B(1,0)、点C(0,﹣1), ∴OB=OC=1,∴∠OBC=45°,∴∠PAB=45°, ∵P、Q关于直线y=x-1对称,∴AP=AQ,∠PAB=∠QAB=45°,∴∠PAQ=90°,∴AQ⊥x轴, ∵P(﹣2,3),且当y=3时,3=x﹣1,解得x=4,∴A(4,3),∴AD=3,PA=6=AQ,∴DQ=3,∴点Q的坐标是(4,﹣3). 故答案为:(4,﹣3). 【点睛】 本题以平面直角坐标系为载体,考查了直线上点的坐标特点、轴对称的性质、等腰直角三角形的性质等知识,熟练掌握一次函数图象上点的坐标特点和轴对称的性质是解题关键. 十一、填空题 11.135; 【分析】 连接BD,根据三角形内角和定理得出∠C+∠CBD+∠CDB=180°,再由BC⊥CD可知∠C=90°,故∠CBD+∠CDB=90°,再由AB∥DE可知∠ABD+∠BDE=180° 解析:135; 【分析】 连接BD,根据三角形内角和定理得出∠C+∠CBD+∠CDB=180°,再由BC⊥CD可知∠C=90°,故∠CBD+∠CDB=90°,再由AB∥DE可知∠ABD+∠BDE=180°,故∠CBD+∠CDB+∠ABD+∠BDE =270°,再由∠ABC和∠CDE的平分线交于点F可得出∠CBF+∠CDF的度数,由四边形内角和定理即可得出结论. 【详解】 解:连接BD, ∵∠C+∠CBD+∠CDB=180°,BC⊥CD, ∴∠C=90°, ∴∠CBD+∠CDB=90°. ∵AB∥DE, ∴∠ABD+∠BDE=180°, ∴∠CBD+∠CDB+∠ABD+∠BDE=90°+180°=270°,即∠ABC+∠CDE=270°. ∵∠ABC和∠CDE的平分线交于点F, ∴∠CBF+∠CDF=×270°=135°, ∴∠BFD=360°-90°-135°=135°. 故答案为135. 【点睛】 本题考查平行线的性质和四边形的内角和,关键在于掌握两直线平行同位角相等,内错角相等,同旁内角互补的性质. 十二、填空题 12.50° 【分析】 由角平分线的定义,结合平行线的性质,易求∠2的度数. 【详解】 解:∵EF平分∠CEG, ∴∠CEG=2∠CEF, 又∵AB∥CD, ∴∠2=∠CEF=(180°−∠1)=50°, 解析:50° 【分析】 由角平分线的定义,结合平行线的性质,易求∠2的度数. 【详解】 解:∵EF平分∠CEG, ∴∠CEG=2∠CEF, 又∵AB∥CD, ∴∠2=∠CEF=(180°−∠1)=50°, 故答案为:50°. 【点睛】 本题主要考查了平行线的性质,解决问题的关键是利用平行线的性质确定内错角相等,然后根据角平分线定义得出所求角与已知角的关系. 十三、填空题 13.111° 【分析】 结合题意,根据轴对称和长方形的性质,得,,,,从而推导得;通过计算得,根据平行线同旁内角互补的性质,得,即可得到答案. 【详解】 根据题意,得,,, ∴, ∴ ∴ ∴ ∵ 解析:111° 【分析】 结合题意,根据轴对称和长方形的性质,得,,,,从而推导得;通过计算得,根据平行线同旁内角互补的性质,得,即可得到答案. 【详解】 根据题意,得,,, ∴, ∴ ∴ ∴ ∵ ∴ ∴ 故答案为:111°. 【点睛】 本题考查了轴对称、平行线、矩形、余角的知识;解题的关键是熟练掌握轴对称和平行线的性质,从而完成求解. 十四、填空题 14.【分析】 根据题中的新定义化简所求式子,计算即可求出的值. 【详解】 解:根据题中的新定义得:, 移项合并得:, 解得:, 故答案是:. 【点睛】 此题考查了解一元一次方程,解题的关键是掌握其步骤 解析: 【分析】 根据题中的新定义化简所求式子,计算即可求出的值. 【详解】 解:根据题中的新定义得:, 移项合并得:, 解得:, 故答案是:. 【点睛】 此题考查了解一元一次方程,解题的关键是掌握其步骤为:去分母,去括号,移项合并,将未知数系数化为1,求出解. 十五、填空题 15.【分析】 由立方根及算术平方根、完全平方式求出,的值,得出,两点的坐标,连接,设,根据三角形的面积可求出的值,则答案可求出. 【详解】 解:(1),, ,,, ,, . 如图,连接,设, , , 解析: 【分析】 由立方根及算术平方根、完全平方式求出,的值,得出,两点的坐标,连接,设,根据三角形的面积可求出的值,则答案可求出. 【详解】 解:(1),, ,,, ,, . 如图,连接,设, , , , , , 点的坐标为, 故答案是:. 【点睛】 本题考查了立方根及算术平方根、完全平方公式、三角形的面积、坐标与图形的性质,解题的关键是利用分割的思想解答. 十六、填空题 16.【分析】 先求出“凸”形的周长为20,得到的余数为1,由此即可解决问题. 【详解】 解:,,,,, ∴, “凸”形的周长为20, 又∵的余数为1, 细线另一端所在位置的点在的中点处,坐标为. 故 解析: 【分析】 先求出“凸”形的周长为20,得到的余数为1,由此即可解决问题. 【详解】 解:,,,,, ∴, “凸”形的周长为20, 又∵的余数为1, 细线另一端所在位置的点在的中点处,坐标为. 故答案为:. 【点睛】 本题考查规律型:点的坐标,解题的关键是理解题意,求出“凸”形的周长,属于中考常考题型. 十七、解答题 17.(1)-3;(2)-11. 【分析】 (1)分别计算乘方,立方根,绝对值,再合并即可得到答案; (2)利用乘法的分配律先计算乘法,再计算加减运算即可得到答案. 【详解】 (1)解:原式= (2)解 解析:(1)-3;(2)-11. 【分析】 (1)分别计算乘方,立方根,绝对值,再合并即可得到答案; (2)利用乘法的分配律先计算乘法,再计算加减运算即可得到答案. 【详解】 (1)解:原式= (2)解:原式 = =. 【点睛】 本题考查的是乘法的分配律的应用,乘方运算,求一个数的立方根,求一个数的绝对值,掌握以上知识是解题的关键. 十八、解答题 18.(1)25;(2)37 【分析】 (1)利用完全平方差公式求解. (2)先配方,再求值. 【详解】 解:(1) (2) 【点睛】 本题考查完全平方公式及其变形式,根据公式特征进行变形是求解 解析:(1)25;(2)37 【分析】 (1)利用完全平方差公式求解. (2)先配方,再求值. 【详解】 解:(1) (2) 【点睛】 本题考查完全平方公式及其变形式,根据公式特征进行变形是求解本题的关键. 十九、解答题 19.垂直的定义;同位角相等,两直线平行;两直线平行,同位角相等;等量代换;∠E;两直线平行,同位角相等;∠2;∠3. 【分析】 根据垂直的定义得到∠ADC=∠EGC=90°,根据平行线的判定得到AD∥E 解析:垂直的定义;同位角相等,两直线平行;两直线平行,同位角相等;等量代换;∠E;两直线平行,同位角相等;∠2;∠3. 【分析】 根据垂直的定义得到∠ADC=∠EGC=90°,根据平行线的判定得到AD∥EG,由平行线的性质得到∠1=∠2,等量代换得到∠E=∠2,由平行线的性质得到∠E=∠3,等量代换即可得到结论. 【详解】 证明:∵AD⊥BC于点D,EG⊥BC于点G(已知), ∴∠ADC=∠EGC=90°(垂直的定义), ∴AD∥EG(同位角相等,两直线平行), ∴∠1=∠2(两直线平行,内错角相等), ∵∠E=∠1(已知), ∴∠E=∠2(等量代换), ∵AD∥EG, ∴∠E=∠3(两直线平行,同位角相等), ∴∠2=∠3(等量代换), 故答案为:垂直的定义;同位角相等,两直线平行;两直线平行,同位角相等;等量代换;∠E;两直线平行,同位角相等;∠2;∠3. 【点睛】 本题主要考查了平行线的性质,垂直的定义,熟练掌握平行线的性质是解题的关键. 二十、解答题 20.(1)3,4,3,﹣2,D,﹣2;(2)见解析 【分析】 (1)根据向上向右走为正,向下向左走为负,可得答案; (2)根据向上向右走为正,向下向左走为负,可得答案. 【详解】 解:(1)A→C( 3 解析:(1)3,4,3,﹣2,D,﹣2;(2)见解析 【分析】 (1)根据向上向右走为正,向下向左走为负,可得答案; (2)根据向上向右走为正,向下向左走为负,可得答案. 【详解】 解:(1)A→C( 3,4),B→D(3﹣2),C→D(+1,﹣2); 故答案为3,4;3,﹣2;D,﹣2; (2)这只甲虫从A处去甲虫P处的行走路线依次为(+2,+2),(+1,﹣1),(﹣2,+3),(﹣1,﹣2),请在图中标出P的位置,如图 【点睛】 本题主要考查了用有序实数对表示路线.读懂题目信息,正确理解行走路线的记录方法是解题的关键. 二十一、解答题 21.(1)4;b=(2)−4;3(3)±8 【分析】 ((1)由16<17<25,可以估计的近似值,然后就可以得出a,b的值; (2)根据(1)的结论即可确定x与y的值; (3)把(2)的结论代入计算即 解析:(1)4;b=(2)−4;3(3)±8 【分析】 ((1)由16<17<25,可以估计的近似值,然后就可以得出a,b的值; (2)根据(1)的结论即可确定x与y的值; (3)把(2)的结论代入计算即可. 【详解】 解:(1)∵16<17<25, ∴4<<5, ∴a=4,b=5, 故答案为:4;5; (2)∵4<<5, ∴6<+2<7, 由此整数部分为6,小数部分为−4, ∴x=−4, ∵4<<5, ∴3<-1<4, ∴y=3; 故答案为:−4;3 (3)当x=−4,y=3时, ==64, ∴64的平方根为±8. 【点睛】 此题主要考查了无理数的估算能力,现实生活中经常需要估算,估算应是我们具备的数学能力,“逐步逼近”是估算的一般方法,也是常用方法. 二十二、解答题 22.(1)5;(2);(3)2与3两个整数之间,见解析 【分析】 (1)通过割补法即可求出阴影正方形的面积; (2)根据实数的性质即可求解; (3)根据实数的估算即可求解. 【详解】 (1)阴影正方形的 解析:(1)5;(2);(3)2与3两个整数之间,见解析 【分析】 (1)通过割补法即可求出阴影正方形的面积; (2)根据实数的性质即可求解; (3)根据实数的估算即可求解. 【详解】 (1)阴影正方形的面积是3×3-4×=5 故答案为:5; (2)设阴影正方形的边长为x,则x2=5 ∴x=(-舍去) 故答案为:; (3)∵ ∴ ∴阴影正方形的边长介于2与3两个整数之间. 【点睛】 本题考查了无理数的估算能力和不规则图形的面积的求解方法:割补法.通过观察可知阴影部分的面积是5个小正方形的面积和.会利用估算的方法比较无理数的大小. 二十三、解答题 23.(1),;(2)30°;(3)15秒或82.5秒 【分析】 (1)解出式子即可; (2)根据,用含t的式子表示出,根据(2)中给出的条件得出方程式 ,求出 t的值,进而求出的度数; (3)根据灯B的 解析:(1),;(2)30°;(3)15秒或82.5秒 【分析】 (1)解出式子即可; (2)根据,用含t的式子表示出,根据(2)中给出的条件得出方程式 ,求出 t的值,进而求出的度数; (3)根据灯B的要求,t<150,在这个时间段内A可以转3次,分情况讨论. 【详解】 解:(1). 又,. ,; (2)设灯转动时间为秒, 如图,作,而 ,, , , , , (3)设灯转动秒,两灯的光束互相平行. 依题意得 ①当时, 两河岸平行,所以 两光线平行,所以 所以, 即:, 解得; ②当时, 两光束平行,所以 两河岸平行,所以 所以,, 解得; ③当时,图大概如①所示 , 解得(不合题意) 综上所述,当秒或82.5秒时,两灯的光束互相平行. 【点睛】 这道题考察的是平行线的性质和一元一次方程的应用.根据平行线的性质找到对应角列出方程是解题的关键. 二十四、解答题 24.(1);(2)①,见解析;②或 【分析】 (1)由平行线的性质可得到:,,再利用角的等量代换换算即可; (2)①设,,利用角平分线的定义和角的等量代换表示出对比即可;②分类讨论点在的左右两侧的情况, 解析:(1);(2)①,见解析;②或 【分析】 (1)由平行线的性质可得到:,,再利用角的等量代换换算即可; (2)①设,,利用角平分线的定义和角的等量代换表示出对比即可;②分类讨论点在的左右两侧的情况,运用角的等量代换换算即可. 【详解】 . 解:(1)设在上有一点N在点A的右侧,如图所示: ∵ ∴, ∴ ∴ (2)①. 证明:设,. ∴. ∵为的角平分线, ∴. ∵, ∴. ∴. ∴. ②当点在点右侧时,如图: 由①得: 又∵ ∴ ∵ ∴ 当点在点左侧,在右侧时,如图: ∵为的角平分线 ∴ ∵ ∴, ∵ ∴ ∴ ∵ ∴ 又∵ ∴ ∴ 当点和在点左侧时,设在上有一点在点的右侧如图: 此时仍有, ∴ ∴ 综合所述:或 【点睛】 本题主要考查了平行线的性质,角平分线的定义,角的等量代换等,灵活运用平行线的性质和角平分线定义等量代换出角的关系是解题的关键. 二十五、解答题 25.(1)三角形内角和180°;等量代换;(2)见解析;(3)①;②;③;④;⑤ 【分析】 (1)根据三角形的内角和定理即可判断,根据等量代换的概念即可判断; (2)想要利用外角的性质求解,就需要构造外 解析:(1)三角形内角和180°;等量代换;(2)见解析;(3)①;②;③;④;⑤ 【分析】 (1)根据三角形的内角和定理即可判断,根据等量代换的概念即可判断; (2)想要利用外角的性质求解,就需要构造外角,因此延长交于,然后根据外角的性质确定,,即可判断与,,之间的关系; (3)①连接BC,然后根据(1)中结论,代入已知条件即可求解; ②连接BC,然后根据(1)中结论,求得的和,进而得到的和,然后根据角平分线求得的和,进而求得,然后利用三角形内角和定理,即可求解; ③连接BC,首先求得,然后根据十等分线和三角形内角和的性质得到,然后得到的和,最后根据(1)中结论即可求解; ④设与的交点为点,首先利用根据外角的性质将用两种形式表示出来,然后得到,然后根据角平分线的性质,移项整理即可判断; ⑤根据(1)问结论,得到的和,然后根据角平分线的性质得到的和,然后利用三角形内角和性质即可求解. 【详解】 (1)∵,(三角形内角和180°) ∴,(等式性质) ∵, ∴, ∴.(等量代换) 故答案为:三角形内角和180°;等量代换. (2)如图,延长交于, 由三角形外角性质可知, ,, ∴. (3)①如图①所示,连接BC, , 根据(1)中结论,得, ∴, ∴; ②如图②所示,连接BC, , 根据(1)中结论,得, ∴, ∵与的角平分线交于点, ∴,, ∴, ∵,, ∴, ∴, ∵, ∴; ③如图③所示,连接BC, , 根据(1)中结论,得, ∵,, ∴, ∵与的十等分线交于点, ∴,, ∴, ∴, ∵, ∴, ∴, ∴, ∴; ④如图④所示,设与的交点为点, ∵平分,平分, ∴,, ∵,, ∴, ∴, ∴, 即; ⑤∵,的角平分线交于点, ∴, ∴. 【点睛】 本题考查了三角形内角和定量,外角的性质,以及辅助线的做法,重点是观察题干中的解题思路,然后注意角平分线的性质,逐渐推到即可求解.- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2024 年人教版 中学 年级 下册 数学 期末 测试 试卷 解析
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【天****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【天****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【天****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【天****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文