八年级期末试卷(提升篇)(Word版含解析).doc
《八年级期末试卷(提升篇)(Word版含解析).doc》由会员分享,可在线阅读,更多相关《八年级期末试卷(提升篇)(Word版含解析).doc(26页珍藏版)》请在咨信网上搜索。
八年级期末试卷(提升篇)(Word版含解析) 一、选择题 1.使代数式有意义的负整数之积是( ) A.−3 B.3 C.2 D.−2 2.下列四组线段,能构成直角三角形的是( ) A.1,1,2 B.,2, C.5,6,7 D.6,8,10 3.下列图形都是由同样大小的平行四边形按一定的规律组成,其中第①个图形中一共有10个平行四边形,第②个图形中一共有14个平行四边形,第③个图形中一共有19个平行四边形,……按此规律排列下去,则第⑥个图形中平行四边形的个数为( ) A.39 B.40 C.41 D.42 4.某班3位同学进行投篮比赛,每人投10次,平均每人投中8次,已知第一、三位同学分别投中8次,10次,那么第二位同学投中( ) A.6次 B.7次 C.8次 D.9次 5.如图1,园丁住宅小区有一块草坪如图所示.已知AB=3米,BC=4米,CD=12米,DA=13米,且AB⊥BC,这块草坪的面积是( ) A.24米2 B.36米2 C.48米2 D.72米2 6.如图,在菱形ABCD中,∠BAD=80°,AB的垂直平分线交对角线AC于点F,垂足为E,连接DF,则∠CDF等于() A.50° B.60° C.70° D.80° 7.如图,在中,点分别是的中点,点是上一点,连接,若则的长度为( ) A. B. C. D. 8.两人在直线跑道上同起点、同终点、同方向匀速跑步400米,先到终点的人原地休息.已知甲先出发2秒,在跑步过程中,甲、乙两人之间的距离y(米)与乙出发的时间t(秒)之间的关系如图所示给出以下结论:①;②;③.其中正确的是( ) A.②③ B.①②③ C.①② D.①③ 二、填空题 9.当代数式有意义时,x应满足的条件_____. 10.菱形的一条对角线长为12cm,另一条对角线长为16cm,则菱形的面积为_____. 11.在中,,,,斜边的长为__________. 12.如图,在矩形ABCD中,点E在AD上,且EC平分∠BED,若BC=2,∠CBE=45°,则AB=___. 13.直线与轴、轴的交点分别为、则这条直线的解析式为__________. 14.如图,四边形对角线,交于点. ,,请你添加一个适当的条件 ______ ,使四边形是菱形(只填一种情况即可). 15.如图,已知点,,,的坐标分别为,,,.线段、、组成的图形为图形,点沿移动,设点移动的距离为,直线:过点,且在点移动过程中,直线随运动而运动,当过点时,的值为__________;若直线与图形有一个交点,直接写出的取值范围是__________. 16.若,则分式的值为__________. 三、解答题 17.计算: (1)2×﹣; (2)÷﹣×+. 18.一架长为米的梯子,顶端靠在墙上,梯子底端到墙的距离米. (1)求的长; (2)如图梯子的顶端沿墙向下滑动米,问梯子的底端向外移动了多少米? 19.如图所示,在的方格纸中,每个小正方形的边长均为1,线段的端点、均在小正方形的顶点上. (1)在图中画出以为边的菱形,菱形的面积为8; (2)在图中画出腰长为5的等腰三角形,且点在小正方形顶点上; (3)连接,请直接写出线段的长. 20.如图,在△ABC中,AD是BC边上的中线,点E是AD的中点,过点A作AF∥BC交BE的延长线于F,连接CF. (1)求证:△AEF≌△DEB; (2)若∠BAC=90°,试判断四边形ADCF的形状,并证明你的结论. 21.先阅读下面的解题过程,然后再解答,形如的化简,我们只要找到两个数a,b,使,,即,,那么便有:. 例如化简: 解:首先把化为, 这里,, 由于,, 所以, 所以 (1)根据上述方法化简: (2)根据上述方法化简: (3)根据上述方法化简: 22.某学校欲购置一批标价为4800元的某种型号电脑,需求数量在6至15台之间.经与两个专卖店商谈,优惠方法如下: 甲店:购买电脑打八折; 乙店:先赠一台电脑,其余电脑打九折优惠. 设学校欲购置x台电脑,甲店购买费用为y甲(元),乙店购买费用为y乙(元). (1)分别写出购买费用y甲、y乙与所购电脑x(台)之间的函数关系式; (2)对x的取值情况进行分析,说明这所学校购买哪家电脑更合算? 23.在平面直角坐标系中,已知,点,点落在第二象限,点是轴正半轴上一动点, (1)如图1,当时,将沿着直线翻折,点落在第一象限的点处. ①若轴,求点的坐标; ②如图2,当点运动到中点时,连接,请判断四边形的形状,并说明理由; ③如图3,在折叠过程中,是否存在点,使得是以为腰的等暖三角形﹖若存在,求出对应点的坐标.若不存在.请说明理由; (2)如图4,将沿着翻折.得到.(点的对应点为点),若点到轴的距离不大于,直接写出的取值范围.(不需要解答过程) 24.如图,已知点、,线段且点C在y轴负半轴上,连接. (1)如图1,求直线的解析式; (2)如图1,点P是直线上一点,若,求满足条件的点P坐标; (3)如图2,点M为直线上一点,将点M水平向右平移6个单位至点N,连接、、,求的最小值及此时点N的坐标. 25.如图1,若是的中位线,则,解答下列问题: (1)如图2,点是边上一点,连接、 ①若,则 ; ②若,,连接,则 , , . (2)如图3,点是外一点,连接、,已知:,,,求的值; (3)如图4,点是正六边形内一点,连接、、,已知:,,,求的值. 【参考答案】 一、选择题 1.C 解析:C 【分析】 先根据二次根式和分式有意义的条件求出x的取值范围,然后求出满足题意的负整数的积即可. 【详解】 解:∵有意义, ∴, 解得, ∴满足题意的负整数解为-2,-1, ∴负整数解的积=, 故选C. 【点睛】 本题主要考查了分式有意义的条件,二次根式有意义的条件,解题的关键在于能够熟练掌握相关知识进行求解. 2.D 解析:D 【分析】 勾股定理的逆定理:一个三角形中,如果有两边的平方和等于第三边的平方,那么这个三角形是直角三角形,根据定理逐一判断即可. 【详解】 解: 故不符合题意; 故不符合题意; 故不符合题意; 故符合题意; 故选: 【点睛】 本题考查的是勾股定理的逆定理,掌握利用勾股定理的逆定理判断三角形是直角三角形是解题的关键. 3.B 解析:B 【解析】 【分析】 观察图形的变化可得10+4=14,14+5=19,19+6=25,25+7=32,32+8=40,即可得结果. 【详解】 解:观察图形的变化可知: 第①个图形中一共有10个平行四边形, 第②个图形中一共有14个平行四边形, 第③个图形中一共有19个平行四边形, 第④个图形中一共有25个平行四边形, 第⑤个图形中一共有32个平行四边形, 则第⑥个图形中平行四边形的个数为40. 故选:B. 【点睛】 本题考查的是平行四边形的认识,规律型:图形的变化类,本题是一道根据图形进行数字猜想的问题,关键是通过归纳与总结,得到其中的规律,然后利用规律解决一般问题. 4.A 解析:A 【解析】 【分析】 设第二位同学投中x次,根据算术平均数的计算公式列方程即可得到结论. 【详解】 解:设第二位同学投中x次, ∵平均每人投中8次, ∴=8, 解得:x=6, ∴第二位同学投中6次, 故选:A. 【点睛】 本题考查了算术平均数,根据题意列方程是解题的关键. 5.B 解析:B 【分析】 连接AC,先根据勾股定理求出AC的长,然后利用勾股定理的逆定理证明△ACD为直角三角形.从而用求和的方法求面积. 【详解】 连接AC,则由勾股定理得AC=5米,因为AC2+DC2=AD2,所以∠ACD=90°. 这块草坪的面积=SRt△ABC+SRt△ACD=AB•BC+AC•DC=(3×4+5×12)=36米2. 故选B. 【点睛】 此题主要考查了勾股定理的运用及直角三角形的判定等知识点. 6.B 解析:B 【解析】 【详解】 分析:如图,连接BF, 在菱形ABCD中,∵∠BAD=80°, ∴∠BAC=∠BAD=×80°=40°,∠BCF=∠DCF,BC=CD, ∠ABC=180°﹣∠BAD=180°﹣80°=100°. ∵EF是线段AB的垂直平分线,∴AF=BF,∠ABF=∠BAC=40°. ∴∠CBF=∠ABC﹣∠ABF=100°﹣40°=60°. ∵在△BCF和△DCF中,BC=CD,∠BCF=∠DCF,CF=CF,∴△BCF≌△DCF(SAS). ∴∠CDF=∠CBF=60°.故选B. 7.C 解析:C 【解析】 【分析】 根据直角三角形的性质求出,进而求出,根据三角形中位线定理计算,得到答案. 【详解】 解:,点是的中点,, , , , 点、分别是、的中点, , 故选:C. 【点睛】 本题考查的是直角三角形的性质、三角形中位线定理,掌握三角形的中位线平行于第三边,并且等于第三边的一半是解题的关键. 8.B 解析:B 【分析】 易得乙出发时,两人相距8m,除以时间2即为甲的速度;由于出现两人距离为0的情况,那么乙的速度较快.乙80s跑完总路程400可得乙的速度,进而求得80s时两人相距的距离可得b的值,同法求得两人距离为0时,相应的时间,让两人相距的距离除以甲的速度,减2即为c的值. 【详解】 由函数图象可知, 甲的速度为(米/秒),乙的速度为(米/秒), (秒),,故①正确; (米)故②正确; (秒)故③正确; 正确的是①②③.故选B. 【点睛】 本题考查了一次函数的应用,得到甲乙两人的速度是解决本题的突破点,得到相应行程的关系式是解决本题的关键. 二、填空题 9.x4且x≠±1 【解析】 【分析】 根据二次根式的被开方数是非负数、分母不为0列出不等式,解不等式得到答案. 【详解】 解:∵代数式有意义, ∴4﹣x≥0,x2﹣1≠0, 解得,x≤4且x≠±1, 故答案为:x≤4且x≠±1. 【点睛】 本题考查的是二次根式有意义的条件,掌握二次根式的被开方数是非负数、分母不为0是解题的关键. 10.96cm2 【解析】 【分析】 根据菱形的面积等于两对角线的积的一半求解即可. 【详解】 由已知可得,这个菱形的面积(), 故答案为:. 【点睛】 本题考查了菱形的性质,解答此题的关键是掌握菱形的面积等于两对角线的积的一半. 11.B 解析: 【解析】 【分析】 由,得到 利用勾股定理可得答案. 【详解】 解:设BC ,, , (舍去), 故答案为: 【点睛】 本题考查的是含角的直角三角形的性质与勾股定理的应用,掌握相关知识点是解题的关键. 12.D 解析:2 【分析】 由矩形的性质和角平分线的定义得出∠DEC=∠ECB=∠BEC,推出BE=BC,进而求得AE=AB=2. 【详解】 解:∵四边形ABCD是矩形, ∴AD∥BC. ∴∠DEC=∠BCE. ∵EC平分∠DEB, ∴∠DEC=∠BEC. ∴∠BEC=∠ECB. ∴BE=BC=2, ∵四边形ABCD是矩形, ∴∠A=∠ABC=90°, ∵∠CBE=45°, ∴∠ABE=90°-45°=45°, ∴∠ABE=∠AEB=45°. ∴AB=AE==2. 故答案为:2. 【点睛】 本题考查了矩形的性质,等腰三角形的判定,勾股定理的应用;熟练掌握矩形的性质,证出BE=BC是解题的关键. 13.y=3x+3. 【分析】 把(-1,0)、(0,3)代入y=kx+b得到 ,然后解方程组可. 【详解】 解:根据题意得 , 解得, 所以直线的解析式为y=3x+3. 故答案为y=3x+3. 【点睛】 本题考查了待定系数法求一次函数的解析式:设一次函数的解析式为y=kx+b(k、b为常数,k≠0),然后把函数图象上两个点的坐标代入得到关于k、b的方程组,然后解方程组求出k、b,从而得到一次函数的解析式. 14.(答案不唯一) 【分析】 由条件,,根据对角线互相垂直平分的四边形是菱形进行判定即可. 【详解】 解:添加即可判断四边形是菱形, ∵,, 当时,四边形对角线,互相垂直平分, ∴四边形是菱形, 故答案为:(答案不唯一). 【点睛】 此题主要考查了菱形的判定,掌握一组对角线互相垂直平分的四边形是菱形是解题的关键. 15.1或11 或 【分析】 l过点C、点P的位置有两种情况:①点P位于点E时,S=1;②点P位于点C时,S=11;求出l过临界点D、E、B即求出直线与图形有一个交点时b的取值范围. 【详解 解析:1或11 或 【分析】 l过点C、点P的位置有两种情况:①点P位于点E时,S=1;②点P位于点C时,S=11;求出l过临界点D、E、B即求出直线与图形有一个交点时b的取值范围. 【详解】 解:∵点A、B、C、D的坐标分别为(-2,2),(-2,1),(3,1),(3,2) ∴AD=BC=5,AB=1 当直线l过点C(3,1)时,1=-3+b,即b=4 ∴直线的解析式为y=-x+4. ∴,解得,即直线1与AD的交点E为(2,2) ∴DE=1. ∴如图:当l过点C时,点P位于点E或点C ①当l过点C时,点P位于点E时,S=DE=1; ②当l过点C时,点P位于点C时,S=AD+AB+BC=5+1+5=11.. ∴当1过点C时,S的值为1或11; 当直线l过点D时,b=5; 当直线1过点C时,b=4; 当直线1过点B时,将B(-2,1)代入y=-x+b得1=2+b,即b=-1 ∴当或时,直线与图形有一个交点. 故填1或11,或. 【点睛】 本题主要考查了一次函数图象与系数的关系、一次函数图象上点的坐标特征,根据题意求出临界值成为解答本题的关键. 16.1 【分析】 首先将已知变形进而得出x+y=2xy,再代入原式求出答案. 【详解】 ∵ ∴x+y=2xy ∴====1 故答案为:1. 【点睛】 此题主要考查了分式的值,正确将已知变形进而化简是解题 解析:1 【分析】 首先将已知变形进而得出x+y=2xy,再代入原式求出答案. 【详解】 ∵ ∴x+y=2xy ∴====1 故答案为:1. 【点睛】 此题主要考查了分式的值,正确将已知变形进而化简是解题关键. 三、解答题 17.(1);(2) 【分析】 (1)先利用二次根式的性质化简,然后根据二次根式的混合计算法则求解即可; (2)先利用二次根式的性质化简,然后根据二次根式的混合计算法则求解即可. 【详解】 解:(1) 解析:(1);(2) 【分析】 (1)先利用二次根式的性质化简,然后根据二次根式的混合计算法则求解即可; (2)先利用二次根式的性质化简,然后根据二次根式的混合计算法则求解即可. 【详解】 解:(1) ; (2) . 【点睛】 本题主要考查了利用二次根式的化简和二次根式的混合运算,熟练掌握相关计算法则是解题的关键. 18.(1)8米;(2)米 【分析】 (1)直接利用勾股定理得出BC的长; (2)在△CED中,再利用勾股定理计算出CE的长,进而可得AE的长. 【详解】 解:(1)一架长米的梯子,顶端靠在墙上,梯子底端 解析:(1)8米;(2)米 【分析】 (1)直接利用勾股定理得出BC的长; (2)在△CED中,再利用勾股定理计算出CE的长,进而可得AE的长. 【详解】 解:(1)一架长米的梯子,顶端靠在墙上,梯子底端到墙的距离米,∠C=90°, . 答:的长为米. (2),, , 又∠C=90°, , . 答:梯子的底端向外移动了米. 【点睛】 此题主要考查了勾股定理的应用,正确应用勾股定理是解题关键. 19.(1)见解析;(2)见解析;(3). 【解析】 【分析】 (1)根据菱形的性质:菱形的四边都相等,利用网格画出对应的菱形即可; (2)根据图中所给的AB计算出AB的长不等于5,即AB为底,然后利用勾 解析:(1)见解析;(2)见解析;(3). 【解析】 【分析】 (1)根据菱形的性质:菱形的四边都相等,利用网格画出对应的菱形即可; (2)根据图中所给的AB计算出AB的长不等于5,即AB为底,然后利用勾股定理找出E点即可; (3)利用勾股定理进行相应的计算即可得到答案. 【详解】 解:(1) 根据菱形的性质:菱形的四边都相等,菱形的面积为8,画出的图形如下图所示 (2)如图所示 ∴AB为等腰三角形ABE的底 ∴AE=BE=5 ∴下图即为所求 (3)如图所示,连接EC 则由题意得 【点睛】 本题主要考查了应用设计与作图,正确利用网格结合勾股定理是解题的关键. 20.(1)见解析;(2)四边形ADCF是菱形,理由见解析. 【分析】 (1)由“AAS”可证△AEF≌△DEB; (2)先证四边形ADCF是平行四边形,由直角三角形的性质可得AD=CD,可得结论. 【详 解析:(1)见解析;(2)四边形ADCF是菱形,理由见解析. 【分析】 (1)由“AAS”可证△AEF≌△DEB; (2)先证四边形ADCF是平行四边形,由直角三角形的性质可得AD=CD,可得结论. 【详解】 证明:(1)∵AD是BC边上的中线, ∴BD=CD, ∵点E是AD的中点, ∴AE=ED, ∵AF∥BC, ∴∠AFE=∠EBD, 在△AEF和△DEB中, , ∴△AEF≌△DEB(AAS), (2)四边形ADCF是菱形, 理由如下:∵△AEF≌△DEB, ∴AF=BD, 又∵BD=CD, ∴AF=CD, ∵AF∥BC, ∴四边形ADCF是平行四边形, ∵∠BAC=90°,AD是BC边上的中线, ∴AD=CD, ∴四边形ADCF是菱形. 【点睛】 本题考查了全等三角形的判定和性质,菱形的判定和性质.证明四边形ADCF是平行四边形是解题的关键. 21.(1);(2);(3) 【解析】 【分析】 根据题意把题目中的无理式转化成的形式,然后仿照题意化简即可. 【详解】 解:(1)∵, ∴,, ∵,, ∴,, ∴; (2)∵, ∴,, ∵,, ∴,, 解析:(1);(2);(3) 【解析】 【分析】 根据题意把题目中的无理式转化成的形式,然后仿照题意化简即可. 【详解】 解:(1)∵, ∴,, ∵,, ∴,, ∴; (2)∵, ∴,, ∵,, ∴,, ∴. (3)∵, ∴,, ∵,, ∴,, ∴. 【点睛】 本题考查了二次根式的化简,根据题中的范例把根号内的式子整理成完全平方的形式是解答此题的关键. 22.(1),y甲=3840x(6≤x≤15);y乙=4320x﹣4320(6≤x≤15);(2)当购买9台电脑时,到两家商店购买费用相同;当10≤x≤15时,到甲商店更合算;当6≤x≤8时,到乙商店更合 解析:(1),y甲=3840x(6≤x≤15);y乙=4320x﹣4320(6≤x≤15);(2)当购买9台电脑时,到两家商店购买费用相同;当10≤x≤15时,到甲商店更合算;当6≤x≤8时,到乙商店更合算 【分析】 (1)根据两家电脑商的优惠方法可得y甲(元),乙店购买费用为y乙(元); (2)根据(1)的结论列方程或不等式解答即可. 【详解】 解:(1)由题意可得:y甲=4800×0.8x=3840x(6≤x≤15); y乙=4800×0.9(x﹣1)=4320x﹣4320(6≤x≤15); (2)当3840x=4320x﹣4320时, 解得x=9, 即当购买9台电脑时,到两家商店购买费用相同; 当3840x<4320x﹣4320时, 解得x>9, 即当10≤x≤15时,到甲商店更合算; 当3840x>4320x﹣4320时, 解得x<9, 即当6≤x≤8时,到乙商店更合算. 【点睛】 本题考查了一次函数的应用,读懂题目信息,理解两家电脑商的优惠方法并表示出y甲、y乙与所购电脑x(台)之间的函数关系式是解题的关键. 23.(1)①,;②四边形ABDE是平行四边形;理由见解析;③存在,D(0,2.5);(2) 【分析】 (1)①由,求出和长度,由轴,求出点的坐标; ②延长交轴于点,连接,得到正方形,从而,且,故得证四边 解析:(1)①,;②四边形ABDE是平行四边形;理由见解析;③存在,D(0,2.5);(2) 【分析】 (1)①由,求出和长度,由轴,求出点的坐标; ②延长交轴于点,连接,得到正方形,从而,且,故得证四边形是平行四边形; ③利用等腰三角形的定义和翻折的特征得到中垂线,再得证三角形全等,从而求出点的坐标; (2)分析清楚和点到轴的距离之间的关系,然后当到轴的距离为3时,求出的值,最后得出的取值范围. 【详解】 解:(1)当时,, ①,, ,, , 将沿着直线翻折后轴,如图(1), , , ,. 故答案为:,. ②四边形是平行四边形,理由如下: 延长交轴于点,连接, ,点是的中点, , , ,, , , , 由折叠得:, 四边形是正方形, ,, 四边形是平行四边形. ③如图(3),连接,延长交于点, 由折叠可知,,, 是的中垂线, ,, 是以、为腰的等腰三角形, , , , 设,则:, , , 解得:, , 存在点,使得是以、为腰的等腰三角形. (3)如图(4),过点作轴于点,作轴于点,则,四边形是矩形, 由折叠得:, 当到轴的距离为3,即时, ,, , , , , 解得:, 越小,点越向左,越大, 越小,越小,即点到轴的距离越小, 点到轴的距离不大于3, . 【点睛】 本题考查了平行的性质、勾股定理、翻折的特征、等腰三角形的性质、全等的判定和性质、三角形的面积等知识点.要求学生能够熟练应用勾股定理求线段长度,应用等面积法列方程求解,同时学会数学结合的思想解题.对于的取值范围,要会分析和点到轴的距离之间的关系. 24.(1);(2)点P的坐标为(,)或(,);(3)的最小值为;点N的坐标为(,). 【解析】 【分析】 (1)直接利用待定系数法,即可求出直线的解析式; (2)根据题意,先求出点C的坐标,然后求出直线 解析:(1);(2)点P的坐标为(,)或(,);(3)的最小值为;点N的坐标为(,). 【解析】 【分析】 (1)直接利用待定系数法,即可求出直线的解析式; (2)根据题意,先求出点C的坐标,然后求出直线AC的解析式,由,得到,再分别求出AC和AP的长度,即可求出点P的坐标; (3)根据题意,为定值,在图中找出一点,使得,即点、N、C三点共线时,使得有最小值,此时求出,即可得到答案. 【详解】 解:(1)设直线AB为, 把点、,代入,则 ,解得:, ∴; (2)∵线段,且点C在y轴负半轴上, ∴点C的坐标为(0,4), ∵点A为(4,0), ∴直线AC的解析式为:; ∵点B到直线AC的距离就是△ABC和△ABP的高, ∴△ABC和△ABP的高相同, ∵, ∴, ∴, ∵, ∴, ∵点P在直线AC上,则设点P为(x,x4), ∴, ∴, ∴或, ∴点P的坐标为(,)或(,); (3)根据题意,∵点B与点M的水平距离为, ∴在点N的右边水平距离为处作直线,如图: 令点为(11,2),此时有, ∵, ∴, ∴当点、N、C三点共线时,使得有最小值, 最小值为:; ∵点(11,2),点C为(0,4), ∴直线的解析式为:, , ∴有最小值为:; ∵点N的横坐标为:, ∴点N的纵坐标为:, ∴点N的坐标为:(,). 【点睛】 本题考查了一次函数的性质,利用勾股定理求两点之间的距离,最短路径问题,坐标与图形,解题的关键是熟练掌握一次函数的图形和性质,正确找出使得线段之和最小时的临界点,注意运用数形结合的思想进行解题. 25.(1)①4;②2,3,10;(2);(3)36 【分析】 (1)①由三角形的中位线定理可得DE∥BC,AE=EC,AD=BD,可求S△PDE=S△BDE=1,即可求解;②由三角形的中位线定理可得DE 解析:(1)①4;②2,3,10;(2);(3)36 【分析】 (1)①由三角形的中位线定理可得DE∥BC,AE=EC,AD=BD,可求S△PDE=S△BDE=1,即可求解;②由三角形的中位线定理可得DE∥BC,AE=EC,AD=BD,可得S△PBD=S△APD=2,S△APE=S△PEC=3,即可求解; (2)连接AP,由三角形的中位线定理可得DE∥BC,AE=EC,AD=BD,可得S△PBD=S△APD=4,S△APE=S△PEC=5,可求S△ADE,即可求解; (3)先证△NFK是等边三角形,可得NF=NK=NK=FG=KJ,可得S△PGF=S△PFN=7,S△PKJ=S△PKN=8,即可求解. 【详解】 解:(1)如图2,连接BE, ∵DE是△ABC的中位线, ∴DE∥BC,AE=EC,AD=BD, ∴S△PDE=S△BDE=1, ∴S△ABE=2, ∴S△ABC=4, 故答案为:4; ②∵DE是△ABC的中位线, ∴DE∥BC,AE=EC,AD=BD, ∴S△PBD=S△APD=2,S△APE=S△PEC=3, ∴S△ABC=10; 故答案为:2,3,10; (2)如图3,连接AP, ∵DE是△ABC的中位线, ∴DE∥BC,AE=EC,AD=BD,S△ABC=4S△ADE, ∴S△PBD=S△APD=5,S△APE=S△PEC=5, ∴S△ADE=S△APD+S△APE﹣S△PDE=4, ∴S△ABC=4S△ADE=16; (3)如图4,延长GF,JK交于点N,连接GJ,连接PN, ∵六边形FGHIJK是正六边形, ∴FG=FK=KJ,∠GFK=∠JKF=120°,S六边形FGHIJK=2S四边形FGJK, ∴∠NFK=∠NKF=60°, ∴△NFK是等边三角形, ∴NF=NK=FK=FG=KJ, ∴S△PGF=S△PFN=7,S△PKJ=S△PKN=8,FK是△NGJ的中位线, ∴S△NFK=S△PFN+S△PKN﹣S△PFK=6, ∵FK是△NGJ的中位线, ∴S△NGJ=4S△NFK=24; ∴S四边形FGJK=24﹣6=18, ∴S六边形FGHIJK=36. 【点睛】 本题是四边形综合题,考查了等边三角形的判定和性质,三角形的中位线定理,正六边形的性质等知识,熟练运用三角形中位线定理是解题的关键.- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 年级 期末试卷 提升 Word 解析
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【w****g】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【w****g】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【w****g】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【w****g】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文