数学八年级下册数学期末试卷(提升篇)(Word版含解析).doc
《数学八年级下册数学期末试卷(提升篇)(Word版含解析).doc》由会员分享,可在线阅读,更多相关《数学八年级下册数学期末试卷(提升篇)(Word版含解析).doc(27页珍藏版)》请在咨信网上搜索。
数学八年级下册数学期末试卷(提升篇)(Word版含解析) 一、选择题 1.要使二次根式有意义,那么a的取值范围是( ) A. B. C. D. 2.下列几组数中,能作为直角三角形三边长度的是( ) A.2,3,4 B.4,5,6 C.6,8,11 D.5,12,13 3.四边形BCDE中,对角线BD、CE相交于点F,下列条件不能判定四边形BCDE是平行四边形的是( ) A.BC∥ED,BE=CD B.BF=DF,CF=EF C.BC∥ED,BE∥CD D.BC=ED.BE=CD 4.下列说法中正确的是( ) A.样本7,7,6,5,4的众数是2 B.样本2,2,3,4,5,6的中位数是4 C.样本39,41,45,45不存在众数 D.5,4,5,7,5的众数和中位数相等 5.若三角形的三边长分别是下列各组数,则能构成直角三角形的是( ) A.4,5,6 B.1,2, C.6,8,11 D.5,12,14 6.如图,点为边上一点,将沿翻折得到,点在上,且.那么的度数为( ) A.38° B.48° C.51° D.62° 7.如图,点E在正方形ABCD的边CD上,若△ABE的面积为8,CE=3,则线段BE的长为( ) A.5 B.1 C.4 D.6 8.在平面直角坐标系中,定义:已知图形W和直线,如果图形W上存在一点Q,使得点Q到直线的距离小于或等于k,则称图形W与直线“k关联”.已知线段AB,其中点,.若线段AB与直线“关联”,则b的取值范围是( ) A.-1≤b≤ B.0≤b≤4 C.0≤b≤6 D.≤b≤6 二、填空题 9.若,则x的取值范围是______. 10.已知菱形的边长为4,∠A=60°,则菱形的面积为_________. 11.若直角三角形的两边长分别为,,那么第三边长是______. 12.如图,由边长为1的小正方形组成的网格中,△ABC的三个顶点A、B、C都在网格格点的位置上,则△ABC的中线BD的长为_______. 13.已知一次函数的图象过点,那么此一次函数的解析式为__________. 14.矩形ABCD中,对角线AC,BD相交于点O,∠AOB=60°,若AB=5cm,则BD=___. 15.甲从地出发以某一速度向地走去,同时乙从地出发以另一速度向地而行,如图中的线段、分别表示甲、乙离地的距离()与所用时间的关系.则、两地之间的距离为______,甲、乙两人相距时出发的时间为______. 16.如图,在平面直角坐标系中,直线直线交于点,直线交y轴于点,将沿直线翻折得到,其中点O的对应点为点C,在直线BC下方以BC为边作等腰直角,则点P的坐标为_________. 三、解答题 17.计算: (1); (2). 18.一架云梯长25m,如图那样斜靠在一面墙上,云梯顶端离地面24m. (1)这架云梯的底端距墙角有多远? (2)如果云梯的顶端下滑了4m,那么它的底部在水平方向滑动了多少m? 19.图1、图2均是4×4的正方形网格,每个小正方形的边长均为1,每个小正方形的顶点叫做格点,在给定的网格中按要求画图,所画图形的顶点均在格点上. (1)在图1中画一个面积为4的菱形; (2)在图2中画一个矩形,使其边长都是无理数,且邻边不相等. 20.如图1,在中,于点D,,点E为边AD上一点,且,连接BE并延长,交AC于点F. (1)求证:; (2)过点A作交BF的延长线于点G,连接CG,如图2.若,求证:四边形ADCG是矩形. 21.我们规定,若a+b=2,则称a与b是关于1的平衡数. (1)若3与是关于1的平衡数,5-与是关于1的平衡数,求,的值; (2)若(m+)×(1-)=-2n+3(-1),判断m+与5n-是否是关于1的平衡数,并说明理由. 22.根据天气预报,某地将持续下雨7天,然后放晴.开始下雨的48小时内,某水库记录了水位变化,结果如下: 时间x/h 0 12 24 36 48 … 水位y/m 40 40.3 40.6 40.9 41.2 … 在不泄洪的条件下,假设下雨的这7天水位随时间的变化都满足这种关系. (1)在不泄洪的条件下,写出一个函数解析式描述水位y随时间x的变化规律; (2)当水库的水位达到43m时,为了保护大坝安全,必须进行泄洪. ①下雨几小时后必须泄洪? ②雨天泄洪时,水位平均每小时下降0.05m,求开始泄洪后,水库水位y与时间x之间的函数关系式;并计算泄洪几小时后水位可以降到下雨前的初始高度? 23.已知在平行四边形中,,将沿直线翻折,点落在点尽处,与相交于点,联结. (1)如图1,求证:; (2)如图2,如果,,,求的面积; (3)如果,,当是直角三角形时,求的长. 24.在平面直角坐标系中,O为坐标原点,直线y=x+b交x轴的负半轴于点A,交y轴的正半轴于点B,AB=6,点C在x轴的正半轴上,OC=2. (1)如图1,求直线BC的解析式; (2)如图2,点D在第四象限的直线C上,DE⊥AB于点E,DE=AB,求点D的坐标; (3)在(2)的条件下,请在平面内找一点P,使得四边形PDBE是平行四边形,直接写出这样的点P的坐标; (4)如图3,在(2)的条件下,点F在线段OA上,点G在线段OB上,射线FG交直线BC于点H,若∠FGO=2∠AEF,FG=5,求点H的坐标. 25.如图,△ABC和△ADE都是等腰三角形,其中AB=AC,AD=AE,∠BAC=∠DAE. (1)如图①,连接BE、CD,求证:BE=CD; (2)如图②,连接BD、CD,若∠BAC=∠DAE=60°,CD⊥AE,AD=3,CD=5,求BD的长; (3)如图③,若∠BAC=∠DAE=90°,且C点恰好落在DE上,试探究CD、CE和CA之间的数量关系,并加以说明. 【参考答案】 一、选择题 1.B 解析:B 【分析】 根据二次根式有意义的条件:被开方数大于或等于0,可以求出a的范围. 【详解】 解:根据题意得:, 解得: 故选:B. 【点睛】 考查二次根式有意义的条件:被开方数大于或等于0. 2.D 解析:D 【分析】 利用勾股定理的逆定理,只要验证两小边的平方和等于最长边的平方即可. 【详解】 解:A、22+32≠42,故不是直角三角形,故错误; B、42+52≠62,故不是直角三角形,故错误; C、62+82≠112,故不是直角三角形,故错误; D、52+122=132,故是直角三角形,故正确. 故选D. 【点睛】 本题考查了勾股定理的逆定理,在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断. 3.A 解析:A 【解析】 【分析】 根据平行四边形的判定定理分别进行分析即可. 【详解】 解:A、不能判定四边形ABCD是平行四边形,故此选项符合题意; B、根据对角线互相平分的四边形是平行四边形,可判定四边形ABCD为平行四边形,故此选项不合题意; C、根据两组对边分别平行的四边形是平行四边形,可判定四边形ABCD为平行四边形,故此选项不合题意; D、根据两组对边分别相等的四边形是平行四边形,可判定四边形ABCD为平行四边形,故此选项不合题意; 故选;A. 【点睛】 本题考查平行四边形的判定定理,熟知平行四边形的判定条件是解题的关键. 4.D 解析:D 【解析】 【分析】 根据众数定义和中位数定义对各选项进行一一分析判定即可. 【详解】 A. 样本7,7,6,5,4的重复次数最多的数是7,所以众数是7,故选项A不正确; B. 样本2,2,3,4,5,6的处于中间位置的两个数是3和4,所以中位数是,故选项B不正确; C. 样本39,41,45,45重复次数最多的数字是45,故选项C不正确; D. 5,4,5,7,5,将数据重新排序为4,5,5,5,7,重复次数最多的众数是5和中位数为5,所以众数和中位数相等,故选项D正确. 故选D. 【点睛】 本题考查众数与中位数,掌握众数与中位数定义,一组数据中重复次数最多的数据是众数,将一组数据从小到大排序后,处于中间位置,或中间位置上两个数据的平均数是中位数是解题关键. 5.B 解析:B 【分析】 根据勾股定理逆定理:三角形三边长a、b、c若满足,则该三角形为直角三角形,将各个选项逐一代数计算即可得出答案. 【详解】 解:A选项:∵,∴4、5、6三边长无法组成直角三角形,故该选项错误; B选项:∵,∴1、2、三边长可以组成直角三角形,故该选项正确; C选项:∵,∴6、8、11三边长无法组成直角三角形,故该选项错误; D选项:∵,∴5、12、14三边长无法组成直角三角形,故该选项错误, 故选:B. 【点睛】 本题主要考察了勾股定理的逆定理,在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断. 6.C 解析:C 【解析】 【分析】 由平行四边形的性质和折叠的性质得出∠BFE=∠A=52°,∠FBE=∠ABE,由等腰三角形的性质和三角形的外角性质得出∠EDF=∠DEF=∠BFE=26°,由三角形内角和定理求出∠ABD=102°,即可得出∠ABE的度数. 【详解】 解:∵四边形ABCD是平行四边形, ∴∠A=∠C=52°, 由折叠的性质得:∠BFE=∠A=52°,∠FBE=∠ABE, ∵EF=DF, ∴∠EDF=∠DEF=∠BFE=26°, ∴∠ABD=180°-∠A-∠EDF=102°, ∴∠ABE=∠ABD=51°, 故选:C. 【点睛】 本题考查了平行四边形的性质、折叠的性质、等腰三角形的性质、三角形的外角性质、三角形内角和定理;熟练掌握平行四边形的性质和等腰三角形的性质是解决问题的关键. 7.A 解析:A 【解析】 【分析】 根据正方形的性质,可求出正方形的面积,从而确定边长,然后在Rt△BCE中利用勾股定理求解即可. 【详解】 解:∵四边形ABCD为正方形, ∴,, ∴, ∴正方形的边长, 在Rt△BCE中,BC=4,CE=3, ∴, 故选:A. 【点睛】 本题考查正方形的性质,理解正方形的性质以及熟练运用勾股定理是解题关键. 8.C 解析:C 【分析】 如图(见解析),先画出图形,再根据定义求出两个临界位置时b的值,由此即可得. 【详解】 如图,过点B作直线的垂线,垂足为点D,连接OA,延长AB交直线于点C 由题意,有以下两个临界位置: ①点A到直线的距离等于 , 当直线经过原点O时,, 即为点A到直线的距离,此时 ②点B到直线的距离等于,即 轴 ,且点C的纵坐标与点A的纵坐标相同,即为1 是等腰直角三角形 点C的横坐标为 将点代入直线得: 解得 则b的取值范围是 故选:C. 【点睛】 本题考查了等腰直角三角形的判定与性质、一次函数的几何应用等知识点,理解新定义,求出两个临界位置时b的值是解题关键. 二、填空题 9.x>1 【解析】 【分析】 直接利用二次根式有意义的条件,结合一元一次不等式的解法得出答案. 【详解】 解:∵, ∴x≥0且x﹣1>0, 解得:x>1. 故答案为:x>1. 【点睛】 本题主要考查二次根式有意义的条件,熟练掌握二次根式的被开方数是非负数,是解题的关键. 10.A 解析:8 【解析】 【分析】 作出图形,利用30°直角三角形的性质求出高,利用菱形的面积公式可求解. 【详解】 如图所示,菱形ABCD中,AB=AD=4,∠A=60°, 过点D作DE⊥AB于点E, 则, ∴菱形ABCD的面积为AB∙DE=4×= , 故答案为:. 【点睛】 本题考查了菱形的性质,熟练运用30°直角三角形的性质以及菱形的面积公式是本题的关键. 11.2或 【解析】 【分析】 已知直角三角形的两边长,但并没有明确是直角边还是斜边,因此分两种情况讨论:是直角边,是斜边;,均为直角边;可根据勾股定理求出上述两种情况下第三边的长. 【详解】 当是直角边,是斜边, 第三边的长, 当,均为直角边, 第三边的长, 故答案为:2或. 【点睛】 本题考查了勾股定理,由于已知的两边是直角边还是斜边并不明确,所以一定要分类讨论. 12.A 解析: 【分析】 首先根据勾股定理求得AB,BC,AC的长度,然后由勾股定理的逆定理判定△ABC是直角三角形,则根据直角三角形斜边上中线的性质求解即可. 【详解】 解:如图,AB2=12+22=5,BC2=22+42=20,AC2=42+32=25. ∴AB2+BC2=AC2. ∴△ABC是直角三角形,且∠ABC=90°. ∵BD是斜边AC上的中线, ∴BD=AC==. 故答案是:. 【点睛】 本题考查了勾股定理及其逆定理,直角三角形的斜边的中线的性质,用勾股定理的逆定理判定直角三角形是解题的关键. 13. 【分析】 用待定系数法即可得到答案. 【详解】 解:把代入得,解得, 所以一次函数解析式为. 故答案为 【点睛】 本题考查求一次函数解析式,解题的关键是熟练掌握待定系数法. 14.A 解析:10cm 【详解】 试题分析:根据矩形性质得出AO=BO,BD=2BO,得出等边三角形AOB,推出AB=BO=5cm,即可得出答案. 解:∵四边形ABCD是矩形, ∴AC=BD,AC=2AO,BD=2BO, ∴OA=OB, ∵∠AOB=60°, ∴△AOB是等边三角形, ∴BO=OA=AB=5cm, ∴BD=2BO=10cm, 故答案为10cm. 点评:本题考查了矩形的性质和等边三角形的性质和判定的应用,注意:矩形的对角线相等且互相平分. 15.2或3 【分析】 ①利用路程的函数图象解得的解析式,再求的值; ②根据题意列方程解答即可. 【详解】 解:①设=kx+b, ∵经过点P(2.5,7.5),(4,0). ∴ , 解得 , ∴= 解析:2或3 【分析】 ①利用路程的函数图象解得的解析式,再求的值; ②根据题意列方程解答即可. 【详解】 解:①设=kx+b, ∵经过点P(2.5,7.5),(4,0). ∴ , 解得 , ∴=−5x+20,当x=0时,=20. 答:AB两地之间的距离为20km. ②根据题意得:或, 解得:或. 即出发2小时或3小时,甲、乙两人相距 【点睛】 此题主要考查了根据实际问题中的条件列方程组时,要注意抓住题目中的一些关键性词语,找出等量关系,列出方程组.熟练掌握相遇问题的解答也很关键. 16.或或 【分析】 解方程得到A(4,3),利用待定系数法求得直线的解析式,根据勾股定理得到OA的长,根据等腰三角形的性质得到∠OAB=∠OBA,根据折叠的性质得到∠OAB=∠CAB,于是得到AC∥OB 解析:或或 【分析】 解方程得到A(4,3),利用待定系数法求得直线的解析式,根据勾股定理得到OA的长,根据等腰三角形的性质得到∠OAB=∠OBA,根据折叠的性质得到∠OAB=∠CAB,于是得到AC∥OB,可求得点C的坐标,分类讨论,利用全等三角形的判定和性质即可求解. 【详解】 由题意得:直线的解析式为,将代入得:, 解得, ∴, 将,代入得: ,解得, ∴直线的解析式为, ∵, ∴, ∴, ∴, 由折叠得:, ∴, ∴, , ∴; 以BC为边在直线BC下方作等腰直角三角形,共有以下三种情况: 如图, ①,, 过C,分别向y轴作垂线,垂足为M,N, 则, ∵, ∴, 在和中, ∵, ∴, ∴,, ∴; ②,时, 由图象得为和C的中点, 由中点坐标公式可得:; ③当,时 由图象得B和关于对称,. 综上,满足条件的P点的坐标为或或. 【点睛】 本题考查了一次函数的综合题,折叠的性质,等腰直角三角形的性质,全等三角形的判定和性质,正确的求得C点的坐标是解题的关键. 三、解答题 17.(1);(2). 【分析】 (1)根据二次根式的运算法则即可求解; (2)根据加减消元法即可求解. 【详解】 解:(1)原式=4﹣+3﹣2 =+1; (2)原方程组整理得, ①﹣②得2y=0,解得y 解析:(1);(2). 【分析】 (1)根据二次根式的运算法则即可求解; (2)根据加减消元法即可求解. 【详解】 解:(1)原式=4﹣+3﹣2 =+1; (2)原方程组整理得, ①﹣②得2y=0,解得y=0, 把y=0代入①得2x=4, 解得x=2, 所以原方程组的解为. 【点睛】 此题主要考查二次根式的运算与二元一次方程组的求解,解题的关键是熟知其解法. 18.(1);(2) 【分析】 根据题意,画出图形, (1)在 中,直接根据勾股定理,即可求解; (2)设它的底部在水平方向滑动了 ,即 ,则 ,在 中,由勾股定理,即可求解. 【详解】 解:根据题意,画 解析:(1);(2) 【分析】 根据题意,画出图形, (1)在 中,直接根据勾股定理,即可求解; (2)设它的底部在水平方向滑动了 ,即 ,则 ,在 中,由勾股定理,即可求解. 【详解】 解:根据题意,画出图形,如下图: (1)根据题意得: , , 在 中,由勾股定理得: , 即这架云梯的底端距墙角 ; (2)设它的底部在水平方向滑动了 ,即 ,则 , 根据题意得: , ,则 , 在 中,由勾股定理得: , 即 , 解得: , 即它的底部在水平方向滑动了. 【点睛】 本题主要考查了勾股定理的应用,熟练掌握直角三角形两直角边的平方和等于斜边的平方是解题的关键. 19.(1)见解析;(2)见解析. 【解析】 【分析】 (1)直接利用菱形的性质画出符合题意的菱形; (2)利用网格结合矩形的判定和性质得出答案. 【详解】 (1)如图1所示:其四边形是菱形,且面积为4; 解析:(1)见解析;(2)见解析. 【解析】 【分析】 (1)直接利用菱形的性质画出符合题意的菱形; (2)利用网格结合矩形的判定和性质得出答案. 【详解】 (1)如图1所示:其四边形是菱形,且面积为4; (2)如图2所示:其四边形是边长为无理数的矩形. 【点睛】 本题考查应用设计与作图,解题的关键是熟练掌握菱形的性质与矩形的判定和性质. 20.(1)见解析;(2)见解析 【分析】 (1)先证,得,又因为,可证; (2)先证,得,又因为,利用边与边的关系,得,又因为,可证得四边形ADCG是平行四边形,又因为,四边形ADCG是矩形. 【详解】 解析:(1)见解析;(2)见解析 【分析】 (1)先证,得,又因为,可证; (2)先证,得,又因为,利用边与边的关系,得,又因为,可证得四边形ADCG是平行四边形,又因为,四边形ADCG是矩形. 【详解】 (1)证明:∵, ∴. ∵,, ∴. ∴. ∵, ∴. (2)证明:∵, ∴, 由(1)知, ∴, ∵, ∴, ∴, ∴, ∵,, ∴, ∴, ∵, ∴四边形ADCG是平行四边形, ∵, ∴四边形ADCG是矩形. 【点睛】 本题考查了相似三角形的判定与性质,全等的判定和性质、平行四边形、矩形的判定,能利用相似和全等找到边与边的关系是解题的关键. 21.(1) -1,;(2)当,时,是关于1的平衡数,否则不是关于1的平衡数;见解析 【解析】 【分析】 (1)根据所给的例子,可得出平衡数的求法,由此可得出答案; (2)对式子进行化简,得到的关系,再对 解析:(1) -1,;(2)当,时,是关于1的平衡数,否则不是关于1的平衡数;见解析 【解析】 【分析】 (1)根据所给的例子,可得出平衡数的求法,由此可得出答案; (2)对式子进行化简,得到的关系,再对进行分情况讨论求解即可. 【详解】 解:(1)根据题意可得:, 解得, 故答案为, (2), ∴ , ∴ , ∴ ①当均为有理数时, 则有 , 解得:, 当时, 所以不是关于1的平衡数 ②当中一个为有理数,另一个为无理数时, ,而此时为无理数,故, 所以不是关于1的平衡数 ③当均为无理数时,当时,联立,解得 , 存在,使得是关于1的平衡数, 当且时,不是关于1的平衡数 综上可得:当,时,是关于1的平衡数,否则不是关于1的平衡数. 【点睛】 本题考查了二次根式的加减运算,解答本题的关键是掌握二次根式的化简及同类二次根式的合并,并掌握分类讨论的思想. 22.(1);(2)①120小时;② (120≤x<168),y=(x>168),泄洪56小时后,水位降到下雨前的初始高度 【分析】 (1)观察数据的变化符合一次函数,设出一次函数的解析式,拥待定系数法即 解析:(1);(2)①120小时;② (120≤x<168),y=(x>168),泄洪56小时后,水位降到下雨前的初始高度 【分析】 (1)观察数据的变化符合一次函数,设出一次函数的解析式,拥待定系数法即可求出解析式; (2)①取y=43,算出对应的x即可; ②开始泄洪后的水位为水库的量减去泄洪的量,分别用x表示出对应的值,即可写出y与x的关系式,取y=40,求出x即可. 【详解】 解:(1)观察发现x和y满足一次函数的关系,设y=kx+b, 代入(0,40)(12,40.3)得: , 解得:, ∴; (2)①当y=43时,有, 解得x=120, ∴120小时时必须泄洪; ②在下雨的7天内,即120≤x<168时, , 7天后,即x>168时,此时没有下雨,水位每小时下降米, , 当y=40时,有:, 解得x=180(不合,舍去), 或者,则x=176, 176﹣120=56, ∴泄洪56小时后,水位降到下雨前的初始高度. 【点睛】 本题主要考查一次函数的应用,关键是要会用待定系数法求出一次函数的解析式,根据解析式求出y满足一定条件时对应的x的值. 23.(1)见解析;(2);(3)4或6 【分析】 (1)由折叠的性质得,,由平行四边形的性质得,.则,,得,证出,则,由等腰三角形的性质得,证出,即可得出结论; (2)证四边形是矩形,则,,,设,则,在 解析:(1)见解析;(2);(3)4或6 【分析】 (1)由折叠的性质得,,由平行四边形的性质得,.则,,得,证出,则,由等腰三角形的性质得,证出,即可得出结论; (2)证四边形是矩形,则,,,设,则,在中,由勾股定理得出方程,求出,由三角形面积公式即可得出答案; (3)分两种情况:或,需要画出图形分类讨论,根据含角的直角三角形的性质,即可得到的长. 【详解】 解:(1)证明:由折叠的性质得:△, ,, 四边形是平行四边形, ,. ,, , , , , , , ; (2)平行四边形中,, 四边形是矩形, ,,, 由(1)得:, 设,则, 在中,由勾股定理得:, 解得:, , 的面积; (3)分两种情况: ①如图3,当时,延长交于, ,, , ,, , ,, , , 是的中点, 在中,, ; ②如图4,当时 ,, , 由折叠的性质得:, , 在和中,, , , , , , , , , , 又, ,,在同一直线上, , 中,,, ,; 综上所述,当是直角三角形时,的长为4或6. 【点睛】 本题是四边形综合题目,考查了翻折变换的性质、平行四边形的性质、平行线的判定与性质、矩形的判定与性质、全等三角形的判定与性质、等腰三角形的判定与性质、勾股定理、直角三角形的性质等知识;本题综合性强,熟练掌握翻折变换的性质和平行四边形的性质是解题的关键. 24.(1);(2)D(3,3);(3)点P的坐标有:(6,0)或(0,)或(,12);(4)H(,). 【解析】 【分析】 (1)由题意表达出点A和点B的坐标,然后用勾股定理建立等式可求出b的值,从而得 解析:(1);(2)D(3,3);(3)点P的坐标有:(6,0)或(0,)或(,12);(4)H(,). 【解析】 【分析】 (1)由题意表达出点A和点B的坐标,然后用勾股定理建立等式可求出b的值,从而得到点B的坐标,结合点C的坐标,进而求出直线BC的解析式; (2)过点D作DK∥y轴交直线AB于点K,设出点D的坐标,表达出点K的坐标,结合DE=AB,建立等式,可求出点D的坐标; (3)由题意,要使四边形PDBE是平行四边形,则要进行分类讨论,可分为3种情况进行分析;先求出点E的坐标,然后利用平行四边形的性质,平移的性质,即可求出点P的所有点的坐标; (4)由题意可得AE=OE,且∠AEO=90°,可将△AEF绕点E旋转,构造全等三角形;表达出线段长,利用勾股定理建等式,求解参数的值,进而求出点H的坐标. 【详解】 解:(1)∵直线y=x+b交x轴的负半轴于点A,交y轴的正半轴于点B, ∴A(b,0),B(0,b), ∴OA=OB=b, 在△OAB中,∠AOB=90°,AB=, 由勾股定理可得,b2+b2=, 解得,b=6(b=6舍去), ∴OA=OB=6, ∴点A为(,0),点B为(0,6); ∵OC=2, ∴C(2,0), 设直线BC的解析式为y=kx+6, ∴2k+6=0, 解得:, ∴直线BC的解析式为. (2)过点D作DK∥y轴交直线AB于点K, ∴∠ABO=∠K=45°, ∵AB=DE=, ∴DK=12, 设点D的横坐标为t,则D(t,3t+6),K(t,t+6), ∴DK=t+6(3t+6)=12, 解得:t=3, ∴D(3,3). (3)根据题意,要使四边形PDBE是平行四边形,则要进行分类讨论,可分为3种情况进行分析;如图所示: ①当点P在点的位置时,此时四边形是矩形; ∵∠ABO=45°,DE⊥AB, ∴△OBE是等腰直角三角形, ∵OB=6, ∴BE=OE=, ∴点E是AB的中点, ∴点E的坐标为(,3); ∵点B为(0,6),点D为(3,3), 由平移的性质,则点的坐标为(6,0); ②当点P在点的位置时,此时四边形是平行四边形, 则BD∥EP2,BE∥DP2; ∵点E的坐标为(,3),点B为(0,6),点D为(3,3), 由平移的性质,则点的坐标为(0,); ③当点P在点的位置时,此时四边形是平行四边形, 则BP3∥DE,DB∥EP3; ∵点E的坐标为(,3),点B为(0,6),点D为(3,3), 由平移的性质,则点的坐标为(,12); 综合上述,点P的坐标有:(6,0)或(0,)或(,12); (4)过点E作EL⊥DK于点L,连接OD,过点E作EM⊥x轴于点M,如图: 则AM=OM=3=EM=3, ∴EM=AM, ∴∠MEO=∠EOM=45°, ∴∠AEO=90°, 在OG上截取ON=AF,连接EN, ∵∠EAF=∠EON, ∴△EAF≌△EON(AAS), ∴EF=EN,∠AEF=∠OEN, ∴∠FEN=∠FEO+∠OEN=∠FEO+∠AEF=∠AEO=90°, ∴∠EFN=45°, ∵∠EFO=∠AEF+∠EAO=∠EFN+∠NFO, 又∵∠EAO=∠EFN=45°, ∴∠NFO=∠AEF, ∴∠FGO=2∠AEF=2∠NFO, 设∠AEF=α,则∠NFO=α,∠FNO=90°α,∠FGO=2α, 在y轴负半轴上截取OP=ON,连接FP,则OF垂直平分NP, ∴FN=FP, ∴∠FPO=90°α, ∴∠GFP=180°2α(90°α)=90°α=∠GPF, ∴FG=GP=5, 设AF=m,则ON=OP=m,则OG=5m,OF=6m, 在Rt△OGF中,由勾股定理可得,(5-m)2+(6-m)2=52, 解得:m=2,(m=9舍去), ∴OG=3,OF=4, ∴F(4,0),G(0,3), 设直线FG的解析式为y=ax+c, ∴,解得, ∴直线FG的解析式为:, ∵H是直线与直线y=3x+6的交点, ∴,解得, ∴H(,). 【点睛】 本题是一次函数与几何综合问题,考查了一次函数的性质,平行四边形的性质,平移的性质,勾股定理,等腰三角形的性质等知识,解题的关键是熟练掌握所学的知识,正确作出合适的辅助线,运用分类讨论的思想进行解题. 25.(1)见解析;(2);(3)2AC2=CD2+CE2,理由见解析 【分析】 (1)先判断出∠BAE=∠CAD,进而得出△ACD≌△ABE,即可得出结论; (2)先求出∠CDA=∠ADE=30°,进而 解析:(1)见解析;(2);(3)2AC2=CD2+CE2,理由见解析 【分析】 (1)先判断出∠BAE=∠CAD,进而得出△ACD≌△ABE,即可得出结论; (2)先求出∠CDA=∠ADE=30°,进而求出∠BED=90°,最后用勾股定理即可得出结论; (3)连接BE,由等腰直角三角形的性质和全等三角形的性质可得BE=CD,∠BEA=∠CDA=45°,由勾股定理可得2AC2=CD2+CE2. 【详解】 证明:(1)∵∠BAC=∠DAE, ∴∠BAC+∠CAE=∠DAE+∠CAE,即∠BAE=∠CAD; 又∵AB=AC,AD=AE, ∴△ACD≌△ABE(SAS), ∴CD=BE; (2)如图②,连接BE, ∵AD=AE,∠DAE=60°, ∴△ADE是等边三角形, ∴DE=AD=3,∠ADE=∠AED=60°, ∵CD⊥AE, ∴∠CDA=∠ADE=×60°=30°, ∵由(1)得△ACD≌△ABE, ∴BE=CD=5,∠BEA=∠CDA=30°, ∴∠BED=∠BEA+∠AED=30°+60°=90°,即BE⊥DE, ∴. (3)2AC2=CD2+CE2, 理由如下:连接BE, ∵AD=AE,∠DAE=90°, ∴∠D=∠AED=45°, 由(1)得△ACD≌△ABE, ∴BE=CD,∠BEA=∠CDA=45°, ∴∠BEC=∠BEA+∠AED=45°+45°=90°,即BE⊥DE, 在Rt△BEC中,BC2=BE2+CE2, 在Rt△ABC中,AB2+AC2=BC2, ∴2AC2=CD2+CE2. 【点睛】 此题考查了等腰直角三角形、全等三角形的性质以及勾股定理,熟练掌握相关基本性质是解题的关键.- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 数学 年级 下册 期末试卷 提升 Word 解析
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【快乐****生活】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【快乐****生活】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【快乐****生活】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【快乐****生活】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文