人教版中学七年级下册数学期末复习(附答案).doc
《人教版中学七年级下册数学期末复习(附答案).doc》由会员分享,可在线阅读,更多相关《人教版中学七年级下册数学期末复习(附答案).doc(24页珍藏版)》请在咨信网上搜索。
人教版中学七年级下册数学期末复习(附答案) 一、选择题 1.4的算术平方根是() A.2 B.4 C. D. 2.下列图形中,可以由其中一个图形通过平移得到的是( ) A. B. C. D. 3.平面直角坐标系中,点所在的象限是( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限 4.下列四个命题:①对顶角相等;②内错角相等;③平行于同一条直线的两条直线互相平行;④如果一个角的两边分别平行于另一个角的两边,那么这两个角相等;⑤过一点有且只有一条直线与已知直线垂直.其中真命题的个数是( ) A.1个 B.2个 C.3个 D.4个 5.如图,一副直角三角板图示放置,点在的延长线上,点在边上,,,则( ) A. B. C. D. 6.给出下列四个说法:①一个数的平方等于1,那么这个数就是1;②4是8的算术平方根;③平方根等于它本身的数只有0;④8的立方根是±2.其中,正确的是( ) A.①② B.①②③ C.②③ D.③ 7.如图所示,长方形ABCD中,点E在CD边上,AE,BE与线段FG相交构成∠,∠,则∠1,∠2,∠,∠之间的关系是( ) A.∠1+∠2+180°=∠+∠ B.∠+∠2=∠+∠1 C.∠+∠=2(∠1+∠2) D.∠1+∠2=∠a﹣∠ 8.如图,在平面直角坐标系中,,,,……根据这个规律,探究可得点的坐标是( ) A. B. C. D. 九、填空题 9.的算术平方根为__________ 十、填空题 10.点(3,0)关于y轴对称的点的坐标是_______ 十一、填空题 11.如图,AD、AE分别是△ABC的角平分线和高,∠B=50°,∠C=70°,则∠DAE=_____________°. 十二、填空题 12.如图将一张长方形纸片沿EF折叠后,点A、B分别落在A′、B′的位置,如果∠2=70°,则∠1的度数是___________. 十三、填空题 13.如图,将一张长方形纸片沿折叠后,点,分别落在,的位置,若,则的度数为______. 十四、填空题 14.已知实数a、b互为相反数,c、d互为倒数,e是的整数部分,f是的小数部分,求代数式﹣+e﹣f=__. 十五、填空题 15.在平面直角坐标系中,第二象限内的点到横轴的距离为,到纵轴的距离为,则点的坐标是________. 十六、填空题 16.在平面直角坐标系中,点A与原点重合,将点A向右平移1个单位长度得到点A1,将A1向上平移2个单位长度得到点A2,将A2向左平移3个单位长度得到A3,将A3向下平移4个单位长度得到A4,将A4向右平移5个单位长度得到A5…按此方法进行下去,则A2021点坐标为_______________. 十七、解答题 17.(1)-+; (2),求. 十八、解答题 18.求下列各式中的x值: (1)16(x+1)2=25; (2)8(1﹣x)3=125 十九、解答题 19.补全下面的证明过程和理由: 如图,AB和CD相交于点O,EF∥AB,∠C=∠COA,∠D=∠BOD. 求证:∠A=∠F. 证明:∵∠C=∠COA,∠D=∠BOD,( ) 又∵∠COA=∠BOD,( ) ∴∠C= .( ) ∴AC∥DF( ). ∴∠A= ( ). ∵EF∥AB, ∴∠F= ( ). ∴∠A=∠F( ). 二十、解答题 20.在平面坐标系中描出下列各点且标该点字母: (1)点,,,; (2)点在轴上,位于原点右侧,距离原点2个单位长度; (3)点在轴下方,轴左侧,距离每条坐标轴都是3个单位长度. 二十一、解答题 21.阅读下面文字: 我们知道:是无理数,而无理数是无限不循环小数,因此的小数部分我们不可能全部写出来,于是小明用来表示的小数部分,事实上小明的表示法是有道理的,因为的整数部分是1,将这个数减去其整数部分,差就是小数部分.又例如:由“平方与开平方互为逆运算”可知:<<,即,∴的整数部分是2,小数部分是. (1)的整数部分是________,小数部分是________; (2)如果的小数部分是a,整数部分是b,求的值; (3)已知,其中x是整数,且,求. 二十二、解答题 22.如图1,用两个边长相同的小正方形拼成一个大的正方形. (1)如图2,若正方形纸片的面积为1,则此正方形的对角线AC的长为 dm. (2)如图3,若正方形的面积为16,李明同学想沿这块正方形边的方向裁出一块面积为12的长方形纸片,使它的长和宽之比为3∶2,他能裁出吗?请说明理由. 二十三、解答题 23.如图1,已AB∥CD,∠C=∠A. (1)求证:AD∥BC; (2)如图2,若点E是在平行线AB,CD内,AD右侧的任意一点,探究∠BAE,∠CDE,∠E之间的数量关系,并证明. (3)如图3,若∠C=90°,且点E在线段BC上,DF平分∠EDC,射线DF在∠EDC的内部,且交BC于点M,交AE延长线于点F,∠AED+∠AEC=180°, ①直接写出∠AED与∠FDC的数量关系: . ②点P在射线DA上,且满足∠DEP=2∠F,∠DEA﹣∠PEA=∠DEB,补全图形后,求∠EPD的度数 二十四、解答题 24.已知,将一副三角板中的两块直角三角板如图1放置,,,,. (1)若三角板如图1摆放时,则______,______. (2)现固定的位置不变,将沿方向平移至点E正好落在上,如图2所示,与交于点G,作和的角平分线交于点H,求的度数; (3)现固定,将绕点A顺时针旋转至与直线首次重合的过程中,当线段与的一条边平行时,请直接写出的度数. 二十五、解答题 25.如图1,已知线段AB、CD相交于点O,连接AC、BD,我们把形如图1的图形称之为“8字形”.如图2,∠CAB和∠BDC的平分线AP和DP相交于点P,并且与CD、AB分别相交于M、N.试解答下列问题: (1)仔细观察,在图2中有 个以线段AC为边的“8字形”; (2)在图2中,若∠B=96°,∠C=100°,求∠P的度数; (3)在图2中,若设∠C=α,∠B=β,∠CAP=∠CAB,∠CDP=∠CDB,试问∠P与∠C、∠B之间存在着怎样的数量关系(用α、β表示∠P),并说明理由; (4)如图3,则∠A+∠B+∠C+∠D+∠E+∠F的度数为 . 【参考答案】 一、选择题 1.A 解析:A 【分析】 依据算术平方根的定义解答即可. 【详解】 4的算术平方根是2, 故选:A. 【点睛】 本题考查的是求一个数的算术平方根的问题,解题关键是明确算术平方根的定义. 2.C 【分析】 根据平移的性质,结合图形对选项进行一一分析,选出正确答案. 【详解】 解:∵只有C的基本图案的角度,形状和大小没有变化,符合平移的性质,属于平移得到; 故选:C. 【点睛】 本题考查的 解析:C 【分析】 根据平移的性质,结合图形对选项进行一一分析,选出正确答案. 【详解】 解:∵只有C的基本图案的角度,形状和大小没有变化,符合平移的性质,属于平移得到; 故选:C. 【点睛】 本题考查的是利用平移设计图案,熟知图形平移后所得图形与原图形全等是解答此题的关键. 3.D 【分析】 根据点在各象限的坐标特点即可得答案. 【详解】 ∵点的横坐标2>0,纵坐标-3<0, ∴点所在的象限是第四象限, 故选:D. 【点睛】 本题考查直角坐标系,解决本题的关键是记住平面直角坐标系中各个象限内点的坐标的符号:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-). 4.B 【分析】 根据几何初步知识对命题逐个判断即可. 【详解】 解:①对顶角相等,为真命题; ②内错角相等,只有两直线平行时,内错角才相等,此为假命题; ③平行于同一条直线的两条直线互相平行,为真命题; ④如果一个角的两边分别平行于另一个角的两边,那么这两个角相等或者互补,此为假命题; ⑤过直线外一点有且只有一条直线与已知直线垂直,为假命题; ①③命题正确. 故选:B. 【点睛】 本题主要考查了命题的判定,熟练掌握平行线、对顶角等几何初步知识是解答本题的关键. 5.B 【分析】 根据平行线的性质可知, ,由 即可得出答案。 【详解】 解:∵ ∴, ∵ ∴ ∴ 故答案是B 【点睛】 本题主要考查了平行线的性质:(1)两直线平行,同位角相等(2)两直线平行,内错角相等(3)两直线平行,同旁内角互补. 6.D 【分析】 分别根据算术平方根的定义、立方根的定义及平方根的定义对各小题进行逐一判断即可. 【详解】 解:①∵(±1)2=1,∴一个数的平方等于1,那么这个数就是1,故①错误; ②∵42=16,∴4是16的算术平方根,故②错误, ③平方根等于它本身的数只有0,故③正确, ④8的立方根是2,故④错误. 故选:D. 【点睛】 本题考查了立方根,平方根和算术平方根的定义,熟知算术平方根的定义、立方根的定义及平方根的定义是解答此题的关键. 7.A 【分析】 根据平行线的性质可得∠AFG+∠BGF=180°,再根据三角形外角的性质可得∠AFG+∠1=∠α,∠2+∠BGF=∠β,由此可得. 【详解】 解:∵在长方形中AD//BC, ∴∠AFG+∠BGF=180°, 又∵∠AFG+∠1=∠α,∠2+∠BGF=∠β, ∴. 故选:A. 【点睛】 本题考查平行线的性质,三角形外角的性质.三角形一个外角等于与它不相邻的两个内角之和,能正确识图是解题关键. 8.B 【分析】 根据图形,找到点的坐标变换规律:横坐标依次为1、2、3、4、…、n,纵坐标依次为2、0、﹣2、0、…四个一循环,进而求解即可. 【详解】 解:观察图形可知,点的横坐标依次为1、2、3、 解析:B 【分析】 根据图形,找到点的坐标变换规律:横坐标依次为1、2、3、4、…、n,纵坐标依次为2、0、﹣2、0、…四个一循环,进而求解即可. 【详解】 解:观察图形可知,点的横坐标依次为1、2、3、4、…、n,纵坐标依次为2、0、﹣2、0、…四个一循环,且2021÷4=505…1, ∴点的坐标是(2021,2), 故选:B. 【点睛】 本题考查点坐标规律探究,找到点的坐标变换规律是解答的关键. 九、填空题 9.4 【分析】 先利用平方的意义求出值,再利用算术平方根的概念求解即可. 【详解】 =16,16的算术平方根是4 故答案为4. 【点睛】 本题考查算术平方根的定义,难度低,属于基础题,注意算术平方根与 解析:4 【分析】 先利用平方的意义求出值,再利用算术平方根的概念求解即可. 【详解】 =16,16的算术平方根是4 故答案为4. 【点睛】 本题考查算术平方根的定义,难度低,属于基础题,注意算术平方根与平方根的区别. 十、填空题 10.(-3,0) 【分析】 根据平面直角坐标系中两个关于坐标轴成轴对称的点的坐标特点,直接用假设法设出相关点即可. 【详解】 解:点(m,n)关于y轴对称点的坐标(-m,n), 所以点(3,0)关于y轴 解析:(-3,0) 【分析】 根据平面直角坐标系中两个关于坐标轴成轴对称的点的坐标特点,直接用假设法设出相关点即可. 【详解】 解:点(m,n)关于y轴对称点的坐标(-m,n), 所以点(3,0)关于y轴对称的点的坐标为(-3,0). 故答案为:(-3,0). 【点睛】 本题考查平面直角坐标系点的对称性质:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数. 十一、填空题 11.10 【分析】 根据三角形内角和定理求出∠BAC,再根据角平分线的定义求出∠BAD,根据直角三角形两锐角互余求出∠BAE,然后求解即可. 【详解】 解:∵∠B=50°,∠C=70°, ∴∠BAC=1 解析:10 【分析】 根据三角形内角和定理求出∠BAC,再根据角平分线的定义求出∠BAD,根据直角三角形两锐角互余求出∠BAE,然后求解即可. 【详解】 解:∵∠B=50°,∠C=70°, ∴∠BAC=180°-∠B-∠C=180°-50°-70°=60°, ∵AD是角平分线, ∴∠BAD=∠BAC=×60°=30°, ∵AE是高, ∴∠BAE=90°-∠B=90°-50°=40°, ∴∠DAE=∠BAE-∠BAD=40°-30°=10°. 故答案为:10. 【点睛】 本题考查了三角形的内角和定理,三角形的角平分线、高线的定义,直角三角形两锐角互余的性质,熟记定理并准确识图是解题的关键. 十二、填空题 12.55° 【分析】 先由矩形的对边平行及平行线的性质知∠B′FC=∠2=70°,再根据折叠的性质可得答案. 【详解】 ∵四边形ABCD是矩形, ∴AD∥BC, ∴∠B′FC=∠2=70°, ∴∠1+∠ 解析:55° 【分析】 先由矩形的对边平行及平行线的性质知∠B′FC=∠2=70°,再根据折叠的性质可得答案. 【详解】 ∵四边形ABCD是矩形, ∴AD∥BC, ∴∠B′FC=∠2=70°, ∴∠1+∠B′FE=180°-∠B′FC=110°, 由折叠知∠1=∠B′FE, ∴∠1=∠B′FE=55°, 故答案为:55°. 【点睛】 本题主要考查折叠的性质和平行线的性质,解题的关键是掌握矩形的对边平行、两直线平行同位角相等性质. 十三、填空题 13.50° 【分析】 先根据平行线的性质得出∠DEF的度数,再根据翻折变换的性质得出∠D′EF的度数,根据平角的定义即可得出结论. 【详解】 解:∵AD∥BC,∠EFB=65°, ∴∠DEF=65°, 解析:50° 【分析】 先根据平行线的性质得出∠DEF的度数,再根据翻折变换的性质得出∠D′EF的度数,根据平角的定义即可得出结论. 【详解】 解:∵AD∥BC,∠EFB=65°, ∴∠DEF=65°, 又∵∠DEF=∠D′EF, ∴∠D′EF=65°, ∴∠AED′=50°. 故答案是:50°. 【点睛】 本题考查的是折叠的性质以及平行线的性质,用到的知识点为:两直线平行,内错角相等. 十四、填空题 14.【分析】 根据互为相反数、互为倒数、无理数的整数部分、小数部分的意义求解即可. 【详解】 解:∵实数a、b互为相反数, ∴a+b=0, ∵c、d互为倒数, ∴cd=1, ∵3<<4, ∴的整数部分 解析: 【分析】 根据互为相反数、互为倒数、无理数的整数部分、小数部分的意义求解即可. 【详解】 解:∵实数a、b互为相反数, ∴a+b=0, ∵c、d互为倒数, ∴cd=1, ∵3<<4, ∴的整数部分为3,e=3, ∵2<<3, ∴的小数部分为﹣2,即f=﹣2, ∴-+e﹣f = =4- 故答案为:4-. 【点睛】 本题考查相反数、倒数、无理数的估算,掌握相反数、倒数的意义,以及无理数的整数部分、小数部分的表示方法是解决问题的关键. 十五、填空题 15.(-3,2) 【分析】 根据点到x轴的距离是纵坐标的绝对值,点到y轴的距离是点的横坐标的绝对值,第二象限内点的横坐标小于零,纵坐标大于零,可得答案. 【详解】 ∵点到横轴的距离为,到纵轴的距离为, 解析:(-3,2) 【分析】 根据点到x轴的距离是纵坐标的绝对值,点到y轴的距离是点的横坐标的绝对值,第二象限内点的横坐标小于零,纵坐标大于零,可得答案. 【详解】 ∵点到横轴的距离为,到纵轴的距离为, ∴|y|=2,|x|=3, 由M是第二象限的点,得: x=−3,y=2. 即点M的坐标是(−3,2), 故答案为:(−3,2). 【点睛】 此题考查象限及点的坐标的有关性质,解题关键在于第二象限内点的横坐标小于零,纵坐标大于零. 十六、填空题 16.(1011,﹣1010) 【分析】 求出A1(1,0),A5(3,﹣2),A9(5,﹣4),A13(7,﹣6),•••,探究规律可得A2021(1011,﹣1010). 【详解】 解:由题意A1(1 解析:(1011,﹣1010) 【分析】 求出A1(1,0),A5(3,﹣2),A9(5,﹣4),A13(7,﹣6),•••,探究规律可得A2021(1011,﹣1010). 【详解】 解:由题意A1(1,0),A5(3,﹣2),A9(5,﹣4),A13(7,﹣6),•••, 可以看出,3=,5=,7=,各个点的纵坐标等于横坐标的相反数+1, 故=1011, ∴A2021(1011,﹣1010), 故答案为:(1011,﹣1010). 【点评】 本题考查坐标与图形变化平移,规律型问题,解题的关键是学会探究规律的方法,属于中考常考题型. 十七、解答题 17.(1) - (2)±3 【详解】 试题分析:(1)先化简根式,再加减;(2)称项后,直接开平方即可; 试题解析: (1)原式= ; (2)x2-4=5 x2=9 x=3或x=-3 解析:(1) - (2)±3 【详解】 试题分析:(1)先化简根式,再加减;(2)称项后,直接开平方即可; 试题解析: (1)原式= ; (2)x2-4=5 x2=9 x=3或x=-3 十八、解答题 18.(1)或;(2) 【分析】 (1)根据平方根,即可解答; (2)根据立方根,即可解答. 【详解】 解:(1)等式两边都除以16,得. 等式两边开平方,得. 所以,得. 所以, 解析:(1)或;(2) 【分析】 (1)根据平方根,即可解答; (2)根据立方根,即可解答. 【详解】 解:(1)等式两边都除以16,得. 等式两边开平方,得. 所以,得. 所以, (2)等式两边都除以8,得. 等式两边开立方,得. 所以, 【点睛】 本题考查平方根、立方根,解题关键是熟记平方根、立方根. . 十九、解答题 19.见解析 【分析】 根据对顶角相等结合已知得出∠C=∠D,从而得出AC∥DF,由平行线的性质得出∠A=∠ABD,∠F=∠ABD,即可得出结论. 【详解】 解:∵∠C=∠COA,∠D=∠BOD(已知), 解析:见解析 【分析】 根据对顶角相等结合已知得出∠C=∠D,从而得出AC∥DF,由平行线的性质得出∠A=∠ABD,∠F=∠ABD,即可得出结论. 【详解】 解:∵∠C=∠COA,∠D=∠BOD(已知), 又∵∠COA=∠BOD(对顶角相等), ∴∠C=∠D(等量代换). ∴AC∥DF(内错角相等,两直线平行). ∴∠A=∠ABD(两直线平行,内错角相等). ∵EF∥AB, ∴∠F=∠ABD(两直线平行,内错角相等). ∴∠A=∠F(等量代换). 故答案为:已知,对顶角相等;∠D,等量代换;内错角相等,两直线平行;∠ABD,两直线平行,内错角相等;∠ABD,两直线平行,同位角相等,等量代换. 【点睛】 本题考查了平行线的判定与性质;熟练掌握平行线的判定与性质是解题的关键. 二十、解答题 20.(1)见解析;(2)见解析;(3)见解析 【分析】 (1)直接在平面直角坐标系内描出各点即可; (2)根据题意确定点 的坐标,然后在平面直角坐标系内描出各点即可; (3)根据题意确定点 的坐标,然后 解析:(1)见解析;(2)见解析;(3)见解析 【分析】 (1)直接在平面直角坐标系内描出各点即可; (2)根据题意确定点 的坐标,然后在平面直角坐标系内描出各点即可; (3)根据题意确定点 的坐标,然后在平面直角坐标系内描出各点即可. 【详解】 解:(1)如图 , (2)∵点在轴上,位于原点右侧,距离原点2个单位长度, ∴点 ; (3)点在轴下方,轴左侧,距离每条坐标轴都是3个单位长度, ∴点 . 【点睛】 本题主要考查了平面直角坐标系内点的坐标,正确把握点的坐标的性质是解题的关键. 二十一、解答题 21.(1)3,;(2);(3) 【分析】 (1)先估算出的范围,再求出即可; (2)先估算出和的范围,再求出a、b的值,最后求出代数式的值即可; (3)先求出10+的范围,再求出x、y的值,最后代入求出 解析:(1)3,;(2);(3) 【分析】 (1)先估算出的范围,再求出即可; (2)先估算出和的范围,再求出a、b的值,最后求出代数式的值即可; (3)先求出10+的范围,再求出x、y的值,最后代入求出即可. 【详解】 解:(1)∵<<, ∴3<<4, ∴的整数部分是3,小数部分是-3, 故答案为:3,-3; (2)∵<<,<<, ∴2<<3,6<<7, ∴a=-2,b=6, ∴; (3)∵1<<2, ∴11<<12, ∴x=11,y=, ∴. 【点睛】 本题考查了估算无理数的大小和求代数式的值,能估算出无理数的大小是解此题的关键. 二十二、解答题 22.(1);(2)不能,理由见解析 【分析】 (1)由正方形面积,可求得正方形边长,然后利用勾股定理即可求出对角线长; (2)利用方程思想求出长方形的长边,然后与正方形边长比较大小即可. 【详解】 解: 解析:(1);(2)不能,理由见解析 【分析】 (1)由正方形面积,可求得正方形边长,然后利用勾股定理即可求出对角线长; (2)利用方程思想求出长方形的长边,然后与正方形边长比较大小即可. 【详解】 解:(1)∵正方形纸片的面积为, ∴正方形的边长, ∴. 故答案为:. (2)不能; 根据题意设长方形的长和宽分别为和. ∴长方形面积为:, 解得:, ∴长方形的长边为. ∵, ∴他不能裁出. 【点睛】 本题考查了算术平方根在长方形和正方形面积中的应用,灵活的进行算术平方根计算及无理数大小比较是解题的关键. 二十三、解答题 23.(1)见解析;(2)∠BAE+∠CDE=∠AED,证明见解析;(3)①∠AED-∠FDC=45°,理由见解析;②50° 【分析】 (1)根据平行线的性质及判定可得结论; (2)过点E作EF∥AB,根 解析:(1)见解析;(2)∠BAE+∠CDE=∠AED,证明见解析;(3)①∠AED-∠FDC=45°,理由见解析;②50° 【分析】 (1)根据平行线的性质及判定可得结论; (2)过点E作EF∥AB,根据平行线的性质得AB∥CD∥EF,然后由两直线平行内错角相等可得结论; (3)①根据∠AED+∠AEC=180°,∠AED+∠DEC+∠AEB=180°,DF平分∠EDC,可得出2∠AED+(90°-2∠FDC)=180°,即可导出角的关系; ②先根据∠AED=∠F+∠FDE,∠AED-∠FDC=45°得出∠DEP=2∠F=90°,再根据∠DEA-∠PEA=∠DEB,求出∠AED=50°,即可得出∠EPD的度数. 【详解】 解:(1)证明:AB∥CD, ∴∠A+∠D=180°, ∵∠C=∠A, ∴∠C+∠D=180°, ∴AD∥BC; (2)∠BAE+∠CDE=∠AED,理由如下: 如图2,过点E作EF∥AB, ∵AB∥CD ∴AB∥CD∥EF ∴∠BAE=∠AEF,∠CDE=∠DEF 即∠FEA+∠FED=∠CDE+∠BAE ∴∠BAE+∠CDE=∠AED; (3)①∠AED-∠FDC=45°; ∵∠AED+∠AEC=180°,∠AED+∠DEC+∠AEB=180°, ∴∠AEC=∠DEC+∠AEB, ∴∠AED=∠AEB, ∵DF平分∠EDC ∠DEC=2∠FDC ∴∠DEC=90°-2∠FDC, ∴2∠AED+(90°-2∠FDC)=180°, ∴∠AED-∠FDC=45°, 故答案为:∠AED-∠FDC=45°; ②如图3, ∵∠AED=∠F+∠FDE,∠AED-∠FDC=45°, ∴∠F=45°, ∴∠DEP=2∠F=90°, ∵∠DEA-∠PEA=∠DEB=∠DEA, ∴∠PEA=∠AED, ∴∠DEP=∠PEA+∠AED=∠AED=90°, ∴∠AED=70°, ∵∠AED+∠AEC=180°, ∴∠DEC+2∠AED=180°, ∴∠DEC=40°, ∵AD∥BC, ∴∠ADE=∠DEC=40°, 在△PDE中,∠EPD=180°-∠DEP-∠AED=50°, 即∠EPD=50°. 【点睛】 本题主要考查平行线的判定和性质,熟练掌握平行线的判定和性质,角平分线的性质等知识点是解题的关键. 二十四、解答题 24.(1)15°;150°;(2)67.5°;(3)30°或90°或120° 【分析】 (1)根据平行线的性质和三角板的角的度数解答即可; (2)根据平行线的性质和角平分线的定义解答即可; (3)分当B 解析:(1)15°;150°;(2)67.5°;(3)30°或90°或120° 【分析】 (1)根据平行线的性质和三角板的角的度数解答即可; (2)根据平行线的性质和角平分线的定义解答即可; (3)分当BC∥DE时,当BC∥EF时,当BC∥DF时,三种情况进行解答即可. 【详解】 解:(1)作EI∥PQ,如图, ∵PQ∥MN, 则PQ∥EI∥MN, ∴∠α=∠DEI,∠IEA=∠BAC, ∴∠DEA=∠α+∠BAC, ∴α= DEA -∠BAC=60°-45°=15°, ∵E、C、A三点共线, ∴∠β=180°-∠DFE=180°-30°=150°; 故答案为:15°;150°; (2)∵PQ∥MN, ∴∠GEF=∠CAB=45°, ∴∠FGQ=45°+30°=75°, ∵GH,FH分别平分∠FGQ和∠GFA, ∴∠FGH=37.5°,∠GFH=75°, ∴∠FHG=180°-37.5°-75°=67.5°; (3)当BC∥DE时,如图1, ∵∠D=∠C=90, ∴AC∥DF, ∴∠CAE=∠DFE=30°, ∴∠BAM+∠BAC=∠MAE+∠CAE, ∠BAM=∠MAE+∠CAE-∠BAC=45°+30°-45°=30°; 当BC∥EF时,如图2, 此时∠BAE=∠ABC=45°, ∴∠BAM=∠BAE+∠EAM=45°+45°=90°; 当BC∥DF时,如图3, 此时,AC∥DE,∠CAN=∠DEG=15°, ∴∠BAM=∠MAN-∠CAN-∠BAC=180°-15°-45°=120°. 综上所述,∠BAM的度数为30°或90°或120°. 【点睛】 本题考查了角平分线的定义,平行线性质和判定:两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等.此题难度适中,注意掌握辅助线的作法,注意掌握数形结合思想与方程思想的应用,理清各角度之间的关系是解题的关键,也是本题的难点. 二十五、解答题 25.(1)3;(2)98°;(3)∠P=(β+2α),理由见解析;(4)360°. 【分析】 (1)以M为交点的“8字形”有1个,以O为交点的“8字形”有2个; (2)根据角平分线的定义得到∠CAP=∠ 解析:(1)3;(2)98°;(3)∠P=(β+2α),理由见解析;(4)360°. 【分析】 (1)以M为交点的“8字形”有1个,以O为交点的“8字形”有2个; (2)根据角平分线的定义得到∠CAP=∠BAP,∠BDP=∠CDP,再根据三角形内角和定理得到∠CAP+∠C=∠CDP+∠P,∠BAP+∠P=∠BDP+∠B,两等式相减得到∠C﹣∠P=∠P﹣∠B,即∠P=(∠C+∠B),然后把∠C=100°,∠B=96°代入计算即可; (3)与(2)的证明方法一样得到∠P=(2∠C+∠B). (4)根据三角形内角与外角的关系可得∠B+∠A=∠1,∠C+∠D=∠2,再根据四边形内角和为360°可得答案. 【详解】 解:(1)在图2中有3个以线段AC为边的“8字形”, 故答案为3; (2)∵∠CAB和∠BDC的平分线AP和DP相交于点P, ∴∠CAP=∠BAP,∠BDP=∠CDP, ∵∠CAP+∠C=∠CDP+∠P,∠BAP+∠P=∠BDP+∠B, ∴∠C﹣∠P=∠P﹣∠B, 即∠P=(∠C+∠B), ∵∠C=100°,∠B=96° ∴∠P=(100°+96°)=98°; (3)∠P=(β+2α); 理由:∵∠CAP=∠CAB,∠CDP=∠CDB, ∴∠BAP=∠BAC,∠BDP=∠BDC, ∵∠CAP+∠C=∠CDP+∠P,∠BAP+∠P=∠BDP+∠B, ∴∠C﹣∠P=∠BDC﹣∠BAC,∠P﹣∠B=∠BDC﹣∠BAC, ∴2(∠C﹣∠P)=∠P﹣∠B, ∴∠P=(∠B+2∠C), ∵∠C=α,∠B=β, ∴∠P=(β+2α); (4)∵∠B+∠A=∠1,∠C+∠D=∠2, ∴∠A+∠B+∠C+∠D=∠1+∠2, ∵∠1+∠2+∠F+∠E=360°, ∴∠A+∠B+∠C+∠D+∠E+∠F=360°. 故答案为360°.- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 人教版 中学 年级 下册 数学 期末 复习 答案
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【精***】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【精***】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【精***】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【精***】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文