人教版中学七7年级下册数学期末解答题压轴题(及答案).doc
《人教版中学七7年级下册数学期末解答题压轴题(及答案).doc》由会员分享,可在线阅读,更多相关《人教版中学七7年级下册数学期末解答题压轴题(及答案).doc(37页珍藏版)》请在咨信网上搜索。
人教版中学七7年级下册数学期末解答题压轴题(及答案) 一、解答题 1.已知在的正方形网格中,每个小正方形的边长为1. (1)计算图①中正方形的面积与边长. (2)利用图②中的正方形网格,作出面积为8的正方形,并在此基础上建立适当的数轴,在数轴上表示实数和. 2.如图,用两个面积为的小正方形拼成一个大的正方形. (1)则大正方形的边长是___________; (2)若沿着大正方形边的方向裁出一个长方形,能否使裁出的长方形纸片的长宽之比为5:4,且面积为? 3.(1)如图,分别把两个边长为的小正方形沿一条对角线裁成个小三角形拼成一个大正方形,则大正方形的边长为_______; (2)若一个圆的面积与一个正方形的面积都是,设圆的周长为,正方形的周长为,则_____(填“”或“”或“”号); (3)如图,若正方形的面积为,李明同学想沿这块正方形边的方向裁出一块面积为的长方形纸片,使它的长和宽之比为,他能裁出吗?请说明理由? 4.如图,阴影部分(正方形)的四个顶点在5×5的网格格点上. (1)请求出图中阴影部分(正方形)的面积和边长 (2)若边长的整数部分为,小数部分为,求的值. 5.如图用两个边长为cm的小正方形纸片拼成一个大的正方形纸片,沿着大正方形纸片的边的方向截出一个长方形纸片,能否使截得的长方形纸片长宽之比为,且面积为cm2?请说明理由. 二、解答题 6.已知,AB∥CD,点E为射线FG上一点. (1)如图1,若∠EAF=25°,∠EDG=45°,则∠AED= . (2)如图2,当点E在FG延长线上时,此时CD与AE交于点H,则∠AED、∠EAF、∠EDG之间满足怎样的关系,请说明你的结论; (3)如图3,当点E在FG延长线上时,DP平分∠EDC,∠AED=32°,∠P=30°,求∠EKD的度数. 7.如图1,已AB∥CD,∠C=∠A. (1)求证:AD∥BC; (2)如图2,若点E是在平行线AB,CD内,AD右侧的任意一点,探究∠BAE,∠CDE,∠E之间的数量关系,并证明. (3)如图3,若∠C=90°,且点E在线段BC上,DF平分∠EDC,射线DF在∠EDC的内部,且交BC于点M,交AE延长线于点F,∠AED+∠AEC=180°, ①直接写出∠AED与∠FDC的数量关系: . ②点P在射线DA上,且满足∠DEP=2∠F,∠DEA﹣∠PEA=∠DEB,补全图形后,求∠EPD的度数 8.已知,定点,分别在直线,上,在平行线,之间有一动点. (1)如图1所示时,试问,,满足怎样的数量关系?并说明理由. (2)除了(1)的结论外,试问,,还可能满足怎样的数量关系?请画图并证明 (3)当满足,且,分别平分和, ①若,则__________°. ②猜想与的数量关系.(直接写出结论) 9.点A,C,E在直线l上,点B不在直线l上,把线段AB沿直线l向右平移得到线段CD. (1)如图1,若点E在线段AC上,求证:B+D=BED; (2)若点E不在线段AC上,试猜想并证明B,D,BED之间的等量关系; (3)在(1)的条件下,如图2所示,过点B作PB//ED,在直线BP,ED之间有点M,使得ABE=EBM,CDE=EDM,同时点F使得ABE=nEBF,CDE=nEDF,其中n≥1,设BMD=m,利用(1)中的结论求BFD的度数(用含m,n的代数式表示). 10.已知,点为平面内一点,于. (1)如图1,求证:; (2)如图2,过点作的延长线于点,求证:; (3)如图3,在(2)问的条件下,点、在上,连接、、,且平分,平分,若,,求的度数. 三、解答题 11.为了安全起见在某段铁路两旁安置了两座可旋转探照灯.如图1所示,灯射线从开始顺时针旋转至便立即回转,灯射线从开始顺时针旋转至便立即回转,两灯不停交又照射巡视.若灯转动的速度是每秒2度,灯转动的速度是每秒1度.假定主道路是平行的,即,且. (1)填空:_________; (2)若灯射线先转动30秒,灯射线才开始转动,在灯射线到达之前,灯转动几秒,两灯的光束互相平行? (3)如图2,若两灯同时转动,在灯射线到达之前.若射出的光束交于点,过作交于点,且,则在转动过程中,请探究与的数量关系是否发生变化?若不变,请求出其数量关系;若改变,请说明理由. 12.为更好地理清平行线相关角的关系,小明爸爸为他准备了四根细直木条、、、,做成折线,如图1,且在折点B、C、D处均可自由转出. (1)如图2,小明将折线调节成,,,判断是否平行于,并说明理由; (2)如图3,若,调整线段、使得求出此时的度数,要求画出图形,并写出计算过程. (3)若,,,请直接写出此时的度数. 13.已知点A,B,O在一条直线上,以点O为端点在直线AB的同一侧作射线,,使. (1)如图①,若平分,求的度数; (2)如图②,将绕点O按逆时针方向转动到某个位置时,使得所在射线把分成两个角. ①若,求的度数; ②若(n为正整数),直接用含n的代数式表示. 14.如图,,平分,设为,点E是射线上的一个动点. (1)若时,且,求的度数; (2)若点E运动到上方,且满足,,求的值; (3)若,求的度数(用含n和的代数式表示). 15.已知直线,点分别为, 上的点. (1)如图1,若,, ,求与的度数; (2)如图2,若,, ,则_________; (3)若把(2)中“,, ”改为“,, ”,则_________.(用含的式子表示) 四、解答题 16.在△ABC中,射线AG平分∠BAC交BC于点G,点D在BC边上运动(不与点G重合),过点D作DE∥AC交AB于点E. (1)如图1,点D在线段CG上运动时,DF平分∠EDB ①若∠BAC=100°,∠C=30°,则∠AFD= ;若∠B=40°,则∠AFD= ; ②试探究∠AFD与∠B之间的数量关系?请说明理由; (2)点D在线段BG上运动时,∠BDE的角平分线所在直线与射线AG交于点F试探究∠AFD与∠B之间的数量关系,并说明理由 17.如图,直线,、是、上的两点,直线与、分别交于点、,点是直线上的一个动点(不与点、重合),连接、. (1)当点与点、在一直线上时,,,则_____. (2)若点与点、不在一直线上,试探索、、之间的关系,并证明你的结论. 18.小明在学习过程中,对教材中的一个有趣问题做如下探究: (习题回顾)已知:如图1,在中,,是角平分线,是高,、相交于点.求证:; (变式思考)如图2,在中,,是边上的高,若的外角的平分线交的延长线于点,其反向延长线与边的延长线交于点,则与还相等吗?说明理由; (探究延伸)如图3,在中,上存在一点,使得,的平分线交于点.的外角的平分线所在直线与的延长线交于点.直接写出与的数量关系. 19.如图,直线m与直线n互相垂直,垂足为O、A、B两点同时从点O出发,点A沿直线m向左运动,点B沿直线n向上运动. (1)若∠BAO和∠ABO的平分线相交于点Q,在点A,B的运动过程中,∠AQB的大小是否会发生变化?若不发生变化,请求出其值,若发生变化,请说明理由. (2)若AP是∠BAO的邻补角的平分线,BP是∠ABO的邻补角的平分线,AP、BP相交于点P,AQ的延长线交PB的延长线于点C,在点A,B的运动过程中,∠P和∠C的大小是否会发生变化?若不发生变化,请求出∠P和∠C的度数;若发生变化,请说明理由. 20.【问题探究】如图1,DF∥CE,∠PCE=∠α,∠PDF=∠β,猜想∠DPC与α、β之间有何数量关系?并说明理由; 【问题迁移】 如图2,DF∥CE,点P在三角板AB边上滑动,∠PCE=∠α,∠PDF=∠β. (1)当点P在E、F两点之间运动时,如果α=30°,β=40°,则∠DPC= °. (2)如果点P在E、F两点外侧运动时(点P与点A、B、E、F四点不重合),写出∠DPC与α、β之间的数量关系,并说明理由. (图1) (图2) 【参考答案】 一、解答题 1.(1)正方形的面积为10,正方形的边长为;(2)见解析 【分析】 (1)利用正方形的面积减去4个直角三角形的面积即可求出正方形的面积,然后根据算术平方根的意义即可求出边长; (2)根据(1)的方法画 解析:(1)正方形的面积为10,正方形的边长为;(2)见解析 【分析】 (1)利用正方形的面积减去4个直角三角形的面积即可求出正方形的面积,然后根据算术平方根的意义即可求出边长; (2)根据(1)的方法画出图形,然后建立数轴,根据算术平方根的意义即可表示出结论. 【详解】 解:(1)正方形的面积为4×4-4××3×1=10 则正方形的边长为; (2)如下图所示,正方形的面积为4×4-4××2×2=8,所以该正方形即为所求,如图建立数轴,以数轴的原点为圆心,正方形的边长为半径作弧,分别交数轴于两点 ∴正方形的边长为 ∴弧与数轴的左边交点为,右边交点为,实数和在数轴上如图所示. 【点睛】 此题考查的是求网格中图形的面积和实数与数轴,掌握算术平方根的意义和利用数轴表示无理数是解题关键. 2.(1);(2)不能剪出长宽之比为5:4,且面积为的大长方形,理由详见解析 【分析】 (1)根据已知得到大正方形的面积为400,求出算术平方根即为大正方形的边长; (2)设长方形纸片的长为,宽为,根据 解析:(1);(2)不能剪出长宽之比为5:4,且面积为的大长方形,理由详见解析 【分析】 (1)根据已知得到大正方形的面积为400,求出算术平方根即为大正方形的边长; (2)设长方形纸片的长为,宽为,根据面积列得,求出,得到,由此判断不能裁出符合条件的大正方形. 【详解】 (1)∵用两个面积为的小正方形拼成一个大的正方形, ∴大正方形的面积为400, ∴大正方形的边长为 故答案为:20cm; (2)设长方形纸片的长为,宽为, , 解得:, , 答:不能剪出长宽之比为5:4,且面积为的大长方形. 【点睛】 此题考查利用算术平方根解决实际问题,利用平方根解方程,正确理解题意是解题的关键. 3.(1);(2);(3)不能裁剪出,详见解析 【分析】 (1)根据所拼成的大正方形的面积为2即可求得大正方形的边长; (2)由圆和正方形的面积公式可分别求的圆的半径及正方形的边长,进而可求得圆和正方形 解析:(1);(2);(3)不能裁剪出,详见解析 【分析】 (1)根据所拼成的大正方形的面积为2即可求得大正方形的边长; (2)由圆和正方形的面积公式可分别求的圆的半径及正方形的边长,进而可求得圆和正方形的周长,利用作商法比较这两数大小即可; (3)利用方程思想求出长方形的长边,与正方形边长比较大小即可; 【详解】 解:(1)∵小正方形的边长为1cm, ∴小正方形的面积为1cm2, ∴两个小正方形的面积之和为2cm2, 即所拼成的大正方形的面积为2 cm2, ∴大正方形的边长为cm, (2)∵, ∴, ∴, 设正方形的边长为a ∵, ∴, ∴, ∴ 故答案为:<; (3)解:不能裁剪出,理由如下: ∵长方形纸片的长和宽之比为, ∴设长方形纸片的长为,宽为, 则, 整理得:, ∴, ∵450>400, ∴, ∴, ∴长方形纸片的长大于正方形的边长, ∴不能裁出这样的长方形纸片. 【点睛】 本题通过圆和正方形的面积考查了对算术平方根的应用,主要是对学生无理数运算及比较大小进行了考查. 4.(1)S=13,边长为 ;(2)6 【详解】 分析:(1)、利用正方形的面积减去四个直角三角形的面积得出阴影部分的面积,从而得出正方形的边长;(2)、根据无理数的估算得出a和b的值,然后得出答案. 解析:(1)S=13,边长为 ;(2)6 【详解】 分析:(1)、利用正方形的面积减去四个直角三角形的面积得出阴影部分的面积,从而得出正方形的边长;(2)、根据无理数的估算得出a和b的值,然后得出答案. 详解:解:(1)S=25-12=13, 边长为 , (2)a=3,b= -3 原式=9+-3-=6. 点睛:本题主要考查的就是无理数的估算,属于中等难度的题型.解决这个问题的关键就是根据正方形的面积得出边长. 5.不能截得长宽之比为,且面积为cm2的长方形纸片,见解析 【分析】 根据拼图求出大正方形的边长,再根据长方形的长、宽之比为3:2,计算长方形的长与宽进行验证即可. 【详解】 解:不能, 因为大正方形纸 解析:不能截得长宽之比为,且面积为cm2的长方形纸片,见解析 【分析】 根据拼图求出大正方形的边长,再根据长方形的长、宽之比为3:2,计算长方形的长与宽进行验证即可. 【详解】 解:不能, 因为大正方形纸片的面积为()2+()2=36(cm2), 所以大正方形的边长为6cm, 设截出的长方形的长为3b cm,宽为2b cm, 则6b2=30, 所以b=(取正值), 所以3b=3=>, 所以不能截得长宽之比为3:2,且面积为30cm2的长方形纸片. 【点睛】 本题考查了算术平方根,理解算术平方根的意义是正确解答的关键. 二、解答题 6.(1)70°;(2),证明见解析;(3)122° 【分析】 (1)过作,根据平行线的性质得到,,即可求得; (2)过过作,根据平行线的性质得到,,即; (3)设,则,通过三角形内角和得到,由角平分线 解析:(1)70°;(2),证明见解析;(3)122° 【分析】 (1)过作,根据平行线的性质得到,,即可求得; (2)过过作,根据平行线的性质得到,,即; (3)设,则,通过三角形内角和得到,由角平分线定义及得到,求出的值再通过三角形内角和求. 【详解】 解:(1)过作, , , ,, , 故答案为:; (2). 理由如下: 过作, , , ,, ,, ; (3), 设,则, ,, 又,, , 平分, , , , 即,解得, , . 【点睛】 本题主要考查了平行线的性质和判定,正确做出辅助线是解决问题的关键. 7.(1)见解析;(2)∠BAE+∠CDE=∠AED,证明见解析;(3)①∠AED-∠FDC=45°,理由见解析;②50° 【分析】 (1)根据平行线的性质及判定可得结论; (2)过点E作EF∥AB,根 解析:(1)见解析;(2)∠BAE+∠CDE=∠AED,证明见解析;(3)①∠AED-∠FDC=45°,理由见解析;②50° 【分析】 (1)根据平行线的性质及判定可得结论; (2)过点E作EF∥AB,根据平行线的性质得AB∥CD∥EF,然后由两直线平行内错角相等可得结论; (3)①根据∠AED+∠AEC=180°,∠AED+∠DEC+∠AEB=180°,DF平分∠EDC,可得出2∠AED+(90°-2∠FDC)=180°,即可导出角的关系; ②先根据∠AED=∠F+∠FDE,∠AED-∠FDC=45°得出∠DEP=2∠F=90°,再根据∠DEA-∠PEA=∠DEB,求出∠AED=50°,即可得出∠EPD的度数. 【详解】 解:(1)证明:AB∥CD, ∴∠A+∠D=180°, ∵∠C=∠A, ∴∠C+∠D=180°, ∴AD∥BC; (2)∠BAE+∠CDE=∠AED,理由如下: 如图2,过点E作EF∥AB, ∵AB∥CD ∴AB∥CD∥EF ∴∠BAE=∠AEF,∠CDE=∠DEF 即∠FEA+∠FED=∠CDE+∠BAE ∴∠BAE+∠CDE=∠AED; (3)①∠AED-∠FDC=45°; ∵∠AED+∠AEC=180°,∠AED+∠DEC+∠AEB=180°, ∴∠AEC=∠DEC+∠AEB, ∴∠AED=∠AEB, ∵DF平分∠EDC ∠DEC=2∠FDC ∴∠DEC=90°-2∠FDC, ∴2∠AED+(90°-2∠FDC)=180°, ∴∠AED-∠FDC=45°, 故答案为:∠AED-∠FDC=45°; ②如图3, ∵∠AED=∠F+∠FDE,∠AED-∠FDC=45°, ∴∠F=45°, ∴∠DEP=2∠F=90°, ∵∠DEA-∠PEA=∠DEB=∠DEA, ∴∠PEA=∠AED, ∴∠DEP=∠PEA+∠AED=∠AED=90°, ∴∠AED=70°, ∵∠AED+∠AEC=180°, ∴∠DEC+2∠AED=180°, ∴∠DEC=40°, ∵AD∥BC, ∴∠ADE=∠DEC=40°, 在△PDE中,∠EPD=180°-∠DEP-∠AED=50°, 即∠EPD=50°. 【点睛】 本题主要考查平行线的判定和性质,熟练掌握平行线的判定和性质,角平分线的性质等知识点是解题的关键. 8.(1)∠AEP+∠PFC=∠EPF;(2)∠AEP+∠EPF+∠PFC=360°;(3)①150°或30;②∠EPF+2∠EQF=360°或∠EPF=2∠EQF 【分析】 (1)由于点是平行线,之间 解析:(1)∠AEP+∠PFC=∠EPF;(2)∠AEP+∠EPF+∠PFC=360°;(3)①150°或30;②∠EPF+2∠EQF=360°或∠EPF=2∠EQF 【分析】 (1)由于点是平行线,之间有一动点,因此需要对点的位置进行分类讨论:如图1,当点在的左侧时,,,满足数量关系为:; (2)当点在的右侧时,,,满足数量关系为:; (3)①若当点在的左侧时,;当点在的右侧时,可求得; ②结合①可得,由,得出;可得,由,得出. 【详解】 解:(1)如图1,过点作, , , , , , ; (2)如图2,当点在的右侧时,,,满足数量关系为:; 过点作, , , , , , ; (3)①如图3,若当点在的左侧时, , , ,分别平分和, ,, ; 如图4,当点在的右侧时, , , ; 故答案为:或30; ②由①可知:, ; , . 综合以上可得与的数量关系为:或. 【点睛】 本题主要考查了平行线的性质,平行公理和及推论等知识点,作辅助线后能求出各个角的度数,是解此题的关键. 9.(1)见解析;(2)当点E在CA的延长线上时,∠BED=∠D-∠B;当点E在AC的延长线上时,∠BED=∠BET-∠DET=∠B-∠D;(3) 【分析】 (1)如图1中,过点E作ET∥AB.利用平行 解析:(1)见解析;(2)当点E在CA的延长线上时,∠BED=∠D-∠B;当点E在AC的延长线上时,∠BED=∠BET-∠DET=∠B-∠D;(3) 【分析】 (1)如图1中,过点E作ET∥AB.利用平行线的性质解决问题. (2)分两种情形:如图2-1中,当点E在CA的延长线上时,如图2-2中,当点E在AC的延长线上时,构造平行线,利用平行线的性质求解即可. (3)利用(1)中结论,可得∠BMD=∠ABM+∠CDM,∠BFD=∠ABF+∠CDF,由此解决问题即可. 【详解】 解:(1)证明:如图1中,过点E作ET∥AB.由平移可得AB∥CD, ∵AB∥ET,AB∥CD, ∴ET∥CD∥AB, ∴∠B=∠BET,∠TED=∠D, ∴∠BED=∠BET+∠DET=∠B+∠D. (2)如图2-1中,当点E在CA的延长线上时,过点E作ET∥AB. ∵AB∥ET,AB∥CD, ∴ET∥CD∥AB, ∴∠B=∠BET,∠TED=∠D, ∴∠BED=∠DET-∠BET=∠D-∠B. 如图2-2中,当点E在AC的延长线上时,过点E作ET∥AB. ∵AB∥ET,AB∥CD, ∴ET∥CD∥AB, ∴∠B=∠BET,∠TED=∠D, ∴∠BED=∠BET-∠DET=∠B-∠D. (3)如图,设∠ABE=∠EBM=x,∠CDE=∠EDM=y, ∵AB∥CD, ∴∠BMD=∠ABM+∠CDM, ∴m=2x+2y, ∴x+y=m, ∵∠BFD=∠ABF+∠CDF,∠ABE=n∠EBF,∠CDE=n∠EDF, ∴∠BFD===. 【点睛】 本题属于几何变换综合题,考查了平行线的性质,角平分线的定义等知识,解题的关键是学会条件常用辅助线,构造平行线解决问题,属于中考常考题型. 10.(1)见解析;(2)见解析;(3). 【分析】 (1)先根据平行线的性质得到,然后结合即可证明; (2)过作,先说明,然后再说明得到,最后运用等量代换解答即可; (3)设∠DBE=a,则∠BFC=3 解析:(1)见解析;(2)见解析;(3). 【分析】 (1)先根据平行线的性质得到,然后结合即可证明; (2)过作,先说明,然后再说明得到,最后运用等量代换解答即可; (3)设∠DBE=a,则∠BFC=3a,根据角平分线的定义可得∠ABD=∠C=2a,∠FBC=∠DBC=a+45°,根据三角形内角和可得∠BFC+∠FBC+∠BCF=180°,可得∠AFC=∠BCF的度数表达式,再根据平行的性质可得∠AFC+∠NCF=180°,代入即可算出a的度数,进而完成解答. 【详解】 (1)证明:∵, ∴, ∵于, ∴, ∴, ∴; (2)证明:过作, ∵, ∴, 又∵, ∴, ∴, ∵, ∴, ∴, ∴; (3)设∠DBE=a,则∠BFC=3a, ∵BE平分∠ABD, ∴∠ABD=∠C=2a, 又∵AB⊥BC,BF平分∠DBC, ∴∠DBC=∠ABD+∠ABC=2a+90,即:∠FBC=∠DBC=a+45° 又∵∠BFC+∠FBC+∠BCF=180°,即:3a+a+45°+∠BCF=180° ∴∠BCF=135°-4a, ∴∠AFC=∠BCF=135°-4a, 又∵AM//CN, ∴∠AFC+∠ NCF=180°,即:∠AFC+∠BCN+∠BCF=180°, ∴135°-4a+135°-4a+2a=180,解得a=15°, ∴∠ABE=15°, ∴∠EBC=∠ABE+∠ABC=15°+90°=105°. 【点睛】 本题主要考查了平行线的性质、角平分线的性质及角的计算,熟练应用平行线的性质、角平分线的性质是解答本题的关键. 三、解答题 11.(1)72°;(2)30秒或110秒;(3)不变,∠BAC=2∠BCD 【分析】 (1)根据∠BAM+∠BAN=180°,∠BAM:∠BAN=3:2,即可得到∠BAN的度数; (2)设A灯转动t秒, 解析:(1)72°;(2)30秒或110秒;(3)不变,∠BAC=2∠BCD 【分析】 (1)根据∠BAM+∠BAN=180°,∠BAM:∠BAN=3:2,即可得到∠BAN的度数; (2)设A灯转动t秒,两灯的光束互相平行,分两种情况进行讨论:当0<t<90时,根据2t=1•(30+t),可得 t=30;当90<t<150时,根据1•(30+t)+(2t-180)=180,可得t=110; (3)设灯A射线转动时间为t秒,根据∠BAC=2t-108°,∠BCD=126°-∠BCA=t-54°,即可得出∠BAC:∠BCD=2:1,据此可得∠BAC和∠BCD关系不会变化. 【详解】 解:(1)∵∠BAM+∠BAN=180°,∠BAM:∠BAN=3:2, ∴∠BAN=180°×=72°, 故答案为:72; (2)设A灯转动t秒,两灯的光束互相平行, ①当0<t<90时,如图1, ∵PQ∥MN, ∴∠PBD=∠BDA, ∵AC∥BD, ∴∠CAM=∠BDA, ∴∠CAM=∠PBD ∴2t=1•(30+t), 解得 t=30; ②当90<t<150时,如图2, ∵PQ∥MN, ∴∠PBD+∠BDA=180°, ∵AC∥BD, ∴∠CAN=∠BDA ∴∠PBD+∠CAN=180° ∴1•(30+t)+(2t-180)=180, 解得 t=110, 综上所述,当t=30秒或110秒时,两灯的光束互相平行; (3)∠BAC和∠BCD关系不会变化. 理由:设灯A射线转动时间为t秒, ∵∠CAN=180°-2t, ∴∠BAC=72°-(180°-2t)=2t-108°, 又∵∠ABC=108°-t, ∴∠BCA=180°-∠ABC-∠BAC=180°-t,而∠ACD=126°, ∴∠BCD=126°-∠BCA=126°-(180°-t)=t-54°, ∴∠BAC:∠BCD=2:1, 即∠BAC=2∠BCD, ∴∠BAC和∠BCD关系不会变化. 【点睛】 本题主要考查了平行线的性质以及角的和差关系的运用,解决问题的关键是运用分类思想进行求解,解题时注意:两直线平行,内错角相等;两直线平行,同旁内角互补. 12.(1)平行,理由见解析;(2)35°或145°,画图、过程见解析;(3)50°或130°或60°或120° 【分析】 (1)过点C作CF∥AB,根据∠B=50°,∠C=85°,∠D=35°,即可得C 解析:(1)平行,理由见解析;(2)35°或145°,画图、过程见解析;(3)50°或130°或60°或120° 【分析】 (1)过点C作CF∥AB,根据∠B=50°,∠C=85°,∠D=35°,即可得CF∥ED,进而可以判断AB平行于ED; (2)根据题意作AB∥CD,即可∠B=∠C=35°; (3)分别画图,根据平行线的性质计算出∠B的度数. 【详解】 解:(1)AB平行于ED,理由如下: 如图2,过点C作CF∥AB, ∴∠BCF=∠B=50°, ∵∠BCD=85°, ∴∠FCD=85°-50°=35°, ∵∠D=35°, ∴∠FCD=∠D, ∴CF∥ED, ∵CF∥AB, ∴AB∥ED; (2)如图,即为所求作的图形. ∵AB∥CD, ∴∠ABC=∠C=35°, ∴∠B的度数为:35°; ∵A′B∥CD, ∴∠ABC+∠C=180°, ∴∠B的度数为:145°; ∴∠B的度数为:35°或145°; (3)如图2,过点C作CF∥AB, ∵AB∥DE, ∴CF∥DE, ∴∠FCD=∠D=35°, ∵∠BCD=85°, ∴∠BCF=85°-35°=50°, ∴∠B=∠BCF=50°. 答:∠B的度数为50°. 如图5,过C作CF∥AB,则AB∥CF∥CD, ∴∠FCD=∠D=35°, ∵∠BCD=85°, ∴∠BCF=85°-35°=50°, ∵AB∥CF, ∴∠B+∠BCF=180°, ∴∠B=130°; 如图6,∵∠C=85°,∠D=35°, ∴∠CFD=180°-85°-35°=60°, ∵AB∥DE, ∴∠B=∠CFD=60°, 如图7,同理得:∠B=35°+85°=120°, 综上所述,∠B的度数为50°或130°或60°或120°. 【点睛】 本题考查了平行线的判定与性质,解决本题的关键是区分平行线的判定与性质,并熟练运用. 13.(1);(2)①;②. 【分析】 (1)依据角平分线的定义可求得,再依据角的和差依次可求得和,根据邻补角的性质可求得结论; (2)①根据角相等和角的和差可得∠EOC=∠BOD,再根据比例关系可得,最 解析:(1);(2)①;②. 【分析】 (1)依据角平分线的定义可求得,再依据角的和差依次可求得和,根据邻补角的性质可求得结论; (2)①根据角相等和角的和差可得∠EOC=∠BOD,再根据比例关系可得,最后依据角的和差和邻补角的性质可求得结论; ②根据角相等和角的和差可得∠EOC=∠BOD,再根据比例关系可得,最后依据角的和差和邻补角的性质可求得结论. 【详解】 解:(1)∵平分,, ∴, ∴, ∴, ∴; (2)①∵, ∴∠EOC+∠COD=∠BOD+∠COD, ∴∠EOC=∠BOD, ∵,, ∴, ∴, ∴, ∴; ②∵, ∴∠EOC+∠COD=∠BOD+∠COD, ∴∠EOC=∠BOD, ∵,, ∴, ∴, ∴, ∴. 【点睛】 本题考查邻补角的计算,角的和差,角平分线的有关计算.能正确识图,利用角的和差求得相应角的度数是解题关键. 14.(1)60°;(2)50°;(3)或 【分析】 (1)根据平行线的性质可得的度数,再根据角平分线的性质可得的度数,应用三角形内角和计算的度数,由已知条件,可计算出的度数; (2)根据题意画出图形,先 解析:(1)60°;(2)50°;(3)或 【分析】 (1)根据平行线的性质可得的度数,再根据角平分线的性质可得的度数,应用三角形内角和计算的度数,由已知条件,可计算出的度数; (2)根据题意画出图形,先根据可计算出的度数,由可计算出的度数,再根据平行线的性质和角平分线的性质,计算出的度数,即可得出结论; (3)根据题意可分两种情况,①若点运动到上方,根据平行线的性质由可计算出的度数,再根据角平分线的性质和平行线的性质,计算出的度数,再,,列出等量关系求解即可等处结论;②若点运动到下方,根据平行线的性质由可计算出的度数,再根据角平分线的性质和平行线的性质,计算出的度数,再,列出等量关系求解即可等处结论. 【详解】 解:(1),, , 平分, , , 又, ; (2)根据题意画图,如图1所示, ,, , , , , 又平分, , ; (3)①如图2所示, , , 平分, , , 又, , , 解得; ②如图3所示, , , 平分, , , 又, , , 解得. 综上的度数为或. 【点睛】 本题主要考查平行线的性质和角平分线的性质,两直线平行,同位角相等.两直线平行,同旁内角互补. 两直线平行,内错角相等.合理应用平行线的性质是解决本题的关键. 15.(1)120º,120º;(2)160;(3) 【分析】 (1)过点作,,根据 ,平行线的性质和周角可求出,则 ,再根据 , ,可得 , ,可求出 ,,根据 即可得到结果; (2)同理(1)的求法, 解析:(1)120º,120º;(2)160;(3) 【分析】 (1)过点作,,根据 ,平行线的性质和周角可求出,则 ,再根据 , ,可得 , ,可求出 ,,根据 即可得到结果; (2)同理(1)的求法,根据,, 求解即可; (3)同理(1)的求法,根据,, 求解即可; 【详解】 解:(1)如图示,分别过点作,, ∵, ∴, ∴, ∴, ∴, ∵, ∴, 又∵, ∴,, ∴. (2)如图示,分别过点作,, ∵,∴, ∴, ∴, ∴, ∵, ∴, 又∵, ∴,, ∴. 故答案为:160; (3)同理(1)的求法 ∵,∴, ∴, ∴, ∴, ∵, ∴, 又∵, ∴, , ∴. 故答案为:. 【点睛】 本题主要考查了平行线的性质和角度的运算,熟悉相关性质是解题的关键. 四、解答题 16.(1)①115°;110°;②;理由见解析;(2);理由见解析 【分析】 (1)①若∠BAC=100°,∠C=30°,由三角形内角和定理求出∠B=50°,由平行线的性质得出∠EDB=∠C=30°,由 解析:(1)①115°;110°;②;理由见解析;(2);理由见解析 【分析】 (1)①若∠BAC=100°,∠C=30°,由三角形内角和定理求出∠B=50°,由平行线的性质得出∠EDB=∠C=30°,由角平分线定义得出,,由三角形的外角性质得出∠DGF=100°,再由三角形的外角性质即可得出结果;若∠B=40°,则∠BAC+∠C=180°-40°=140°,由角平分线定义得出,,由三角形的外角性质即可得出结果; ②由①得:∠EDB=∠C,,,由三角形的外角性质得出∠DGF=∠B+∠BAG,再由三角形的外角性质即可得出结论; (2)由(1)得:∠EDB=∠C,,,由三角形的外角性质和三角形内角和定理即可得出结论. 【详解】 (1)①若∠BAC=100°,∠C=30°, 则∠B=180°-100°-30°=50°, ∵DE∥AC, ∴∠EDB=∠C=30°, ∵AG平分∠BAC,DF平分∠EDB, ∴,, ∴∠DGF=∠B+∠BAG=50°+50°=100°, ∴∠AFD=∠DGF+∠FDG=100°+15°=115°; 若∠B=40°,则∠BAC+∠C=180°-40°=140°, ∵AG平分∠BAC,DF平分∠EDB, ∴,, ∵∠DGF=∠B+∠BAG, ∴∠AFD=∠DGF+∠FDG=∠B+∠BAG+∠FDG = 故答案为:115°;110°; ②; 理由如下:由①得:∠EDB=∠C,,, ∵∠DGF=∠B+∠BAG, ∴∠AFD=∠DGF+∠FDG =∠B+∠BAG+∠FDG = ; (2)如图2所示:; 理由如下: 由(1)得:∠EDB=∠C,,, ∵∠AHF=∠B+∠BDH, ∴∠AFD=180°-∠BAG-∠AHF . 【点睛】 本题考查了三角形内角和定理、三角形的外角性质、平行线的性质等知识;熟练掌握三角形内角和定理和三角形的外角性质是解题的关键. 17.(1)120°;(2)∠EPF =∠AEP+∠CFP或∠AEP=∠EPF+∠CFP,证明见详解. 【分析】 (1)根据题意,当点与点、在一直线上时,作出图形,由AB∥CD,∠FHP=60°,可以推出 解析:(1)120°;(2)∠EPF =∠AEP+∠CFP或∠AEP=∠EPF+∠CFP,证明见详解. 【分析】 (1)根据题意,当点与点、在一直线上时,作出图形,由AB∥CD,∠FHP=60°,可以推出=60°,计算∠PFD即可; (2)根据点P是动点,分三种情况讨论:①当点P在AB与CD之间时;②当点P在AB上方时;③当点P在CD下方时,分别求出∠AEP、∠EPF、∠CFP之间的关系即可. 【详解】 (1)当点与点、在一直线上时,作图如下, ∵AB∥CD,∠FHP=60°,, ∴=∠FHP=60°, ∴∠EFD=180°-∠GEP=180°-60°=120°, ∴∠PFD=120°, 故答案为:120°; (2)满足关系式为∠EPF =∠AEP+∠CFP或∠AEP=∠EPF+∠CFP. 证明:根据点P是动点,分三种情况讨论: ①当点P在AB与CD之间时, 过点P作PQ∥AB,如下图, ∵AB∥CD, ∴PQ∥AB∥CD, ∴∠AEP=∠EPQ,∠CFP=∠FPQ, ∴∠EPF=∠EPQ+∠FPQ=∠AEP+∠CFP, 即∠EPF =∠AEP+∠CFP; ②当点P在AB上方时,如下图所示, ∵∠AEP=∠EPF+∠EQP, ∵AB∥CD, ∴∠CFP=∠EQP, ∴∠AEP=∠EPF+∠CFP; ③当点P在CD下方时, ∵AB∥CD, ∴∠AEP=∠EQF, ∴∠EQF=∠EPF+∠CFP, ∴∠AEP=∠EPF+∠CFP, 综上所述,∠AEP、∠EPF、∠CFP之间满足的关系式为:∠EPF =∠AEP+∠CFP或∠AEP=∠EPF+∠CFP, 故答案为:∠EPF =∠AEP+∠CFP或∠AEP=∠EPF+∠- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 人教版 中学 年级 下册 数学 期末 解答 压轴 答案
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【快乐****生活】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【快乐****生活】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【快乐****生活】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【快乐****生活】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文