
八年级上学期期末数学试卷[001].doc
《八年级上学期期末数学试卷[001].doc》由会员分享,可在线阅读,更多相关《八年级上学期期末数学试卷[001].doc(22页珍藏版)》请在咨信网上搜索。
八年级上学期期末数学试卷 一、选择题 1.下列图形中,不是轴对称图形的是( ) A. B. C. D. 2.少年的一根头发的直径大约为0.0000412:米,将数据“0.0000412”用科学记数法表示为( ) A. B. C. D. 3.下列各式中,计算结果是x8的是( ) A.x4+x4 B.x16÷x2 C.x4•x4 D.(﹣2x4)2 4.函数中自变量的取值范围是( ) A. B. C. D. 5.下列等式中,从左到右的变形是因式分解的是( ) A.x(x-2)=x2-2x B.(x+1)2=x2+2x+1 C.x2-4=(x+2)(x-2) D.x2+2x+4=(x+1)2+3 6.下列各式中,正确的是( ) A. B. C. D. 7.如图,在和中,,,还需在添加一个条件才能使,则不能添加的条件是( ) A. B. C. D. 8.已知关于x的方式方程的解是非负数,那么a的取值范围是( ) A. B. C. D. 9.如图,将大小相同的四个小正方形按照图①和图②所示的两种方式放置于两个正方形中,根据两个图形中阴影部分的面积关系,可以验证的公式是( ) A. B. C. D. 10.如图,在△ABC中,AB=AC,∠BAC=45°,BD⊥AC,垂足为D点,AE平分∠BAC,交BD于点F交BC于点E,点G为AB的中点,连接DG,交AE于点H,下列结论错误的是( ) A.AH=2DF B.HE=BE C.AF=2CE D.DH=DF 二、填空题 11.如果分式的值为零,那么x=________. 12.若点P(2,3)关于轴的对称点是点 (,),则=_____. 13.已知ab=1,则①+=___;②+=___. 14.计算_____. 15.如图,在中,,D是上一点,连接,将沿对折得到,若恰好经过点C,,则的度数为________. 16.若二次三项式是一个完全平方式,则单项式M应是_____. 17.如图,在四边形ABCD中,,连接BD,将沿着BD翻折得到,点A的对应点E刚好落在CD上,若,则_____________°. 18.如图,AB=16,AC=6,AC⊥AB,BD⊥AB,垂足分别为A、B.点P从点A出发,以每秒2个单位的速度沿AB向点B运动;点Q从点B出发,以每秒a个单位的速度沿射线BD方向运动.点P、点Q同时出发,当以P、B、Q为顶点的三角形与△CAP全等时,a的值为______. 三、解答题 19.因式分解: (1)x3﹣16x; (2)3x2﹣12xy+12y2. 20.解下列分式方程: (1)+=1; (2)﹣1=. 21.如图,点,,,在同一直线上,点,在的异侧,,,. (1)求证:. (2)若,,求的度数. 22.概念认识:如图①,在中,若,则,叫做的“三分线”.其中,是“邻三分线”,是“邻三分线”. (1)问题解决:如图②,在中,,,若的邻三分线交于点,则的度数为 ; (2)如图③,在中,,分别是邻三分线和邻三分线,且,求的度数; (3)延伸推广:在中,是的外角,的邻三分线所在的直线与的三分线所在的直线交于点.若,,直接写出的度数.(用含的代数式表示) 23.某商场购进甲、乙两种商品,甲种商品共用了4000元,乙种商品共用了4800元.已知乙种商品每件进价比甲种商品每件进价多16元,且购进的甲、乙两种商品件数相同. (1)求甲、乙两种商品的每件进价; (2)该商场将购进的甲、乙两种商品进行销售,甲种商品的销售单价为120元,乙种商品的销售单价为136元,销售过程中发现甲种商品销量不好,商场决定:甲种商品销售一定数量后,将剩余的甲种商品按原销售单价的七折销售;乙种商品销售单价保持不变.要使两种商品全部售完后共获利不少于2520元,问甲种商品按原销售单价至少销售多少件? 24.阅读下列材料:利用完全平方公式,可以将多项式变形为的形式,我们把这种变形方法,叫做配方法.运用配方法及平方差公式能对一些多项式进行因式分解.例如:根据以上材料,解答下列问题: (1)用配方法将化成的形式,则 ________; (2)用配方法和平方差公式把多项式进行因式分解; (3)对于任意实数x,y,多项式的值总为______(填序号). ①正数②非负数 ③ 0 25.已知:,. (1)当a,b满足时,连接AB,如图1. ①求:的值. ②点M为线段AB上的一点(点M不与A,B重合,其中BM>AM),以点M为直角顶点,OM为腰作等腰直角△MON,连接BN,求证:. (2)当,,连接AB,若点,过点D作于点E,点B与点C关于x轴对称,点F是线段DE上的一点(点F不与点E,D重合)且满足,连接AF,试判断线段AC与AF之间的位置关系和数量关系,并证明你的结论. 26.如图1,在平面直角坐标系中,,,且∠ACB=90°,AC=BC. (1)求点B的坐标; (2)如图2,若BC交y轴于点M,AB交x轴与点N,过点B作轴于点E,作轴于点F,请探究线段MN,ME,NF的数量关系,并说明理由; (3)如图3,若在点B处有一个等腰Rt△BDG,且BD=DG,∠BDG=90°,连接AG,点H为AG的中点,试猜想线段DH与线段CH的数量关系与位置关系,并证明你的结论. 【参考答案】 一、选择题 2.A 解析:A 【分析】根据轴对称图形的性质逐一判断即可. 【详解】解:A、不是轴对称图形,故本选项符合题意; B、是轴对称图形,故本选项不符合题意; C、是轴对称图形,故本选项不符合题意; D、是轴对称图形,故本选项不符合题意. 故选:A 【点睛】本题考查轴对称图形,能准确识别轴对称图形是解题的关键. 3.C 解析:C 【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定. 【详解】解:数据0.0000412米可用科学记数法表示为4.12×10-5米, 故选:C. 【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定. 4.C 解析:C 【分析】利用合并同类项的法则,同底数幂的除法的法则,积的乘方的法则,同底数幂的乘法的法则对各项进行运算即可. 【详解】解:A、x4+x4=2x4,故A不符合题意; B、x16÷x2=x14,故B不符合题意; C、x4•x4=x8,故C符合题意; D、(﹣2x4)2=4x8,故D不符合题意; 故选:C. 【点睛】本题主要考查积的乘方,同底数幂的乘法,合并同类项,同底数幂的除法,解答的关键是对相应的运算法则的掌握. 5.B 解析:B 【分析】根据二次根式的被开方数是非负数,分式的分母不等于0即可得出答案. 【详解】解:∵x−1>0, ∴x>1. 故选:B. 【点睛】本题考查了函数自变量的取值范围,掌握二次根式的被开方数是非负数,分式的分母不等于0是解题的关键. 6.C 解析:C 【分析】根据因式分解的定义逐个判断即可. 【详解】解∶A、从左至右的变形属于整式乘法,不属于因式分解,故本选项不符合题意; B、从左至右的变形属于整式乘法,不属于因式分解,故本选项不符合题意; C、从左至右的变形是由多项式变成因式的乘积,属于因式分解,故本选项符合题意; D、从左至右的变形中,右边最后不属于乘法运算,不属于因式分解,故本选项不符合题意; 故选∶C. 【点睛】本题考查了因式分解的定义,能熟记因式分解的定义(把一个多项式化成几个整式的积的形式,叫因式分解)是解此题的关键. 7.D 解析:D 【分析】根据分式的性质,即可一一判定. 【详解】解:A.,故该选项错误; B.当时,,当,此式无意义,故该选项错误; C. ,故该选项错误; D. ,故该选项正确; 故选:D. 【点睛】本题考查了分式的基本性质,分式的分子分母都乘以(或除以)同一个不为零的数或(整式),分式的值不变,熟练掌握和运用分式的性质是解决本题的关键. 8.D 解析:D 【分析】根据全等三角形的判定定理依次分析可得答案. 【详解】解:, , 即, ∵在与中,,, 若,则可依据证明,故A选项不符合题意; 若,则可依据证明,故B选项不符合题意; 若,则可依据证明,故C选项不符合题意; 若,则不能证明,故D选项符合题意. 故选:D. 【点睛】本题主要考查全等三角形的判定定理,熟记全等三角形的判定定理:,,, ,,并熟练应用解决问题是解题的关键. 9.C 解析:C 【分析】因为分式方程有解且是非负数,所以不会产生增根,即,然后解的分式方程的根且,化简即可出结果. 【详解】解:, 方程两边同乘以得 解得且 且 故选:C. 【点睛】本题考查了根据含参数的分式方程解的范围来求参数范围,熟练掌握解分式方程的方法是解题关键,注意增根的检验是易错点. 10.A 解析:A 【分析】根据图形阴影部分的面积的不同求法可得等式. 【详解】解:阴影部分的面积是四个阴影小正方形的面积和,由拼图可得四个阴影小正方形可以拼成边长为(a-b)的正方形,因此面积为(a-b)2, 由图2可知,阴影部分的面积等于边长为a的正方形的面积减去之间十字架的面积,即:a2-2ab+b2, 因此有(a-b)2=a2-2ab+b2, 故选:A. 【点睛】本题考查平方差公式、完全平方公式的几何背景,用不同方法表示阴影部分的面积是得出答案的关键. 11.A 解析:A 【分析】通过证明△ADF≌△BDC,可得AF=BC=2CE,由等腰直角三角形的性质可得AG=BG,DG⊥AB,由余角的性质可得∠DFA=∠AHG=∠DHF,可得DH=DF,由线段垂直平分线的性质可得AH=BH,可求∠EHB=∠EBH=45°,可得HE=BE,即可求解. 【详解】解:∵∠BAC=45°,BD⊥AC, ∴∠CAB=∠ABD=45°, ∴AD=BD, ∵AB=AC,AE平分∠BAC, ∴CE=BE=BC,∠CAE=∠BAE=22.5°,AE⊥BC, ∴∠C+∠CAE=90°,且∠C+∠DBC=90°, ∴∠CAE=∠DBC,且AD=BD,∠ADF=∠BDC=90°, ∴△ADF≌△BDC(AAS) ∴AF=BC=2CE,故选项C不符合题意, ∵点G为AB的中点,AD=BD,∠ADB=90°,∠CAE=∠BAE=22.5°, ∴AG=BG,DG⊥AB,∠AFD=67.5° ∴∠AHG=67.5°, ∴∠DFA=∠AHG=∠DHF, ∴DH=DF,故选项D不符合题意, 连接BH, ∵AG=BG,DG⊥AB, ∴AH=BH, ∴∠HAB=∠HBA=22.5°, ∴∠EHB=45°,且AE⊥BC, ∴∠EHB=∠EBH=45°, ∴HE=BE, 故选项B不符合题意, 故选:A. 【点睛】本题考查三角形全等的性质与判定,等腰直角三角形的性质,关键在于熟练掌握基本知识点,灵活运用知识点. 二、填空题 12. 【分析】根据分式有意义的条件,分式值为0的条件即可求得的值 【详解】解:∵分式的值为零, ∴ 解得 故答案为: 【点睛】本题考查了分式值为0,分式有意义的添加,理解分式值为0的前提是分式必须有意义是解题的关键. 13.3 【分析】直接利用关于y轴的对称点的坐标特点:横坐标互为相反数,纵坐标不变,即点P(x,y)关于y轴的对称点的坐标是(-x,y),进而得出a的值. 【详解】点P(2,3)关于y轴的对称点是点(-2,a), 则a=3. 故答案为:3. 【点睛】此题主要考查了关于y轴的对称点的坐标特点,正确掌握关于y轴对称点的性质是解题关键. 14. 1 1 【分析】①先通分,然后根据同分母分式相加,即可化简题目中的式子,然后将ab的值代入即可解答本题; ②先通分,然后根据同分母分式相加,即可化简题目中的式子,然后将ab的值代入即可解答本题. 【详解】①, 当ab=1时,原式=, 故答案为:1; ②, 当ab=1时,原式=, 故答案为:1. 【点睛】本题考查的是分式的加法,熟练掌握分式的加法法则是解决本题的关键. 15. 【分析】利用幂的运算 原式变为,即可计算. 【详解】由积的乘方有:, , , . 【点睛】本题考查积的乘方:,属于基础题. 16.55° 【分析】由折叠的性质可得出∠ABD=∠DBE=27.5°,∠A=∠E,求出∠E=35°,由直角三角形的性质可得出答案. 【详解】解∶∵将△BDA沿BD对折得到△BDE, ∴∠ABD=∠ 解析:55° 【分析】由折叠的性质可得出∠ABD=∠DBE=27.5°,∠A=∠E,求出∠E=35°,由直角三角形的性质可得出答案. 【详解】解∶∵将△BDA沿BD对折得到△BDE, ∴∠ABD=∠DBE=27.5°,∠A=∠E, ∴∠ABC=55°, ∵∠ACB=90°, ∴∠A=90°-∠ABC=35°, ∴∠E=35°, ∴∠CDE=90°-∠E=90°-35°=55°. 故答案为∶55°. 【点睛】本题考查了折叠的性质,直角三角形的性质,熟练掌握折叠的性质是解题的关键. 17.81 【分析】先根据两平方项确定出这两个数,再根据完全平方公式可确定M. 【详解】∵是一个完全平方式, , ∴M=81, 故答案为:81. 【点睛】本题主要考查了完全平方式,根据平方项确 解析:81 【分析】先根据两平方项确定出这两个数,再根据完全平方公式可确定M. 【详解】∵是一个完全平方式, , ∴M=81, 故答案为:81. 【点睛】本题主要考查了完全平方式,根据平方项确定出这两个数是解题的关键,也是难点,熟记完全平方公式对解题非常重要. 18.100 【分析】由翻折的性质得出∠ADB=∠BDE=40°,∠A=∠BED,AB=BE,证出∠BEC=∠C,则可求出答案. 【详解】∵将△ABD沿着BD翻折得到△EBD, ∴∠ADB=∠BDE 解析:100 【分析】由翻折的性质得出∠ADB=∠BDE=40°,∠A=∠BED,AB=BE,证出∠BEC=∠C,则可求出答案. 【详解】∵将△ABD沿着BD翻折得到△EBD, ∴∠ADB=∠BDE=40°,∠A=∠BED,AB=BE, ∴∠ADE=80°, ∵∠BEC+∠BED=180°, ∴∠A+∠BEC=180°, ∵AB=BC, ∴BC=BE, ∴∠BEC=∠C, ∴∠A+∠C=180°, 又∵∠A+∠C+∠ADC+∠ABC=360°, ∴∠ABC=360°-180°-80°=100°, 故答案为:100. 【点睛】本题考查了翻折的性质,等腰三角形的性质,四边形内角和定理,熟练掌握旋转的性质是解题的关键. 19.2或 【分析】根据题意,可以分两种情况讨论,第一种△CAP≌△PBQ,第二种△CAP≌△QBP,然后分别求出相应的a的值即可. 【详解】解:当△CAP≌△PBQ时,则AC=PB,AP=BQ, 解析:2或 【分析】根据题意,可以分两种情况讨论,第一种△CAP≌△PBQ,第二种△CAP≌△QBP,然后分别求出相应的a的值即可. 【详解】解:当△CAP≌△PBQ时,则AC=PB,AP=BQ, ∵AC=6,AB=16, ∴PB=6,AP=AB-AP=16-6=10, ∴BQ=10, ∴10÷a=10÷2, 解得a=2; 当△CAP≌△QBP时,则AC=BQ,AP=BP,. ∵AC=6,AB=16, ∴BQ=6,AP=BP=8, ∴6÷a=8÷2, 解得a=, 由上可得a的值是2或, 故答案为:2或 【点睛】本题考查全等三角形的性质,解答本题的关键是明确有两种情况,利用数形结合的思想解答. 三、解答题 20.(1)x(x+4)(x-4); (2)3(x-2y)2 【分析】(1)先提公因式,然后利用平方差公式继续分解即可; (2)先提公因式,然后利用完全平方公式继续分解即可. (1) x3-16 解析:(1)x(x+4)(x-4); (2)3(x-2y)2 【分析】(1)先提公因式,然后利用平方差公式继续分解即可; (2)先提公因式,然后利用完全平方公式继续分解即可. (1) x3-16x =x(x2-16) =x(x+4)(x-4); (2) 3x2-12xy+12y2 =3(x2-4xy+4y2) =3(x-2y)2. 【点睛】本题考查了提公因式法与公式法的综合运用,一定要注意如果多项式的各项含有公因式,必须先提公因式. 21.(1)x=0;(2)无解 【分析】(1)(2)首先将分式方程转化为整式方程,然后解整式方程,注意求出的整式方程的解要进行检验. 【详解】解:(1)∵+=1, ∴﹣=1, 方程两边同时乘(x﹣ 解析:(1)x=0;(2)无解 【分析】(1)(2)首先将分式方程转化为整式方程,然后解整式方程,注意求出的整式方程的解要进行检验. 【详解】解:(1)∵+=1, ∴﹣=1, 方程两边同时乘(x﹣1),可得:1﹣2=x﹣1, 解得:x=0, 经检验:x=0是原分式方程的解, ∴原分式方程的解为:x=0. (2)∵﹣1=, ∴﹣1=, 方程两边同时乘(x+2)(x﹣2),可得:x(x+2)﹣(x+2)(x﹣2)=8, 整理得:2x﹣4=0, 解得x=2, 检验:当x=2时,(x+2)(x﹣2)=0, ∴原分式方程无解. 【点睛】此题主要考查了解分式方程,解答此题的关键是要明确解分式方程的步骤:①去分母;②求出整式方程的解;③检验;④得出结论. 22.(1)证明见解析;(2). 【分析】(1)证△ABE≌△DCF(SAS),得∠AEB=∠DFC,即可得出结论; (2)由全等三角形的性质得∠A=∠D,∠B=∠C=30°,再求出∠A=72°,然后 解析:(1)证明见解析;(2). 【分析】(1)证△ABE≌△DCF(SAS),得∠AEB=∠DFC,即可得出结论; (2)由全等三角形的性质得∠A=∠D,∠B=∠C=30°,再求出∠A=72°,然后由三角形的外角性质求解即可. 【详解】(1)证明:∵, ∴, ∵, ∴ ∴, ∴; (2)解:∵, ∴,, ∵, ∴, ∴. 【点睛】本题考查了全等三角形的判定与性质、平行线的判定以及三角形的外角性质等知识;熟练掌握平行线的判定,证明三角形全等是解题的关键. 23.(1)85° (2)45° (3)或 【分析】(1)根据题意可是“邻三分线”可求得的度数,再利用三角形外角的性质可求解; (2)结合(1)根据、分别是邻三分线和邻三分线,且,即可求的度数; 解析:(1)85° (2)45° (3)或 【分析】(1)根据题意可是“邻三分线”可求得的度数,再利用三角形外角的性质可求解; (2)结合(1)根据、分别是邻三分线和邻三分线,且,即可求的度数; (3)分2种情况进行画图计算:情况一:如图,当和分别是“邻三分线”、“邻三分线”时,可得,可求解;情况二:如图,当和分别是“邻三分线”、“邻三分线”时,可得可求解. (1) 解:的邻三分线交于点,, , , , 故答案为:; (2) 解:在中,, , 又、分别是邻三分线和邻三分线, ,, , , 在中, ; (3) 解:如图3-1所示,当和分别是“邻三分线”、“邻三分线”时, ,,, , 即, ,, ; 如图3-2所示,当和分别是“邻三分线”、“邻三分线”时, ,,, , 即, ,, . 综上所述:的度数为:或. 【点睛】本题主要考查了三角形内角和定理,三角形外角的性质,角三等分线的定义,正确理解题意是解题的关键. 24.(1)甲种商品的每件进价为80元,乙种商品的每件进价为96元 (2)甲种商品按原销售单价至少销售9件 【分析】(1)设甲种商品的每件进价为x元,乙种商品的每件进价为(x+16)元,根据数量=总价 解析:(1)甲种商品的每件进价为80元,乙种商品的每件进价为96元 (2)甲种商品按原销售单价至少销售9件 【分析】(1)设甲种商品的每件进价为x元,乙种商品的每件进价为(x+16)元,根据数量=总价÷单价结合购进的甲、乙两种商品件数相同,即可得出关于x的分式方程,解之经检验后即可得出结论; (2)利用数量=总价÷单价可求出购进甲、乙两种商品的数量,设甲种商品按原销售单价销售了m件,根据利润=销售总价−进货成本,即可得出关于m的一元一次不等式,解之取其最小值即可得出结论. (1)解:设甲种商品的每件进价为x元,乙种商品的每件进价为(x+16)元.依题意,得:,解得:x=80,经检验,x=80是原分式方程的解,且符合题意,∴x+16=96,答:甲种商品的每件进价为80元,乙种商品的每件进价为96元; (2)甲种商品的购进数量为4000÷80=50(件),乙种商品的购进数量为4800÷96=50(件),设甲种商品按原销售单价销售了m件,依题意,得:120m+120×0.7(50−m)+136×50−4000−4800≥2520,解得:m≥,答:甲种商品按原销售单价至少销售9件. 【点睛】本题考查了分式方程的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)根据各数量之间的关系,正确列出一元一次不等式. 25.(1);(2);(3)① 【分析】(1)根据材料所给方法解答即可; (2)材料所给方法进行解答即可; (3)局部进行因式分解,最后写成非负数的积的形式即可完成解答. 【详解】解:(1) = 解析:(1);(2);(3)① 【分析】(1)根据材料所给方法解答即可; (2)材料所给方法进行解答即可; (3)局部进行因式分解,最后写成非负数的积的形式即可完成解答. 【详解】解:(1) = . (2)原式= = = =. (3) = = >11 故答案为①. 【点睛】本题考查了配方法,根据材料学会配方法并灵活运用配方法解题是解答本题的关键. 26.(1)10;证明见解析; (2),,理由见解析; 【分析】(1)①利用可求出,,即可求出;②作交AB与点C,交AB与点F,证明,再证明,利用,即可证明; (2)证明,得到,,再利用等量代换证明 解析:(1)10;证明见解析; (2),,理由见解析; 【分析】(1)①利用可求出,,即可求出;②作交AB与点C,交AB与点F,证明,再证明,利用,即可证明; (2)证明,得到,,再利用等量代换证明; (1) 解:①由图可知, ∵ ∴,即, ∴,, ∴; ②作交AB与点C,交AB与点F,如图, ∵,, ∴, 在和中, ∴, ∴,,, ∵, ∴, ∴, ∴,即, ∵, ∴, ∴, ∵, ∴, 即, (2) 解:,,理由如下: 假设DE交BC于点G, 有已知可知:,,,, ∴, ∵ ∴ ∵,且, ∴, 在和中, ∴, ∴,, ∵, ∴, ∴, 【点睛】本题考查三角形全等的判定,等量代换,绝对值非负性的应用,直角坐标系中的图形,(1)的关键是证明,(2)的关键证明. 27.(1) (2),见解析 (3)且,见解析 【分析】(1)如图1中,过点C作CT⊥y轴于点T,根点B作BH⊥CT交CT的延长线于点H.证明△ATC≌△CHB(AAS),推出AT=CH=6,CT= 解析:(1) (2),见解析 (3)且,见解析 【分析】(1)如图1中,过点C作CT⊥y轴于点T,根点B作BH⊥CT交CT的延长线于点H.证明△ATC≌△CHB(AAS),推出AT=CH=6,CT=BH=2,可得结论; (2)结论:MN=ME+NF.证明△BFN≌△BEK(SAS),推出BN=BK,∠FBN=∠EBK,再证明△BMN≌△BMK(SAS),推出MN=MK,可得结论; (3)结论:DH=CH,DH⊥CH.如图3中,延长DH到J,使得HJ=DH,连接AJ,CJ,延长DG交AC于点M.证明△JDC是等腰直角三角形,可得结论. 【详解】解:(1)如图1中,过点C作CT⊥y轴于点T,根点B作BH⊥CT交CT的延长线于点H. ∵A(0,4),C(﹣2,﹣2), ∴OA=4,OT=CT=2, ∴AT=4+2=6, ∵∠ACB=∠ATC=∠H=90°, ∴∠CAT+∠ACT=90°,∠BCH+∠CBH=90°, ∴∠CAT=∠BCH, ∵CA=CB, ∴△ATC≌△CHB(AAS), ∴AT=CH=6,CT=BH=2, ∴TH=CH﹣CT=4, ∴B(4,-4); (2)结论:MN=ME+NF. 理由:在射线OE上截取EK=FN,连接BK. ∵B(4,4),BE⊥y轴,BF⊥x轴, ∴BE=BF=4,∠BEO=∠BFO=∠EOF=90°, ∴四边形BEOF是矩形, ∴∠EBF=90°, ∵EK=FN,∠BFN=∠BEK=90°, ∴△BFN≌△BEK(SAS), ∴BN=BK,∠FBN=∠EBK, ∴∠NBK=∠FBE=90°, ∵∠MBN=45°, ∴∠MBN=∠BMK=45°, ∵BM=BM, ∴△BMN≌△BMK(SAS), ∴MN=MK, ∵MK=ME+EK, ∴MN=EM+FN; (3)结论:DH=CH,DH⊥CH. 理由:如图3中,延长DH到J,使得HJ=DH,连接AJ,CJ,延长DG交AC于点M. ∵AH=HG,∠AHJ=∠GHD,HJ=HD, ∴△AHJ≌△GHD(SAS), ∴AJ=DG,∠AJH=∠DGH, ∴AJ∥DM, ∴∠JAC=∠AMD, ∵DG=BD, ∴AJ=BD, ∵∠MCB=∠BDM=90°, ∴∠CBD+∠CMD=180°, ∵∠AMD+∠CMD=180°, ∴∠AMD=∠CBD, ∴∠CAJ=∠CBD, ∵CA=CB, ∴△CAJ≌△CBD(SAS), ∴CJ=CD,∠ACJ=∠BCD, ∴∠JCD=∠ACB=90°, ∵JH=HD, ∴CH⊥DJ,CH=JH=HD, 即CH=DH,CH⊥DH. 【点睛】本题属于三角形综合题,考查了等腰直角三角形的判定和性质,全等三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考压轴题.- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 001 年级 学期 期末 数学试卷

1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【快乐****生活】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【快乐****生活】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文