人教版初二上学期压轴题数学试卷答案[002].doc
《人教版初二上学期压轴题数学试卷答案[002].doc》由会员分享,可在线阅读,更多相关《人教版初二上学期压轴题数学试卷答案[002].doc(23页珍藏版)》请在咨信网上搜索。
人教版初二上学期压轴题数学试卷答案 1.操作发现:如图1,D是等边△ABC边BA上的一动点(点D与点B不重合),连接DC,以DC为边在BC上方作等边△DCF,连接AF,易证AF=BD(不需要证明); 类比猜想:①如图2,当动点D运动至等边△ABC边BA的延长线上时,其它作法与图1相同,猜想AF与BD在图1中的结论是否仍然成立。 深入探究:②如图3,当动点D在等边△ABC边BA上的一动点(点D与点B不重合),连接DC,以DC为边在BC上方、下方分别作等边△DCF和等边△DCF′,连接AF,BF′你能发现AF,BF′与AB有何数量关系,并证明你发现的结论。 ③如图4,当动点D运动至等边△ABC边BA的延长线上时,其它作法与图3相同,猜想AF,BF′与AB在上题②中的结论是否仍然成立,若不成立,请给出你的结论并证明。 2.已知,A(0,a),B(b,0),点为x轴正半轴上一个动点,AC=CD,∠ACD=90°. (1)已知a,b满足等式|a +b|+b2+4b=-4. ①求A点和B点的坐标; ②如图1,连BD交y轴于点H,求点H的坐标; (2)如图2,已知a+b=0,OC>OB,作点B关于y轴的对称点E,连DE,点F为DE的中点,连OF和CF,请补全图形,探究OF与CF有什么数量和位置关系,并证明你的结论. 3.阅读下列材料,完成相应任务. 数学活动课上,老师提出了如下问题: 如图1,已知中,是边上的中线. 求证:. 智慧小组的证法如下: 证明:如图2,延长至,使, ∵是边上的中线∴ 在和中 ∴(依据一)∴ 在中,(依据二) ∴. 任务一:上述证明过程中的“依据1”和“依据2”分别是指: 依据1:______________________________________________; 依据2:______________________________________________. 归纳总结:上述方法是通过延长中线,使,构造了一对全等三角形,将,,转化到一个三角形中,进而解决问题,这种方法叫做“倍长中线法”.“倍长中线法”多用于构造全等三角形和证明边之间的关系. 任务二:如图3,,,则的取值范围是_____________; 任务三:如图4,在图3的基础上,分别以和为边作等腰直角三角形,在中,,;中,,.连接.试探究与的数量关系,并说明理由. 4.已知,. (1)若,作,点在内. ①如图1,延长交于点,若,,则的度数为 ; ②如图2,垂直平分,点在上,,求的值; (2)如图3,若,点在边上,,点在边上,连接,,,求的度数. 5.已知在四边形ABCD中,∠ABC+∠ADC=180°,AB=BC. (1)如图1,若∠BAD=90°,AD=2,求CD的长度; (2)如图2,点P、Q分别在线段AD、DC上,满足PQ=AP+CQ,求证:∠PBQ=90°−∠ADC; (3)如图3,若点Q运动到DC的延长线上,点P也运动到DA的延长线上时,仍然满足PQ=AP+CQ,则(2)中的结论是否成立?若成立,请给出证明过程,若不成立,请写出∠PBQ与∠ADC的数量关系,并给出证明过程. 6.如图,在等边中,,分别为,边上的点,,. (1)如图1,若点在边上,求证:; (2)如图2,连.若,求证:; (3)如图3,是的中点,点在内,,点,分别在,上,,若,直接写出的度数(用含有的式子表示). 7.如图,等边中,点在上,延长到,使,连,过点作与点. (1)如图1,若点是中点, 求证:①;②. (2)如图2,若点是边上任意一点,的结论是否仍成立?请证明你的结论; (3)如图3,若点是延长线上任意一点,其他条件不变,的结论是否仍成立?画出图并证明你的结论. 8.若整式A只含有字母x,且A的次数不超过3次,令,其中a,b,c,d为整数,在平面直角坐标系中,我们定义:M为整式A的关联点,我们规定次数超过3次的整式没有关联点.例如,若整式,则a=0,b=2,c=-5,d=4,故A的关联点为(-5,-11). (1)若,试求出A的关联点坐标; (2)若整式B是只含有字母x的整式,整式C是B与的乘积,若整式C的关联点为(6,15),求整式B的表达式. (3)若整式D=x-2,整式E是只含有字母x的一次多项式,整式F是整式D与整式E的平方的乘积,若整式F的关联点为(-32,0),请直接写出整式E的表达式. 【参考答案】 2.①成立,证明见详解;②AF+BF′=AB,证明见详解;③不成立,AF=AB+BF′,证明见详解. 【分析】类比猜想:①通过证明△BCD≌△ACF,即可证明AF=BD; 深入探究:②AF+BF′= 解析:①成立,证明见详解;②AF+BF′=AB,证明见详解;③不成立,AF=AB+BF′,证明见详解. 【分析】类比猜想:①通过证明△BCD≌△ACF,即可证明AF=BD; 深入探究:②AF+BF′=AB,利用全等三角形△BCD≌△ACF(SAS)的对应边BD=AF;同理△BCF′≌△ACD(SAS),则BF′=AD,所以AF+BF′=AB; ③结论不成立.新的结论是AF=AB+BF′;通过证明△BCF′≌△ACD(SAS),则BF′=AD(全等三角形的对应边相等);再结合(2)中的结论即可证得AF=AB+BF′. 【详解】解:类比猜想:①如图2中, ∵△ABC是等边三角形(已知), ∴BC=AC,∠BCA=60°(等边三角形的性质); 同理知,DC=CF,∠DCF=60°; ∴∠BCA+∠DCA=∠DCF+∠DCA,即∠BCD=∠ACF; 在△BCD和△ACF中, ∴△BCD≌△ACF(SAS), ∴BD=AF(全等三角形的对应边相等); 深入探究:②如图示 AF+BF′=AB; 证明如下:由①条件可知:∠BCA-∠DCA=∠DCF-∠DCA,即∠BCD=∠ACF, ∴同理可证△BCD≌△ACF(SAS),则BD=AF; 同理△BCF′≌△ACD(SAS),则BF′=AD, ∴AF+BF′=BD+AD=AB; ③结论不成立.新的结论是AF=AB+BF′; 如图示: 证明如下: ∵等边△DCF和等边△DCF′,由①同理可知: 在△BCF′和△ACD中, ∴△BCF′≌△ACD(SAS), ∴BF′=AD(全等三角形的对应边相等); 又由②知,AF=BD; ∴AF=BD=AB+AD=AB+BF′,即AF=AB+BF′. 【点睛】本题属于三角形综合题,考查了等边三角形的性质,全等三角形的判定和性质等知识,解题的关键是正确寻找全等三角形解决问题. 3.(1)①A(0,2),B(-2,0);②H(0,-2);(2)CF⊥OF,CF=OF,证明见解析. 【分析】(1)①利用绝对值、完全平方的非负性的应用,求出a、b的值,即可得到答案; ②过C作y 解析:(1)①A(0,2),B(-2,0);②H(0,-2);(2)CF⊥OF,CF=OF,证明见解析. 【分析】(1)①利用绝对值、完全平方的非负性的应用,求出a、b的值,即可得到答案; ②过C作y轴垂线交BA的延长线于E,然后证明△CEA≌△CBD,得到OB=OH,即可得到答案; (2)由题意,先证明△DFG≌△EFO,然后证明△DCG≌△ACO,得到△OCG是等腰直角三角形,再根据三线合一定理,即可得到结论成立. 【详解】解:(1)∵, ∴, ∴, ∴,, ∴, ∴, ∴A(0,2),B(2,0); ②过C作x轴垂线交BA的延长线于E, ∵OA=OB=2,∠AOB=90°, ∴△AOB是等腰直角三角形, ∴∠ABO=45°, ∵EC⊥BC, ∴△BCE是等腰直角三角形, ∴BC=EC,∠BCE=90°=∠ACD, ∴∠ACE=∠DCB, ∵AC=DC, ∴△CEA≌△CBD, ∴∠CBD=∠E=45°, ∴OH=OB=2, ∴H(0,2); (2)补全图形,如图: ∵点B、E关于y轴对称, ∴OB=OE, ∵a+b=0,即 ∴OA=OB=OE 延长OF至G使FG=OF,连DG,CG, ∵OF=FG,∠OFE=∠DFG,EF=DF ∴△DFG≌△EFO ∴DG=OE=OA,∠DGF=∠EOF ∴DG∥OE ∴∠CDG=∠DCO; ∵∠ACO+∠CAO=∠ACO+∠DCO=90°, ∴∠DCO=∠CAO; ∴∠CDG=∠DCO=∠CAO; ∵CD=AC,OA=DG ∴△DCG≌△ACO ∴OC=GC,∠DCG=∠ACO ∴∠OCG=90°, ∴∠COF=45°, ∴△OCG是等腰直角三角形, 由三线合一定理得CF⊥OF ∵∠OCF=∠COF=45°, ∴CF=OF; 【点睛】本题考查了等腰三角形的判定和性质,全等三角形的判定和性质,轴对称的性质,非负性的应用,解题的关键是熟练掌握所学的知识,正确的作出辅助线进行解题. 4.任务一:依据1:两边和它们的夹角分别相等的两个三角形全等(或“边角边”或“SAS”);依据2:三角形两边的和大于第三边;任务二:;任务三:EF=2AD,见解析 【分析】任务一:依据1:根据全等的判 解析:任务一:依据1:两边和它们的夹角分别相等的两个三角形全等(或“边角边”或“SAS”);依据2:三角形两边的和大于第三边;任务二:;任务三:EF=2AD,见解析 【分析】任务一:依据1:根据全等的判定方法判断即可; 依据2:根据三角形三边关系判断; 任务二:可根据任务一的方法直接证明即可; 任务三:根据任务一的方法,延长中线构造全等三角形证明线段关系即可. 【详解】解:任务一: 依据1:两边和它们的夹角分别相等的两个三角形全等(或“边角边”或“SAS”); 依据2:三角形两边的和大于第三边. 任务二: 任务三:EF=2AD.理由如下: 如图延长AD至G,使DG=AD, ∵AD是BC边上的中线 ∴BD=CD 在△ABD和△CGD中 ∴△ABD≌△CGD ∴AB=CG,∠ABD=∠GCD 又∵AB=AE ∴AE=CG 在△ABC中,∠ABC+∠BAC+∠ACB=180°, ∴∠GCD+∠BAC+∠ACB=180° 又∵∠BAE=90°,∠CAF=90° ∴∠EAF+∠BAC=360°-(∠BAE+∠CAF)=180° ∴∠EAF=∠GCD 在△EAF和△GCA中 ∴△EAF≌△GCA ∴EF=AG ∴EF=2AD. 【点睛】此题是三角形综合题,主要考查了全等三角形的判定和性质,倍长中线法,构造全等三角形是解本题的关键. 5.(1)①15°;②;(2) 【分析】(1)①根据等腰直角三角形的性质,连接,得,,所对的直角边是斜边的一半,可得,所以可得,,,和是等腰三角形,由外角性质计算可得; ②构造“一线三垂直”模型,证 解析:(1)①15°;②;(2) 【分析】(1)①根据等腰直角三角形的性质,连接,得,,所对的直角边是斜边的一半,可得,所以可得,,,和是等腰三角形,由外角性质计算可得; ②构造“一线三垂直”模型,证明三角形,利用面积比等于等高的三角形的底边的比,结合已知条件即可解得. (2)构造等边,通过证明,等边代换,得出等腰三角形,代入角度计算即得. 【详解】(1)①连接AE,在,因为,, ,, ,, , , , ,, , , , 故答案为:. ②过C作交DF延长线于G,连接AE AD垂直平分BE, , , , , 故答案为:; (2)以AB向下构造等边,连接DK, 延长AD,BK交于点T, ,, , , ,, 等边中,,, ,, 在和中, , 等边三角形三线合一可知,BD是边AK的垂直平分线, , , , , 故答案为:. 【点睛】考查了等腰直角三角形的性质,外角的性质,等腰三角形的判定和性质,构造等边三角形的方法证明全等,全等三角形的性质应用很关键,熟记几何图形的性质和判定是解决图形问题的重要方法依据. 6.(1)CD=2;(2)证明见解析;(3)(2)中结论不成立,应该是:,理由见解析. 【分析】(1)如图1,利用HL证得两个直角三角形全等:Rt△BAD≌Rt△BCD,则其对应边相等:AD=DC=2 解析:(1)CD=2;(2)证明见解析;(3)(2)中结论不成立,应该是:,理由见解析. 【分析】(1)如图1,利用HL证得两个直角三角形全等:Rt△BAD≌Rt△BCD,则其对应边相等:AD=DC=2; (2)如图2,延长DC,在上面找一点K,使得CK=AP,连接BK,通过证△BPA≌△BCK(SAS)得到:∠1=∠2,BP=BK.然后由全等三角形△PBQ≌△BKQ的对应角相等求得∠PBQ=∠ABC,结合已知条件“∠ABC+∠ADC=180°”可以推知∠PBQ=90°-∠ADC; (3)(2)中结论不成立,应该是:∠PBQ=90°+∠ADC. 如图3,在CD延长线上找一点K,使得KC=AP,连接BK,构建全等三角形:△BPA≌△BCK(SAS),由该全等三角形的性质和全等三角形的判定定理SSS证得:△PBQ≌△BKQ,则其对应角相等:∠PBQ=∠KBQ,结合四边形的内角和是360度可以推得:∠PBQ=90°+∠ADC. 【详解】(1)∵, ∴ 在Rt△BAD和Rt△BCD中, ∴Rt△BAD≌Rt△BCD(HL) ∴AD=DC=2 ∴DC=2 (2)如图,延长DC,在上面找一点K,使得CK=AP,连接BK ∵ ∴ ∵ ∴ 在△BPA和△BCK中 ∴△BPA≌△BCK(SAS) ∴,BP=BK ∵PQ=AP+CQ ∴PQ=QK 在△PBQ和△BKQ中 ∴△PBQ≌△BKQ(SSS) ∴ ∴ ∴ ∵ ∴ ∴ ∴ (3)(2)中结论不成立,应该是: 在CD延长线上找一点K,使得KC=AP,连接BK ∵ ∴ ∵ ∴ 在△BPA和△BCK中 ∴△BPA≌△BCK(SAS) ∴,BP=BK ∴ ∵PQ=AP+CQ ∴PQ=QK 在△PBQ和△BKQ中 ∴△PBQ≌△BKQ(SSS) ∴ ∴ ∴ ∴ 【点睛】本题考查了全等三角形的判定与性质.在应用全等三角形的判定时,要注意三角形间的公共边和公共角,必要时添加适当辅助线构造三角形. 7.(1)见解析 (2)见解析 (3) 【分析】(1)连接DF,根据“有一个角是60°的等腰三角形是等边三角形”可判断△DEF是等边三角形,则DF=EF,又△ABC是等边三角形,根据三角形内角和可 解析:(1)见解析 (2)见解析 (3) 【分析】(1)连接DF,根据“有一个角是60°的等腰三角形是等边三角形”可判断△DEF是等边三角形,则DF=EF,又△ABC是等边三角形,根据三角形内角和可得出,∠AFD=∠FEC,所以△ADF≌△CFE(AAS),则AD=CF; (2)过点F作JKAC交AB于点J,交BC于点K,过点F作PIAB交AC于P,交BC于点I,连接DF,则△BJK和△CPI是等边三角形,△BDE≌△JFD≌KEF,所以DJ=BE=FK,因为ABPI,FKAC,所以四边形AJFP是平行四边形,则AJ=PF,易得△CPI为等边三角形,由∠FCB=30°可得CF平分∠PCI,则FI=FP,所以FP=AJ,FK=BE=DJ,FI=FK,所以AJ=DJ=BE,即AD=AJ+DJ=2BE; (3)延长MO到点G,使OG=OM,连接NG,BG,NM,作∠ACQ=∠ABN,且使CQ=BN,连接MQ,AQ,先得到△BOG≌△COM(SAS),再得到△ACQ≌△ABN(SAS)和△BNG≌△CQM(SAS),所以∠NAM=∠MAQ=∠CAM+∠CAQ=∠CAM+∠BAN,所以∠CAM+∠BAN=30°,则∠CAM=,所以∠BAN=30°-. (1) 证明:如图,连接, ,, ∵是等边三角形, ∴, ∵是等边三角形, ∴, , , , ,, , ; (2) 证明:如图,过点作交于点,交于点,过点作交于,交于点,连接, , , 和是等边三角形, ,, 是等边三角形, 由(1)中结论可知,, , ,, 四边形是平行四边形, , , , 为等边三角形,, , 平分, 是等边三角形, , , ,, ,即; (3) 如图,延长到点,使,连接,,,作,且使,连接,, ,, , ,,, , ,, , , , , 是等边三角形, , , ,, ,,, , ,, ,, , ,, , , , , ,, , , 又, , , . 【点睛】本题属于三角形的综合题,涉及全等三角形的性质与判定,等边三角形的性质与判定,等腰三角形三线合一等知识,类比思想及构造的思想进行分析,仿造(1)中的结论构造出全等三角形是解题关键. 8.(1)①见解析;②见解析 (2)成立,见解析 (3)成立,见解析 【分析】(1)证明,推出,利用等腰三角形的性质,可得结论; (2) 仍然成立,过点D作DM//BC交AC于M,证明,可得结论 解析:(1)①见解析;②见解析 (2)成立,见解析 (3)成立,见解析 【分析】(1)证明,推出,利用等腰三角形的性质,可得结论; (2) 仍然成立,过点D作DM//BC交AC于M,证明,可得结论; (3)结论仍然成立,过点D作DM//BC交AC于M,证明,可得结论. (1) 证明:如图 ①∵为等边三角形, ∴, 又为中点, ∴ , ∵, ∴ , ∴, ∴; ②∵, ∴为等腰三角形, ∵, ∴. (2) 仍然成立,理由如下: 如图,过点D作DM//BC交AC于M ∵为等边三角形, ∴, ∴, ∵, ∴, ∴,为等边三角形, ∴, ∵, ∴, ∵, ∴, 在和中, , ∴, ∴, 而, ∴. (3) 的结论仍然成立,理由如下:如图为所求作图. 作交的延长线于, 易证为等边三角形, ,, 而, ∴, ∵,, ∴, ∵,, ∴, 在和中, , ∴, ∴, ∵, ∴. 【点睛】本题属于三角形的综合题,考查了等边三角形的性质,全等三角形的判定和性质,解题的关键是学会添加适当的辅助线,构造全等三角形解决问题. 9.(1) (2) (3)或 【分析】(1)根据整式得出,,,,根据关联点的定义得出,,即可得出的关联点坐标; (2)根据题意得出中的次数为次,设 ,计算出,进而表达出,,,的值,再根据的关 解析:(1) (2) (3)或 【分析】(1)根据整式得出,,,,根据关联点的定义得出,,即可得出的关联点坐标; (2)根据题意得出中的次数为次,设 ,计算出,进而表达出,,,的值,再根据的关联点为,列出关于 , 的等式,解出、的值即可; (3)设,根据题意求出,进而表达出,,,的值,再根据的关联点为,列出关于,的等式,解出、的值即可. (1) 解:(1), ,,,, ,, 的关联点坐标为:, 故笞案为:; (2) 整式是只含有字母的整式,整式是与的乘积, 是二次多项式,且的次数不能超过次, 中的次数为次, 设 , , ,,,, 整式的关联点为, ,, 解得:,, ; (3) 根据题意:设, , ,,,, 整式 的关联点为, ,, ,, , 把代入得: , 解得: , 或, 或. 【点睛】本题主要考查整式的乘法,掌握整式的乘法是解决问题的关键.- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 002 人教版 初二 上学 压轴 数学试卷 答案
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【a199****6536】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【a199****6536】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【a199****6536】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【a199****6536】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文