人教版初二上册期末强化数学试卷含答案[002].doc
《人教版初二上册期末强化数学试卷含答案[002].doc》由会员分享,可在线阅读,更多相关《人教版初二上册期末强化数学试卷含答案[002].doc(21页珍藏版)》请在咨信网上搜索。
人教版初二上册期末强化数学试卷含答案 一、选择题 1、在下列给出的几何图形中,是轴对称图形的个数有( ) A.1个 B.2个 C.3个 D.4个 2、石墨烯具有优异的光学、电学、力学特性,在材料学、微纳加工、能源、生物医学和药物传递等方面具有重要的应用前景,被认为是一种未来革命性的材料,石墨烯中每两个相邻碳原子间的键长为0.000000000142米 ,数字“0.000000000142”用科学记数法表示为( ) A. B. C. D. 3、下列运算正确的是( ) A.a2+a2=2a4 B.4a3•3a2=12a5 C.(3xy2)2=6x2y4 D.(﹣a3)2÷(﹣a2)3=1 4、函数中自变量x的取值范围是( ) A. B. C. D. 5、下列从左到右的变形,属于因式分解的是( ) A. B. C. D. 6、下列变形从左到右一定正确的是( ) A.= B.= C.= D.= 7、如图,能用ASA来判断△ACD≌△ABE,需要添加的条件是( ) A.∠AEB=∠ADC,AC=AB B.∠AEB=∠ADC,CD=BE C.AC=AB,AD=AE D.AC=AB,∠C=∠B 8、若关于x的分式方程的根是正数,则实数m的取值范围是( ) A.,且 B.且, C.,且 D.且, 9、如图,在△ABC中,∠B=74°,边AC的垂直平分线交BC于点D,交AC于点E,若AB+BD=BC,则∠BAC的度数为( ) A.74° B.69° C.65° D.60° 二、填空题 10、如图,已知、的角平分线、相交于点P,,,垂足分别为M、N.现有四个结论: ①平分;②;③;④. 其中结论正确的是( ) A.①②④ B.①④ C.①②③ D.②③④ 11、要使分式的值为0,则___________. 12、点P(1,-2)关于x轴的对称点的坐标为__________. 13、如图,数轴上有四条线段分别标有①②③④,若x为正整数,则表示的值的点落在线段_________上(填序号). 14、计算:_____________. 15、如图,在锐角三角形ABC中,AB=10,S△ABC=30,∠ABC的平分线BD交AC于点D,点M、N分别是BD和BC上的动点,则CM+MN的最小值是_____. 16、已知一个多边形的内角和是720度,则这个多边形是________边形. 17、若,则的值为______. 18、如图,在长方形ABCD中,,.延长BC到点E,使,连结DE,动点P从点B出发,以每秒2个单位长度的速度沿向终点A运动.设点P的运动时间为t秒,当t的值为______________时,和全等. 三、解答题 19、因式分解: (1) (2) 20、解下列方程: (1). (2) 21、如图,在△ABC中,AB>AC,点D在边AB上,且AC=DB,过点D作DE∥AC,并截取AB=DE,且点C、E在AB同侧,连接BE. 求证:BC=EB. 22、(1)如图1,∠ADC=120°,∠BCD=140°,∠DAB和∠CBE的平分线交于点,则∠AFB的度数是 ; (2)如图2,若∠ADC=,∠BCD=,且,∠DAB和∠CBE的平分线交于点,则∠AFB= (用含,的代数式表示); (3)如图3,∠ADC=,∠BCD=,当∠DAB和∠CBE的平分线AG,BH平行时,,应该满足怎样的数量关系?请说明理由; (4)如果将(2)中的条件改为,再分别作∠DAB和∠CBE的平分线,∠AFB与,满足怎样的数量关系?请画出图形并直接写出结论. 23、阅读下列材料: 关于的方程: 的解是,; (即)的解是,; 的解是,; 的解是;… (1)请观察上述方程与解的特征,比较关于的方程与它们的关系,猜想它的解是什么?并利用“方程的解”的概念进行验证; (2)由上述的观察、比较、猜想、验证,可以得出结论:如果方程的左边是未知数与其倒数的倍数的和,方程的右边的形式与左边完全相同,只是把其中的未知数换成了某个常数,那么这样的方程可以直接得解,请用这个结论解关于的方程:. 24、把代数式通过配凑等手段,得到局部完全平方式,再进行有关运算和解题,这种解题方法叫做配方法. 如:①用配方法分解因式:a2+6a+8, 解:原式=a2+6a+8+1-1=a2+6a+9-1 =(a+3)2-12= ②M=a2-2a-1,利用配方法求M的最小值. 解: ∵(a-b)2≥0,∴当a=1时,M有最小值-1、 请根据上述材料解决下列问题: (1)用配方法因式分解:. (2)若,求M的最小值. (3)已知x2+2y2+z2-2xy-2y-4z+5=0,求x+y+z的值. 25、如图,是等边三角形,点分别是射线、射线上的动点,点D从点A出发沿着射线移动,点E从点B出发沿着射线移动,点同时出发并且移动速度相同,连接. (1)如图①,当点D移动到线段的中点时,与的长度关系是:_______. (2)如图②,当点D在线段上移动但不是中点时,探究与之间的数量关系,并证明你的结论. (3)如图③,当点D移动到线段的延长线上,并且时,求的度数. 一、选择题 1、D 【解析】D 【分析】根据中心对称图形和轴对称图形的概念逐项分析即可,轴对称图形:平面内,一个图形沿一条直线折叠,直线两旁的部分能够完全重合的图形. 【详解】解:第1,2,3,5个图是轴对称图形,第4个不是轴对称图形, 故选D 【点睛】本题考查了轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,掌握轴对称图形的概念是解题的关键. 2、B 【解析】B 【分析】科学记数法的表示形式为的形式,其中,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于或等于10时,n是正整数;当原数的绝对值小于1时,n是负整数. 【详解】解:数字“0.000000000142”用科学记数法表示为. 故选:B. 【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为的形式,其中n为整数,正确确定a的值以及n的值是解决问题的关键. 3、B 【解析】B 【分析】利用合并同类项的法则,单项式乘单项式的法则,幂的乘方与积的乘方的法则,同底数幂的除法的法则对各项进行运算即可. 【详解】、,故本选项不符合题意; 、,故本选项符合题意; 、,故本选项不符合题意; 、,故本选项不符合题意; 故选:B. 【点睛】本题主要考查单项式乘单项式,同底数幂的除法,幂的乘方与积的乘方,合并同类项,解答的关键是对相应的运算法则的掌握. 4、C 【解析】C 【分析】求函数自变量的取值范围,就是求函数解析式有意义的条件,分式有意义的条件是:分母不等于0. 【详解】解:根据题意得x﹣1≠0, 解得x≠1. 故选:C. 【点睛】本题考查了函数自变量的取值范围,熟练掌握函数解析式的特点是关键. 5、B 【解析】B 【分析】根据因式分解是把一个多项式转化成几个整式积,可得答案. 【详解】解:A、是整式的乘法,故A不是因式分解,不符合题意; B、提取公因式分解因式,故B正确,符合题意. C、没转化成整式积的形式,故C不是因式分解,不符合题意; D、是整式的乘法,故D不是因式分解,不符合题意. 故选:B. 【点睛】本题考查了因式分解的定义,掌握因式分解就是把多项式转化成几个整式积的形式是解题关键. 6、D 【解析】D 【分析】根据分式的基本性质分式的基本性质:分式的分子和分母同时乘以或除以同一个不为0的整式,分式的值不变,解决即可. 【详解】解:A、≠,故不符合题意; B、当c≠0时= 成立,故不符合题意; C、≠,故不符合题意; D、=,故符合题意. 故选:D. 【点睛】本题考查分式的化简,解决本题的关键是熟练掌握分式的基本性质. 7、D 【解析】D 【分析】根据全等三角形的判定定理可进行排除选项. 【详解】解:由图形可知:∠A=∠A,则有: 当添加∠AEB=∠ADC,AC=AB,满足“AAS”判定△ACD≌△ABE,故A选项不符合题意; 当添加∠AEB=∠ADC,CD=BE,满足“AAS”判定△ACD≌△ABE,故B选项不符合题意; 当添加AC=AB,AD=AE,满足“SAS”判定△ACD≌△ABE,故C选项不符合题意; 当添加AC=AB,∠C=∠B,满足“ASA”判定△ACD≌△ABE,故D选项符合题意; 故选D. 【点睛】本题主要考查全等三角形的判定定理,熟练掌握全等三角形的判定定理是解题的关键. 8、D 【解析】D 【分析】利用解分式方程的一般步骤解出方程,根据题意列出不等式,解不等式即可. 【详解】解:方程两边同乘2(x﹣2)得: m=2(x-1)﹣4(x-2), 解得:x=. ∵≠2, ∴m≠2, 由题意得:>0, 解得:m<6, ∴实数m的取值范围是:m<6且m≠1、 故选:D. 【点睛】此题考查了分式方程的解、一元一次不等式的解法,解题的关键是掌握解分式方程的一般步骤、分式方程无解的判断方法. 9、B 【解析】B 【分析】连接AD,由线段垂直平分线的性质可得AD=CD,进而可得∠DAC=∠C,由等腰三角形的性质可得∠ABD=∠ADB=74°,由外角的性质和三角形内角和定理可求解. 【详解】解:如图,连接AD, ∵边AC的垂直平分线交BC于点D, ∴AD=CD, ∴∠DAC=∠C, ∵AB+BD=BC,BD+CD=BC, ∴CD=AB, ∴AD=AB, ∴∠ABD=∠ADB=74°, ∴∠C=37°, ∴∠BAC=180°﹣74°﹣37°=69°, 故选:B. 【点睛】本题考查了等腰三角形的性质,线段垂直平分线的性质,掌握等腰三角形的性质是本题的关键. 二、填空题 10、C 【解析】C 【分析】①过点P做PD⊥AC,根据AP平分∠EAC,可以得到MP=PD,再证明即可得出结论;②根据BP和CP都是角平分线,即可得到∠BPC=180°-∠PBC-∠PCB=180°-∠ABC-(180°-∠PCN)=-∠ABC+∠PCN=-∠ABC+∠ACN,根据外角定理,可以得到∠BPC=-∠ABC+(∠BAC+∠ABC)=∠BAC,即可得到结论;③由①可得,,故∠APC=∠MPN,根据∠PMB=∠PNB=90°,所以∠MPN=180°-∠ABC,代入得∠APC=90°﹣∠ABC,即可得出结论;④由①可得,,故S△APM+S△CPN=S△APC,即可得出结论. 【详解】解:①过点P做PD⊥AC,如图所示: ∵AP是∠MAC的平分线,PM⊥AE, ∴PM=PD, ∵BP是∠ABC的角平分线,PN⊥BF, ∴PM=PN, ∴PD=PN, ∵PC=PC, ∴, ∴∠PCD=∠PCN,故①正确; ②∵BP和CP分别是∠ABC和∠ACN的角平分线以及三角形内角和为180°, ∴∠BPC=180°-∠PBC-∠PCB=180°-∠ABC-(180°-∠PCN), =-∠ABC+∠PCN=-∠ABC+∠CAN, ∵外角定理, ∴∠BPC=-∠ABC+(∠BAC+∠ABC)=∠BAC,故②正确; ③由①可得,,且, ∴∠APC=∠MPN, ∵∠PMB=∠PNB=90°以及四边形内角和为360°, ∴∠MPN=180°-∠ABC, ∴∠APC=90°﹣∠ABC,故③正确; ③由①可得,,且, ∴S△APM+S△CPN=S△APC,故④错误; 则正确的有:①②③. 故选:C. 【点睛】本题主要考查了三角形的角平分线以及角度运算、全等三角形的判定与性质等知识,熟练掌握各性质以及严谨的推理是解决本题的关键. 11、3 【分析】根据分式的值为零的条件:分子等于0且分母不等于0即可得出答案. 【详解】解:根据题意得m-3=0,m+3≠0, ∴m=3, 故答案为:2、 【点睛】本题考查了分式的值为零的条件,掌握分式的值为零的条件:分子等于0且分母不等于0是解题的关键. 12、(1,2) 【分析】根据“关于x轴对称的点,横坐标相同,纵坐标互为相反数”解答. 【详解】解:点P(1,-2)关于x轴的对称点的坐标是(1,2). 故答案为:(1,2). 【点睛】本题考查了关于x轴、y轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数. 13、② 【分析】先根据分式的基本性质通分,约分对原分式进行化简,然后分析化简后的结果的范围即可得出答案. 【详解】 ∵x为正整数 ∴表示的值的点落在线段②上, 故答案为:②. 【点睛】本题主要考查分式的化简及估算,掌握分式的基本性质是解题的关键. 14、##-1.5 【分析】先根据同底数幂乘法的逆用将改写成,再根据积的乘方的逆用即可得. 【详解】解:原式, , , , , 故答案为:. 【点睛】本题考查了同底数幂乘法的逆用、积的乘方的逆用,熟练掌握各运算法则是解题关键. 15、6 【分析】过点C作CE⊥AB于点E,交BD于点M′,过点M′作M′N′⊥BC于N′,则CE即为CM+MN的最小值,再根据三角形的面积公式求出CE的长,即为CM+MN的最小值. 【详解】解:过点C作 【解析】6 【分析】过点C作CE⊥AB于点E,交BD于点M′,过点M′作M′N′⊥BC于N′,则CE即为CM+MN的最小值,再根据三角形的面积公式求出CE的长,即为CM+MN的最小值. 【详解】解:过点C作CE⊥AB于点E,交BD于点M′,过点M作MN′⊥BC于N′, ∵BD平分∠ABC,M′E⊥AB于点E,M′N′⊥BC于N ∴M′N′=M′E, ∴CE=CM′+M′E ∴当点M与M′重合,点N与N′重合时,CM+MN的最小值. ∵三角形ABC的面积为30,AB=10, ∴×10×CE=30, ∴CE=5、 即CM+MN的最小值为5、 故答案为5、 【点睛】本题考查的是轴对称-最短路线问题,解题的关键是学会利用垂线段最短解决最短问题,属于中考常考题型. 16、六 【分析】根据多边形内角和公式进行解答即可. 【详解】解:设多边形为n边形, 则(n-2)·180=720, 解得n=6 故答案为:六. 【点睛】本题考查多边形的内角和,掌握多边形的内角和公式(n 【解析】六 【分析】根据多边形内角和公式进行解答即可. 【详解】解:设多边形为n边形, 则(n-2)·180=720, 解得n=6 故答案为:六. 【点睛】本题考查多边形的内角和,掌握多边形的内角和公式(n-2)·180°是解题关键. 17、2023 【分析】根据完全平方公式把原式变形,把a的值代入计算即可. 【详解】解:∵, ∴, 故答案为:2022、 【点睛】本题考查的是二次根式的化简求值,熟记完全平方公式是解题的关键. 【解析】2023 【分析】根据完全平方公式把原式变形,把a的值代入计算即可. 【详解】解:∵, ∴, 故答案为:2022、 【点睛】本题考查的是二次根式的化简求值,熟记完全平方公式是解题的关键. 18、1或7##7或1 【分析】分两种情况进行讨论,根据题意得出BP=2t=2或AP=16-2t=2即可求得结果. 【详解】解:当点P在BC上时, ∵AB=CD, ∴当△ABP≌△DCE,得到BP=CE, 【解析】1或7##7或1 【分析】分两种情况进行讨论,根据题意得出BP=2t=2或AP=16-2t=2即可求得结果. 【详解】解:当点P在BC上时, ∵AB=CD, ∴当△ABP≌△DCE,得到BP=CE, 由题意得:BP=2t=2, ∴t=1, 当P在AD上时, ∵AB=CD, ∴当△BAP≌△DCE,得到AP=CE, 由题意得:AP=6+6-4﹣2t=2, 解得t=6、 ∴当t的值为1或7秒时.△ABP和△DCE全等. 故答案为:1或6、 【点睛】本题考查了全等三角形的判定,解题的关键在于能够利用分类讨论的思想进行求解. 三、解答题 19、(1) (2) 【分析】(1)先提取公因式m,然后用平方差公式因式分解即可; (2)先提取公因式x,然后再运用平方差公式因式分解即可. (1) 解: = =. (2) 解: = =. 【点睛】本题主 【解析】(1) (2) 【分析】(1)先提取公因式m,然后用平方差公式因式分解即可; (2)先提取公因式x,然后再运用平方差公式因式分解即可. (1) 解: = =. (2) 解: = =. 【点睛】本题主要考查了综合运用提取公因式和公式法因式分解,掌握提取公因式法和公式法是解答本题的关键. 20、(1)x= (2)无解 【分析】(1)方程两边同时乘以,化为整式方程,解方程组即可求解,最后要检验; (2)方程两边同时乘以,化为整式方程,解方程组即可求解,最后要检验. (1) 整理方程得: 去分 【解析】(1)x= (2)无解 【分析】(1)方程两边同时乘以,化为整式方程,解方程组即可求解,最后要检验; (2)方程两边同时乘以,化为整式方程,解方程组即可求解,最后要检验. (1) 整理方程得: 去分母:3-x=x-2, 2x=5, ∴x=. 经检验,x=是原方程的解. ∴原解方程的解为x=. (2) 两边都乘以(x2-1)得:(x+1)2-4=x2-1, x2+2x+1-4=x2-1, 2x=2, ∴x=1. 检验:当x=1时,x2-1=0, ∴x=1是原方程的增根. ∴原方程无解. 【点睛】本题考查了解分式方程,找到最简公分母,将分式方程转化为整式方程是解题的关键. 21、见解析. 【分析】由DE∥AC,根据平行线的性质得出∠EDB=∠A,又BD=CA,DE=AB,利用SAS即可证明△DEB≌△ABC,从而得到EB=BC. 【详解】证明:∵DE∥AC, ∴∠EDB=∠ 【解析】见解析. 【分析】由DE∥AC,根据平行线的性质得出∠EDB=∠A,又BD=CA,DE=AB,利用SAS即可证明△DEB≌△ABC,从而得到EB=BC. 【详解】证明:∵DE∥AC, ∴∠EDB=∠A. 在△DEB与△ABC中, , ∴△DEB≌△ABC(SAS), ∴EB=BC. 【点睛】本题考查了全等三角形的判定与性质,平行线的性质,解答的关键是熟记全等三角形的判定定理与性质. 22、(1)40°;(2);(3)若AG∥BH,则α+β=180°,理由见解析;(4),图见解析. 【分析】(1)利用四边形内角和定理得到∠DAB+∠ABC=360°-120°-140°=100°.再利用 【解析】(1)40°;(2);(3)若AG∥BH,则α+β=180°,理由见解析;(4),图见解析. 【分析】(1)利用四边形内角和定理得到∠DAB+∠ABC=360°-120°-140°=100°.再利用三角形的外角性质得到∠F=∠FBE-∠FAB,通过计算即可求解; (2)同(1),通过计算即可求解; (3)由AG∥BH,推出∠GAB=∠HBE.再推出AD∥BC,再利用平行线的性质即可得到答案; (4)利用四边形内角和定理得到∠DAB+∠ABC=360°-∠D-BCD=360°-α-β.再利用三角形的外角性质得到∠F=∠MAB-∠ABF,通过计算即可求解. 【详解】解:(1)∵BF平分∠CBE,AF平分∠DAB, ∴∠FBE=∠CBE,∠FAB=∠DAB. ∵∠D+∠DCB+∠DAB+∠ABC=360°, ∴∠DAB+∠ABC=360°-∠D-∠DCB =360°-120°-140°=100°. 又∵∠F+∠FAB=∠FBE, ∴∠F=∠FBE-∠FAB=∠CBE−∠DAB = (∠CBE−∠DAB) = (180°−∠ABC−∠DAB) =×(180°−100°) =40°. 故答案为:40°; (2)由(1)得:∠AFB= (180°−∠ABC−∠DAB), ∠DAB+∠ABC=360°-∠D-∠DCB. ∴∠AFB= (180°−360°+∠D+∠DCB) =∠D+∠DCB−90° =α+β−90°. 故答案为:; (3)若AG∥BH,则α+β=180°.理由如下: 若AG∥BH,则∠GAB=∠HBE. ∵AG平分∠DAB,BH平分∠CBE, ∴∠DAB=2∠GAB,∠CBE=2∠HBE, ∴∠DAB=∠CBE, ∴AD∥BC, ∴∠DAB+∠DCB=α+β=180°; (4)如图: ∵AM平分∠DAB,BN平分∠CBE, ∴∠BAM=∠DAB,∠NBE=∠CBE, ∵∠D+∠DAB+∠ABC+∠BCD=360°, ∴∠DAB+∠ABC=360°-∠D-BCD=360°-α-β, ∴∠DAB+180°-∠CBE=360°-α-β, ∴∠DAB-∠CBE=180°-α-β, ∵∠ABF与∠NBE是对顶角, ∴∠ABF=∠NBE, 又∵∠F+∠ABF=∠MAB, ∴∠F=∠MAB-∠ABF, ∴∠F=∠DAB−∠NBE =∠DAB−∠CBE = (∠DAB−∠CBE) = (180°−α−β) =90°-α−β. 【点睛】本题主要考查了三角形的外角性质、四边形内角和定理、平行线的性质、角平分线的定义.借助转化的数学思想,将未知条件转化为已知条件解题. 23、(1)的解是,,验证见解析 (2), 【分析】(1)认真审题,找到规律:的解为,,分别代入验证即可; (2)据规律解题即可. (1) 解:猜想 (m≠0)的解是,. 验证:当x=c时,方程左边=c+ 【解析】(1)的解是,,验证见解析 (2), 【分析】(1)认真审题,找到规律:的解为,,分别代入验证即可; (2)据规律解题即可. (1) 解:猜想 (m≠0)的解是,. 验证:当x=c时,方程左边=c+,方程右边=c+, ∴方程成立; 当x=时,方程左边=+c,方程右边=c+, ∴方程成立; ∴ (m≠0)的解是,; (2) 解:由得, ∴x-1=a-1,, ∴,. 经检验:它们都是原方程的解. 【点睛】本题考查了解分式方程,解此题的关键是理解题意,认真审题,寻找规律: (m≠0)的解是,. 24、(1);(2);(3)3、 【分析】(1)根据配方法,配凑出一个完全平方公式,再利用公式法进行因式分解即可; (2)先利用配方法,配凑出一个完全平方公式,再根据偶次方的非负性求解即可; (3)先利用 【解析】(1);(2);(3)3、 【分析】(1)根据配方法,配凑出一个完全平方公式,再利用公式法进行因式分解即可; (2)先利用配方法,配凑出一个完全平方公式,再根据偶次方的非负性求解即可; (3)先利用配方法进行因式分解,再利用偶次方的非负性求出x、y、z的值,然后代入求解即可. 【详解】(1)原式 ; (2) 当时,有最小值; (3) 解得 则. 【点睛】本题考查了利用配方法进行因式分解、偶次方的非负性等知识点,读懂题意,掌握配方法是解题关键. 25、(1) (2),证明见详解 (3) 【分析】(1)由题意可知,所以,由等边三角形及中点可知,而,所以可证,进一步可证; (2)猜测,在射线AB上截取,如图(见详解),利用等边三角形的性质及可知为等边 【解析】(1) (2),证明见详解 (3) 【分析】(1)由题意可知,所以,由等边三角形及中点可知,而,所以可证,进一步可证; (2)猜测,在射线AB上截取,如图(见详解),利用等边三角形的性质及可知为等边三角形,再利用边角边即可证明,最后根据全等三角形的性质即可证明; (3)按照第(2)问的思路,作出类似的辅助线:在射线CB上截取,如图(见详解),用同样的方法证明,再根据ED⊥DC,证出为等腰直角三角形,即可求出∠DEC的度数. (1) 解:, 证明过程如下:由题意可知, ∵D为AB的中点, ∴, ∴, ∴. ∵为等边三角形,, ∴. ∵, ∴, ∴, ∴. (2) 解:, 理由如下:在射线AB上截取,连接EF,如图所示, ∵为等边三角形, ∴,. ∵,, ∴为等边三角形, ∴,. 由题意知, ∴, ∴. 即. ∵, ∴. 在和中,, ∴, ∴DE与DC之间的数量关系是. (3) 如图,在射线CB上截取,连接DF,如图所示, ∵为等边三角形, ∴,. ∵,, ∴为等边三角形, ∴,, ∴. 由题意知, ∵, ∴, 即. ∵, ∴. 在和中,, ∴, ∴. ∵ED⊥DC, ∴为等腰直角三角形, ∴. 【点睛】本题主要考查了等腰三角形,等边三角形,以及全等三角形的判定及性质,能够作出辅助线,并合理利用等边三角形的性质是解题的关键.- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 002 人教版 初二 上册 期末 强化 数学试卷 答案
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【快乐****生活】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【快乐****生活】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【快乐****生活】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【快乐****生活】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文