人教版八年级数学下册期末试卷(提升篇)(Word版含解析).doc
《人教版八年级数学下册期末试卷(提升篇)(Word版含解析).doc》由会员分享,可在线阅读,更多相关《人教版八年级数学下册期末试卷(提升篇)(Word版含解析).doc(35页珍藏版)》请在咨信网上搜索。
人教版八年级数学下册期末试卷(提升篇)(Word版含解析) 一、选择题 1.如果二次根式有意义,那么的取值范围是( ) A. B. C. D. 2.下列数组中,能构成直角三角形的是( ) A.1,1, B.,, C.0.2,0.3,0.5 D.,, 3.下面关于平行四边形的说法中,不正确的是( ) A.对角线互相平分的四边形是平行四边形 B.有一组对边平行,一组对角相等的四边形是平行四边形 C.有一组对边相等,一组对角相等的四边形是平行四边形 D.有两组对角相等的四边形是平行四边形 4.一组数据为,,,,,则这一组数据的众数是( ) A. B. C. D. 5.如图,E,F,G,H分别在四边形ABCD在AB,BC,CD,DA的边上,对于四边形EFGH的形状,某班学生在一次数学活动课中,通过动手实践,探索出如下结论,其中错误的是( ) A.当E,F,G,H不是各边中点时,四边形EFGH不可能为菱形 B.当E,F,G,H不是各边中点时,四边形EFGH可以为平行四边形 C.当E,F,G,H是各边中点,且AC=BD时,四边形EFGH为菱形 D.当E,F,G,H是各边中点,且AC⊥BD时,四边形EFGH为矩形 6.如图,在菱形纸片ABCD中,∠A=60°,点E在BC边上,将菱形纸片ABCD沿DE折叠,点C落在AB边的垂直平分线上的点C′处,则∠DEC的大小为( ) A.30° B.45° C.60° D.75° 7.如图,在正方形ABCD中,AP∥CQ,AP=CQ,∠BQC=90°,若正方形ABCD的面积为64,且AP+BQ=10,则PQ的长为( ) A. B.2 C. D.2 8.如图,在平面直角坐标系中,一次函数的图象交轴、轴于、两点,以为边在直线右侧作正方形,连接,过点作轴于点,交于点,连接.则下列说法中正确的是( ) A.点的坐标为 B. C.点的坐标为 D.的周长为 二、填空题 9.若二次根式有意义,则x的取值范围是________. 10.一个菱形的两条对角线的长分别为3和6,这个菱形的面积是______. 11.如图,在Rt△ABC中,∠C=90°,AD平分∠CAB,BC=12cm,AC=9cm,那么BD的长是_____. 12.如图,在中,,,,为边上一动点,于,于,为的中点,则的最小值为________. 13.在平面直角坐标系中,一次函数y=kx+b的图象与直线y=2x平行,且经过点A(1,6),则一次函数y=kx+b的解析式为 ____. 14.如图,在△ABC中,AD,CD分别平分∠BAC和∠ACB,AE∥CD,CE∥AD.若从三个条件:①AB=AC;②AB=BC;③AC=BC中,选择一个作为已知条件,则能使四边形为菱形的是__(填序号). 15.在平面直角坐标系中,矩形OABC的顶点O为坐标原点,顶点A,C分别在x轴和y轴上,OA=4,OC=3,D为AB边的中点,E是OA边上的一个动点,当△CDE的周长最小时,则点E的坐标为_____. 16.如图,沿直线翻折后能与重合,沿直线翻折后能与重合,与相交于点,若,,,则__________. 三、解答题 17.计算: (1)+(﹣2)﹣2﹣+(π﹣2)0; (2)(﹣2)2×+6. 18.有一只喜鹊在一棵3m高的小树上觅食,它的巢筑在距离该树24m的一棵大树上,大树高14m,且巢离树顶部1m.当它听到巢中幼鸟的叫声,立即赶过去,如果它飞行的速度为5m/s,那它至少需要多少时间才能赶回巢中? 19.在所给的9×9方格中,每个小正方形的边长都是1,按要求画平行四边形,使它的四个顶点以及对角线交点都在方格的顶点上. (1)在图甲中画一个平行四边形,使它的周长是整数. (2)在图乙中画一个平行四边形,使它的周长是无理数. 20.如图,点D为的边BC的中点,过点A作,且,连接DE,CE. (1)求证:; (2)若,判断四边形ADCE的形状,并说明理由; (3)若要使四边形ADCE为正方形,则应满足什么条件? (直接写出条件即可,不必证明). 21.同学们,我们以前学过完全平方公式,a2±2ab+b2=(a±b)2,你一定熟练掌握了吧?现在我们又学习了平方根,那么所有的正数和0都可以看作是一个数的平方,比如:2=,3=,7=,02=0,那么我们利用这种思想方法计算下面的题: 例:求3的算术平方根 解:3=+1=+12= ∴3的算术平方根是 同学们,你看明白了吗?大胆试一试,相信你能做正确! (1) (2) (3). 22.某电影院普通票价20元/张,暑假为了促销,新推出两种优惠卡:①金卡售价600元/张,每次凭卡不再收费.②银卡售价150元/张,每次凭卡另收10元.暑假普通票正常出售,两种优惠卡仅限暑假使用,不限次数.设看电影x次时,所需总费用为y元. (1)分别写出选择银卡、普通票消费时,y与x之间的函数关系式; (2)在同一坐标系中,若三种消费方式对应的函数图象如图所示,请求出点A,B,C的坐标; (3)请根据函数图象,提出1条合算的消费建议. 23.在平面直角坐标系中,已知,点,点落在第二象限,点是轴正半轴上一动点, (1)如图1,当时,将沿着直线翻折,点落在第一象限的点处. ①若轴,求点的坐标; ②如图2,当点运动到中点时,连接,请判断四边形的形状,并说明理由; ③如图3,在折叠过程中,是否存在点,使得是以为腰的等暖三角形﹖若存在,求出对应点的坐标.若不存在.请说明理由; (2)如图4,将沿着翻折.得到.(点的对应点为点),若点到轴的距离不大于,直接写出的取值范围.(不需要解答过程) 24.如图,在平面直角坐标系中,点的坐标为,点在轴正半轴上(),把线段绕点顺时针旋转得到线段,过点分别向轴,轴作垂线,垂足为,. (1)求四边形的面积; (2)若,求直线的表达式; (3)在(2)的条件下,点为延长线上一点,连接,作的平分线,交轴于点,若为等腰三角形,求点的坐标. 25.类比等腰三角形的定义,我们定义:有三条边相等的凸四边形叫做“准等边四边形”. (1)已知:如图1,在“准等边四边形”ABCD中,BC≠AB,BD⊥CD,AB=3,BD=4,求BC的长; (2)在探究性质时,小明发现一个结论:对角线互相垂直的“准等边四边形”是菱形.请你判断此结论是否正确,若正确,请说明理由;若不正确,请举出反例; (3)如图2,在△ABC中,AB=AC=,∠BAC=90°.在AB的垂直平分线上是否存在点P,使得以A,B,C,P为顶点的四边形为“准等边四边形”. 若存在,请求出该“准等边四边形”的面积;若不存在,请说明理由. 26.(解决问题)如图1,在中,,于点.点是边上任意一点,过点作,,垂足分别为点,点. (1)若,,则的面积是______,______. (2)猜想线段,,的数量关系,并说明理由. (3)(变式探究)如图2,在中,若,点是内任意一点,且,,,垂足分别为点,点,点,求的值. (4)(拓展延伸)如图3,将长方形沿折叠,使点落在点上,点落在点处,点为折痕上的任意一点,过点作,,垂足分别为点,点.若,,直接写出的值. 【参考答案】 一、选择题 1.B 解析:B 【分析】 二次根式有意义,则,据此解题. 【详解】 解:二次根式有意义,则, , 故选:B. 【点睛】 本题考查二次根式有意义的条件,是基础考点,掌握相关知识是解题关键. 2.B 解析:B 【分析】 如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形.依据勾股定理的逆定理,只要验证两短边的平方和是否等于最长边的平方即可. 【详解】 解:A、12+12≠()2,不能构成直角三角形; B、()2+()2=()2,能构成直角三角形; C、0.22+0.32≠0.52,不能构成直角三角形; D、()2+()2≠()2,不能构成直角三角形; 故选:B. 【点睛】 本题考查了勾股定理的逆定理的应用.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可. 3.C 解析:C 【解析】 【分析】 根据平行四边形的判定分别对各个选项进行判断即可. 【详解】 A、∵对角线互相平分的四边形是平行四边形, ∴选项A不符合题意; B、∵有一组对边平行,一组对角相等的四边形是平行四边形, ∴选项B不符合题意; C、∵有一组对边相等,一组对角相等的四边形不一定是平行四边形, ∴选项C符合题意; D、∵有两组对角相等的四边形是平行四边形, ∴选项D不符合题意; 故选:C. 【点睛】 本题考查了平行四边形的判定;熟练掌握平行四边形的判定方法是解题的关键. 4.C 解析:C 【解析】 【分析】 根据众数的定义求解即可,众数为一组数据中出现次数最多的数. 【详解】 解:这组数中4出现了3次,出现次数最多,众数为4 故选C. 【点睛】 此题考查了众数的有关定义,熟练掌握众数的定义是解题的关键. 5.A 解析:A 【分析】 连接四边形各边中点所得的四边形必为平行四边形,根据中点四边形的性质进行判断即可. 【详解】 解:A、如图所示,若EF=FG=GH=HE,则四边形EFGH为菱形,此时E、 F、G、H不是四边形ABCD各边中点,此选项错误,符合题意; B、如图所示,若EF∥HG,EF=HG,则四边形EFGH为平行四边形,E、 F、G、H不是四边形ABCD各边中点,此选项正确,不符合题意; C、当E、F、G、H是四边形ABCD各边中点,且AC=BD时,存在EF=FG=GH=HE,故四边形EFGH为菱形,此选项正确,不符合题意; D、当E、F、G、H是四边形ABCD各边中点,且AC⊥BD时,存在∠EFG=∠FGH=∠GHE=90°,故四边形EFGH为矩形,此选项正确,不符合题意; 故选A. 【点睛】 本题主要考查了平行四边形、菱形、矩形的判定,解题的关键在于能够熟练掌握相关知识进行判断求解. 6.D 解析:D 【解析】 【分析】 连接,由菱形的性质及,得到为等边三角形,为的中点,利用三线合一得到为角平分线,得到,,,进而求出,由折叠的性质得到,利用三角形的内角和定理即可求出所求角的度数. 【详解】 解:连接,如图所示: ∵四边形为菱形, ∴, ∵, ∴为等边三角形,,, ∵为的中点, ∴为的平分线,即, ∴, ∴由折叠的性质得到, 在中,. 故选:D 【点睛】 此题考查了翻折变换(折叠问题),菱形的性质,等边三角形的性质,以及三角形内角和定理,熟练掌握折叠的性质是解本题的关键. 7.D 解析:D 【解析】 【分析】 延长AP交BQ于点E,证明△ABE≌△BCQ可得△PEQ为等腰直角三角形,PE=QE=BQ﹣AP,由四边形面积为64可得BQ2+AP2=64,再由勾股定理得PQ=. 【详解】 解:延长AP交BQ于点E, ∵四边形ABCD为正方形, ∴AB=BC,∠DAB=∠ABC=90°, ∵AP∥CQ,∠BQC=90°, ∴∠AEB=∠AEQ=90°, ∵∠QBC+∠ABE=∠ABE+∠BAE=90°, ∴∠QBC=∠BAE, 在Rt△ABE和Rt△BCQ中, , ∴Rt△ABE≌Rt△BCQ(AAS), ∴BE=CQ,AE=BQ, ∵AP=CQ, ∴PE=AE﹣AP=BQ﹣AP, QE=BQ﹣BE=BQ﹣CQ=BQ﹣AP, ∵正方形ABCD的面积为64, ∴AB=BC==8, ∵AP=CQ,AP+BQ=10, ∴CQ+BQ=10, ∵∠BQC=90° 在Rt△BQC中, BQ2+CQ2=BC2=64, 即BQ2+AP2=64, ∵(AP+BQ)2=AP2+BQ2+2AP•BQ=64+2AP•BQ=100, ∴AP•BQ=18, 在Rt△PEQ中,由勾股定理得, PQ=. 故选:D. 【点睛】 本题主要考查了正方形的性质、全等三角形的判定与性质、等腰三角形的性质和勾股定理,准确计算是解题的关键. 8.C 解析:C 【分析】 根据一次函数解析式,令x、y分别为0,即可求出A、B两点坐标,再利用勾股定理即可算出AB的长,过点D作x轴垂线交x轴于点H,构造三角形全等即可推出点D的坐标;求出BD的解析式,可得点E的坐标,可得出AF≠EF,则∠EAF≠45°,过点C作y轴垂线交y轴于点N,构造三角形全等即可推出点C的坐标;将AE+EF利用全等转换为CF即可求出△AEF的周长. 【详解】 解:∵一次函数的图象交x轴、y轴与A、B两点, ∴当x=0,则y=12,故B(0,12), 当y=0,则x=5,故A(5,0), ∴AO=5,BO=12, 在Rt△AOB中,AB==13, 故AB的长为13; 过点D作x轴垂线交x轴于点H,过点C作y轴垂线交y轴于点N,如图所示: ∵四边形ABCD是正方形, ∴∠ABC=∠BAD=90°,AB=DA=BC=CD, ∴∠OAB+∠OBA=∠OAB+∠HAD=90°, ∴∠OBA=∠HAD, 在△OBA和△HAD中, , ∴△OBA≌△HAD(AAS), ∴DH=AO=5,AH=BO=12, ∴OH=OA+AH=17, ∴点D的坐标为(17,5),A错误,不符合题意; ∵∠CBN+∠NCB=∠CBN+∠ABO=90°, ∴∠NCB=∠ABO, 在△CNB和△BOA中, , ∴△CNB≌△BOA(AAS), ∴BN=AO=5,CN=BO=12, 又∵CF⊥x轴, ∴CF=BO+BN=12+5=17, ∴C的坐标为(12,17),C正确,符合题意; 设直线BD的解析式为y=kx+b, ∴,解得:, ∴直线BD的解析式为, ∵OF=CN=12, ∴AF=12-5=7,E点的坐标为(12,), ∴EF=≠AF, ∵CF⊥x轴, ∴∠EAF≠45°,B错误,不符合题意; 在△CDE和△ADE中, , ∴△CDE≌△ADE(SAS), ∴AE=CE, ∴AE+EF=CF=17,AF=OF-AO=12-5=7, ∴C△AEF=AE+EF+AF=CF+AF=17+7=24,D错误,不符合题意. 故选:C. 【点睛】 本题考查一次函数性质的综合应用,熟练一次函数图象的基本性质并能结合全等三角形逐步推理细心运算是解题关键. 二、填空题 9. 【解析】 【分析】 根据二次根式被开放数为非负数,分式的分母不为零求解即可. 【详解】 解:∵二次根式有意义, ∴2-x>0,解得:x<2. 故答案为:x<2. 【点睛】 本题考查了二次根式有意义的条件,熟练掌握二次根式被开放数为非负数是解题的关键. 10.9 【解析】 【分析】 根据菱形面积的计算公式:两对角线乘积的一半,即可计算出面积. 【详解】 故答案为:9. 【点睛】 本题考查了菱形的性质及面积计算,关键是掌握菱形面积等于两对角线乘积的一半. 11.D 解析:cm 【解析】 【分析】 作DE⊥AB于E,根据勾股定理求出AB,证明△ACD≌△AED,根据全等三角形的性质得到CD=ED,AE=AC=9,根据角平分线的性质、勾股定理列式计算即可. 【详解】 解:作DE⊥AB于E, 由勾股定理得,AB===15, 在△ACD和△AED中, , ∴△ACD≌△AED(AAS) ∴CD=ED,AE=AC=9, ∴BE=AB﹣AE=6, 在Rt△BED中,BD2=DE2+BE2,即BD2=(12﹣BD)2+62, 解得,BD=, 故答案为:cm. 【点睛】 此题考查的是勾股定理和全等三角形的判定及性质,掌握利用勾股定理解直角三角形和全等三角形的判定及性质是解决此题的关键. 12.B 解析: 【分析】 根据勾股定理的逆定理可以证明∠BAC=90°;根据直角三角形斜边上的中线等于斜边的一半,则AM=EF,要求AM的最小值,即求EF的最小值;根据三个角都是直角的四边形是矩形,得四边形AEPF是矩形,根据矩形的对角线相等,得EF=AP,则EF的最小值即为AP的最小值,根据垂线段最短,知:AP的最小值即等于直角三角形ABC斜边上的高. 【详解】 解:如图,连接AP, ∵在△ABC中,AB=3,AC=4,BC=5, ∴AB2+AC2=BC2, 即∠BAC=90°. 设Rt△ABC的斜边BC上的高为h. ∴h=, 又∵PE⊥AB于E,PF⊥AC于F, ∴四边形AEPF是矩形, ∴EF=AP. ∵M是EF的中点, ∴AM=EF=AP. 因为AP的最小值即为直角三角形ABC斜边上的高,即等于, ∴AM的最小值是×=. 故答案为:. 【点睛】 本题综合运用了勾股定理的逆定理、矩形的判定及性质、直角三角形的性质.要能够把要求的线段的最小值转换为便于分析其最小值的线段. 13.A 解析:y=2x+4 【分析】 根据函数y=kx+b的图象与直线y=2x平行,且经过点A(1,6),即可得出k和b的值,即得出了函数解析式. 【详解】 解:∵函数y=kx+b的图象与直线y=2x平行, ∴k=2, 又∵函数y=2x+b的图象经过点A(1,6), ∴6=2+b, ∴b=4, ∴一次函数的解析式为y=2x+4, 故答案为y=2x+4. 【点睛】 本题考查了一次函数的性质,待定系数法求解析式,理解两条直线平行,解析式中的值相等是解题的关键. 14.A 解析:② 【解析】 【分析】 根据②作条件,先证明四边形ADCE是平行四边形,再利用邻边相等,得到四边形ADCE是菱形. 【详解】 解:当BA=BC时,四边形ADCE是菱形. 理由:∵AE∥CD,CE∥AD, ∴四边形ADCE是平行四边形, ∵BA=BC, ∴∠BAC=∠BCA, ∵AD,CD分别平分∠BAC和∠ACB, ∴∠DAC=∠DCA, ∴DA=DC, ∴四边形ADCE是菱形. 【点睛】 本题考查的知识点是菱形的证明,解题关键是熟记菱形的性质. 15.(,0) 【分析】 作点D关于x轴对称点F,根据题意求出D点的坐标,从而得到F点的坐标,同时连接CF,则CF与x轴的交点即为所求E点,此时满足△CDE的周长最小,利用CF的解析式求解即可. 【详解】 解析:(,0) 【分析】 作点D关于x轴对称点F,根据题意求出D点的坐标,从而得到F点的坐标,同时连接CF,则CF与x轴的交点即为所求E点,此时满足△CDE的周长最小,利用CF的解析式求解即可. 【详解】 解:作点D关于x轴对称点F,如图, ∵四边形OABC是矩形, ∴OC=BD=3,点C的坐标为, ∵D为AB边的中点, ∴AD=, ∵OA=4, ∴D点的坐标为,则F点的坐标为, 根据轴对称的性质可得:EF=ED, ∴C△CDE=CD+CE+DE=CD+CE+EF,其中CD为定值, 当CE+EF值最小时,△CDE周长最小,此时点C,E,F三点共线, 设直线CF的解析式为:, 将和代入解析式得: ,解得:, ∴直线CF的解析式为:, 令,得:, 解得:, ∴点E坐标(,0), 故答案为:. 【点睛】 本题考查一次函数与轴对称的综合运用,理解最短路径的求解方法,熟悉待定系数法求一次函数解析式是解题关键. 16.【分析】 作如图的辅助线,根据折叠的性质以及等腰三角形三线合一的性质知BG⊥CD,DG=GC,设DG=x,AG=y,利用勾股定理得到方程组求解可得DG= AG=1,∠ADC=∠ACD=45°,∠D 解析: 【分析】 作如图的辅助线,根据折叠的性质以及等腰三角形三线合一的性质知BG⊥CD,DG=GC,设DG=x,AG=y,利用勾股定理得到方程组求解可得DG= AG=1,∠ADC=∠ACD=45°,∠DAC=90°,同理BH=AH=1,∠AFB=∠ABF=45°,∠BAF=90°,利用,求得AE的长,即可求解. 【详解】 解:连接CD、BF,延长BA交CD于G,延长CA交BF于H, ∵△ABC沿直线AB翻折后能与△ABD重合, ∴BC=BD,∠CBA=∠DBA,AC=AD=, 根据等腰三角形三线合一的性质知BG⊥CD,DG=GC, 设DG=x,AG=y, 在Rt△ADG中,①, 在Rt△BDG中,②, ②-①得:, 则(负值已舍), ∴DG= AG=1,∠ADC=∠ACD=45°, ∴∠DAC=90°, 同理,△ABC沿直线AC翻折后能与△AFC重合, ∴CH⊥BF,BH=HF, 设BH=m,AH=n, 在Rt△ABH中,③, 在Rt△CBH中,④, 由③④得:, ∴BH=AH=,∠AFB=∠ABF=45°, ∴∠BAF=90°, ∵∠EAC=∠FHC=90°, ∴四边形为梯形, ∵, ∴, 即, ∴AE=, ∴DE=AD-AE=. 故答案为:. 【点睛】 本题考查了折叠的性质,勾股定理,等腰三角形的性质,解题的关键是灵活运用所学知识解决问题. 三、解答题 17.(1)4;(2) 【分析】 (1)根据二次根式的性质,零指数幂和负指数幂的性质计算即可; (2)根据二次根式的乘法运算计算即可; 【详解】 (1)原式; (2)原式; 【点睛】 本题主要考查了二次根 解析:(1)4;(2) 【分析】 (1)根据二次根式的性质,零指数幂和负指数幂的性质计算即可; (2)根据二次根式的乘法运算计算即可; 【详解】 (1)原式; (2)原式; 【点睛】 本题主要考查了二次根式的混合运算,结合负指数幂,零指数幂计算是解题的关键. 18.它至少需要5.2s才能赶回巢中. 【分析】 根据题意,构建直角三角形,利用勾股定理解答. 【详解】 解:如图,由题意知AB=3,CD=14-1=13,BD=24. 过A作AE⊥CD于E.则CE=1 解析:它至少需要5.2s才能赶回巢中. 【分析】 根据题意,构建直角三角形,利用勾股定理解答. 【详解】 解:如图,由题意知AB=3,CD=14-1=13,BD=24. 过A作AE⊥CD于E.则CE=13-3=10,AE=24, ∴在Rt△AEC中, AC2=CE2+AE2=102+242. ∴AC=26,26÷5=5.2(s). 答:它至少需要5.2s才能赶回巢中. 【点睛】 本题考查了勾股定理的应用.关键是构造直角三角形,同时注意:时间=路程÷速度. 19.(1)见解析;(2)见解析 【解析】 【分析】 (1)作边长为3,5的平行四边形即可; (2)作边长为,的平行四边形即可; 【详解】 解(1)根据网格作出边长为3,4,5的直角三角形,再以4为公共边 解析:(1)见解析;(2)见解析 【解析】 【分析】 (1)作边长为3,5的平行四边形即可; (2)作边长为,的平行四边形即可; 【详解】 解(1)根据网格作出边长为3,4,5的直角三角形,再以4为公共边作边长为3,4,5的直角三角形,如下图: (2)借助网格,作边长为、、的三角形,再以为公共边作边长为、、的三角形,如下图: 【点睛】 此题主要考查了应用设计与作图以及勾股定理和平行四边形的判定,正确借助网格是解题关键. 20.(1)见解析;(2)矩形,见解析;(3),且. 【分析】 (1)根据D是BC的中点,,可得,即可求证; (2)根据等腰三角形“三线合一”,可得到,即可求解; (3)根据,且,可得 , ,从而得到,即 解析:(1)见解析;(2)矩形,见解析;(3),且. 【分析】 (1)根据D是BC的中点,,可得,即可求证; (2)根据等腰三角形“三线合一”,可得到,即可求解; (3)根据,且,可得 , ,从而得到,即可求解. 【详解】 (1)证明:因为D是BC的中点, 所以, 因为, 所以, 因为, 所以四边形ADCE是平行四边形, 所以; (2)若,则四边形ADCE是矩形,理由如下: 因为,且D是BC的中点, 所以, 所以, 因为四边形是平行四边形, 所以四边形是矩形; (3),且.理由如下: 由(2)得:四边形是矩形, ∵,且D是BC的中点, ∴ , , ∵, ∴ , ∴, ∴, ∴ , ∴四边形ADCE为正方形. 【点睛】 本题主要考查了平行四边形,矩形,正方形的判定,等腰三角形的性质,熟练掌握相关知识点是解题的关键. 21.(1)+1;(2)4+;(3)﹣1. 【解析】 【详解】 试题分析:根据完全平方公式的特点以及材料中所给的方法,通过仔细观察对所要求的式子中的数进行恰当拆分即可得. 试题解析:(1); (2)=4+ 解析:(1)+1;(2)4+;(3)﹣1. 【解析】 【详解】 试题分析:根据完全平方公式的特点以及材料中所给的方法,通过仔细观察对所要求的式子中的数进行恰当拆分即可得. 试题解析:(1); (2)=4+; (3) =++++ =﹣1+﹣+﹣+﹣+﹣ =﹣1. 22.(1)y=10x+150,y=20x;(2)A(0,150),B(15,300),C(45,600);(3)当0<x<15时,选择普通消费更划算;当x=15时,银卡,普通票总费用相同,均比金卡划算; 解析:(1)y=10x+150,y=20x;(2)A(0,150),B(15,300),C(45,600);(3)当0<x<15时,选择普通消费更划算;当x=15时,银卡,普通票总费用相同,均比金卡划算;当15<x<45时,银卡消费更划算;当x=45时,金卡,银卡的总费用相同,均比普通票划算;当x>45时,金卡消费更划算. 【分析】 (1)弄清题意,结合图象易知普通票为正比例函数图象,银卡为一次函数图象,依题意写出即可; (2)银卡函数关系式y=10x+150,令x=0时即可求出A点坐标,令银卡函数与普通卡函数关系式相等即可找到B点坐标,令银卡函数关系式y=600,即可找到C点坐标; (3)结合图象分当0<x<15时,x=15时,15<x<45时,x=45时,x>45时五段,依次分析出最合算的消费建议即可. 【详解】 解:(1)由题意得,选择银卡时,y与x之间的函数关系式为:y=10x+150; 选择普通票时,y与x之间的函数关系式为:y=20x; (2)由题意可得: 当y=10x+150,x=0时,y=150, 故A(0,150), 当10x+150=20x, 解得:x=15, 则y=300, 故B(15,300), 当y=10x+150=600时, 解得:x=45, 故C(45,600); (3)如图所示,由A、B、C三点坐标可得: 当0<x<15时,选择普通消费更划算; 当x=15时,银卡,普通票总费用相同,均比金卡划算; 当15<x<45时,银卡消费更划算; 当x=45时,金卡,银卡的总费用相同,均比普通票划算; 当x>45时,金卡消费更划算. 【点睛】 本题考查一次函数应用,重点掌握一次函数的基本性质熟练应用,能结合实际灵活运用是解题的关键. 23.(1)①,;②四边形ABDE是平行四边形;理由见解析;③存在,D(0,2.5);(2) 【分析】 (1)①由,求出和长度,由轴,求出点的坐标; ②延长交轴于点,连接,得到正方形,从而,且,故得证四边 解析:(1)①,;②四边形ABDE是平行四边形;理由见解析;③存在,D(0,2.5);(2) 【分析】 (1)①由,求出和长度,由轴,求出点的坐标; ②延长交轴于点,连接,得到正方形,从而,且,故得证四边形是平行四边形; ③利用等腰三角形的定义和翻折的特征得到中垂线,再得证三角形全等,从而求出点的坐标; (2)分析清楚和点到轴的距离之间的关系,然后当到轴的距离为3时,求出的值,最后得出的取值范围. 【详解】 解:(1)当时,, ①,, ,, , 将沿着直线翻折后轴,如图(1), , , ,. 故答案为:,. ②四边形是平行四边形,理由如下: 延长交轴于点,连接, ,点是的中点, , , ,, , , , 由折叠得:, 四边形是正方形, ,, 四边形是平行四边形. ③如图(3),连接,延长交于点, 由折叠可知,,, 是的中垂线, ,, 是以、为腰的等腰三角形, , , , 设,则:, , , 解得:, , 存在点,使得是以、为腰的等腰三角形. (3)如图(4),过点作轴于点,作轴于点,则,四边形是矩形, 由折叠得:, 当到轴的距离为3,即时, ,, , , , , 解得:, 越小,点越向左,越大, 越小,越小,即点到轴的距离越小, 点到轴的距离不大于3, . 【点睛】 本题考查了平行的性质、勾股定理、翻折的特征、等腰三角形的性质、全等的判定和性质、三角形的面积等知识点.要求学生能够熟练应用勾股定理求线段长度,应用等面积法列方程求解,同时学会数学结合的思想解题.对于的取值范围,要会分析和点到轴的距离之间的关系. 24.(1);(2);(3)或或. 【解析】 【分析】 (1)连接,作,交的延长线于点,可知,,再根据,可得,又因为,得到,即可证明,所以可得,再计算的长度即可求解; (2)设,即可表示出、的长度,根据求 解析:(1);(2);(3)或或. 【解析】 【分析】 (1)连接,作,交的延长线于点,可知,,再根据,可得,又因为,得到,即可证明,所以可得,再计算的长度即可求解; (2)设,即可表示出、的长度,根据求出的值,即可得到点的坐标,再设直线的解析式为,将、两点的坐标代入即可; (3)设点坐标为,因为平分,所以,最后分三种情况进行讨论即可. 【详解】 (1)∵, ∴, 连接,作,交的延长线于点,如图, ∴, ∴, ∵, 即, 在中,, ∵ , ∴, 又∵, ∴, ∵, ∴, ∵, ∴, ∴, ∴, ∴, ∴; (2) 设, 由(1)可知,, ∵, ∴, ∵与都是直角三角形,且, ∴, ∴, ∴,, ∵, ∴, 解得, ∴, 又∵, 设直线的解析式为, 则,解得, ∴直线的解析式为; (3)设点坐标为, ∵平分, ∴, ①当时,则, ∴, ∴与重合, ∴; ②当时, 过点作,垂足为, 则,, 又∵,, ∴, ∴, ∴, 在中,由勾股定理可求得, ∴, 在中,, 在中,, ∴, ∴, 解得, ∴; ③当时,延长交轴于点, ∵,且 ∴, ∴, 过点作,垂足为, 则,, ∴, ∴, ∴, 在中,由勾股定理可求得, ∴, ∴, ∵, 设直线的解析式为, 则,解得, ∴直线解析式为, 当时,解得, ∴. 综上所述,当为等腰三角形时,点坐标为或或. 【点睛】 本题是四边形的综合题,考查了矩形的性质、三角形内角和定理、全等三角形的性质和判定、勾股定理、待定系数法求函数解析式等知识点,解题要注意分类讨论的思想. 25.(1)5;(2)正确,证明详见解析;(3)存在,有四种情况,面积分别是:,,, 【分析】 (1)根据勾股定理计算BC的长度, (2)根据对角线互相垂直平分的四边形是菱形判断, (3)有四种情况,作辅 解析:(1)5;(2)正确,证明详见解析;(3)存在,有四种情况,面积分别是:,,, 【分析】 (1)根据勾股定理计算BC的长度, (2)根据对角线互相垂直平分的四边形是菱形判断, (3)有四种情况,作辅助线,将四边形分成两个三角形和一个四边形或两个三角形,相加可得结论. 【详解】 (1)∵BD⊥CD ∴∠BDC=90°,BC>CD ∵在“准等边四边形”ABCD中,BC≠AB, ∴AB=AD=CD=3, ∵BD=4, ∴BC=, (2)正确. 如图所示: ∵AB=AD ∴ΔABD是等腰三角形. ∵AC⊥BD. ∴AC垂直平分BD. ∴BC=CD ∴CD =AB=AD=BC ∴四边形 ABCD是菱形. (3)存在四种情况, 如图2,四边形ABPC是“准等边四边形”,过C作于F,则, ∵EP是AB的垂直平分线, ∴ , ∴四边形AEFC是矩形, 在中, , ∴ , ∵ ∴ ∴ 如图4,四边形ABPC是“准等边四边形”, ∵ , ∴是等边三角形, ∴ ; 如图5,四边形ABPC是“准等边四边形”, ∵ ,PE是AB的垂直平分线, ∴ E是AB的中点, ∴ , ∴ ∴ 如图6,四边形ABPC是“准等边四边形”,过P作于F,连接AP, ∵, ∴, ∴ 【点睛】 本题考查了四边形综合题,矩形和菱形的判定和性质,“准等边四边形”的定义等知识,解题的关键是理解题意,学会添加常用辅助线,构造直角三角形和矩形解题,学会用分类讨论的思想解决问题,难度较大,属于中考压轴题. 26.(1)15,8;(2),见解析;(3);(4)4 【分析】 解决问题(1)只需运用面积法:,即可解决问题; (2)解法同(1); (3)连接、、,作于,由等边三角形的性质得出,由勾股定理得出,得出的 解析:(1)15,8;(2),见解析;(3);(4)4 【分析】 解决问题(1)只需运用面积法:,即可解决问题; (2)解法同(1); (3)连接、、,作于,由等边三角形的性质得出,由勾股定理得出,得出的面积,由的面积的面积的面积的面积,即可得出答案; (4)过点作,垂足为,易证,过点作,垂足为,由解决问题(1)可得,易证,,只需求出即可. 【详解】 解:(1)∵,,, ∴的面积, ∵,,, 且, ∴, ∵, ∴. 故答案为:15,8. (2)∵,,, 且, ∴, ∵, ∴. (3)连接、、,作于,如图2所示: ∵, ∴是等边三角形, ∵, ∴, ∴, ∴的面积, ∵,,, ∴的面积的面积的面积的面积 , ∴. (4)过点作,垂足为,如图3所示: ∵四边形是矩形, ∴,, ∵,, ∴, 由折叠可得:,, ∵, ∴, ∵,, ∴, ∴四边形是矩形, ∴, ∵, ∴, ∵, ∴, ∴, 由解决问题(1)可得:, ∴,即的值为4. 【点睛】 本题是四边形综合题目,考查了矩形的性质与判定、等腰三角形的性质与判定、平行线的性质与判定、等边三角形的性质、勾股定理等知识,考查了用面积法证明几何问题,考查了运用已有的经验解决问题的能力,体现了自主探究与合作交流的新理念,是充分体现新课程理念难得的好题.- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 人教版 八年 级数 下册 期末试卷 提升 Word 解析
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【w****g】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【w****g】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【w****g】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【w****g】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文