数学初二上册期末综合检测试题附答案.doc
《数学初二上册期末综合检测试题附答案.doc》由会员分享,可在线阅读,更多相关《数学初二上册期末综合检测试题附答案.doc(21页珍藏版)》请在咨信网上搜索。
数学初二上册期末综合检测试题附答案 一、选择题 1.下列图形中,既是中心对称图形又是轴对称图形的是( ) A. B. C. D. 2.少年的一根头发的直径大约为0.0000412:米,将数据“0.0000412”用科学记数法表示为( ) A. B. C. D. 3.下列运算中正确的是( ) A. B. C. D. 4.若,则下列分式值为0的是( ) A. B. C. D. 5.分析四个结论:①;②因式分解;③是完全平方式;④.其中正确的有( ) A.① B.③ C.②③④ D.①③④ 6.下列代数式变形正确的是( ) A. B. C. D. 7.如图,已知点A、D、C、F在同一条直线上,∠B=∠E =90°,AB=DE,若添加一个条件后,能用“HL”的方法判定Rt△ABC≌Rt△DEF,添加的条件可以是( ) A.BC=EF B.∠BCA=∠F C.AB∥DE D.AD=CF 8.数k使关于x的方程的解是整数,且k使一次函数的图象不经过第三象限,则满足条件的所有整数k的值的和是( ) A.0 B. C. D. 9.勾股定理是人类早期发现并证明的重要数学定理之一,这是历史上第一个把数与形联系起来的定理,其证明是论证几何的发端.下面四幅图中,不能证明勾股定理的是( ) A. B. C. D. 10.如图,在△ABC中,P、Q分别是BC、AC上的点,作PR⊥AB,PS⊥AC,垂足分别为R、S,若AQ=PQ,PR=PS,则下列四个结论:①PA平分∠BAC;②AS=AR;③QP∥AR;④△BRP≌△CSP,其中结论正确的的序号为( ) A.①②③ B.①②④ C.②③④ D.①②③④ 二、填空题 11.如果分式的值为零,那么x=________. 12.蝴蝶标本可以近似地看作是轴对称图形,如图,将一只蝴蝶标本放在平面直角坐标系中,如果点B的坐标是,那么它关于y轴对称的点A的坐标是________. 13.已知x为整数,且为正整数,则整数________. 14.若,,则3x﹣2y的值为__. 15.如图,在锐角中,,边上有一定点分别是和边上的动点,当的周长最小时,的度数是_________. 16.已知多项式是关于x的完全平方式,则m的值为________. 17.已知一个多边形的内角和是720度,则这个多边形是________边形. 18.如图,在△ABC中,∠ACB=90°,AC=8,BC=10,点P从点A出发沿线段AC以每秒1个单位长度的速度向终点C运动,点Q从点B出发沿折线BC﹣CA以每秒3个单位长度的速度向终点A运动,P、Q两点同时出发.分别过P、Q两点作PE⊥l于E,QF⊥l于F,当△PEC与△QFC全等时,CQ的长为______. 三、解答题 19.分解因式: (1); (2). 20.解分式方程: 21.如图,点E、A、C在同一直线上,AB∥CD,∠B=∠E,AC=CD.求证:BC=ED. 22.(1)如图1,求证:. (2)如图2,、的二等分线(即角平分线)BF、CF交于点F.已知,,求∠BFC的度数; (3)如图3,、分别为、的2021等分线(i=1,2,3……,2019,2020)它们的交点从上到下依次为、、…….已知,,则______度. 23.端午节是我国的传统节日,人们素有吃粽子的习俗.某商场在端午节来临之际,用元采购种粽子与元采购种粽子的个数相同.已知种粽子的单价比种粽子单价多元. (1)求,两种粽子的单价; (2)商场计划用不超过元的资金采购,两种粽子共个,已知,两种粽子的进价不变.求种粽子最多能采购多少个? 24.阅读以下内容解答下列问题. 七年级我们学习了数学运算里第三级第六种开方运算中的平方根、立方根,也知道了开方运算是乘方的逆运算,实际上乘方运算可以看做是“升次”,而开方运算也可以看做是“降次”,也就是说要“升次”可以用乘方,要“降次”可以用开方,即要根据实际需要采取有效手段“升”或者“降”某字母的次数.本学期我们又学习了整式乘法和因式分解,请回顾学习过程中的法则、公式以及计算,解答下列问题: (1)对照乘方与开方的关系和作用,你认为因式分解的作用也可以看做是 . (2)对于多项式x3﹣5x2+x+10,我们把x=2代入此多项式,发现x=2能使多项式x3﹣5x2+x+10的值为0,由此可以断定多项式x3﹣5x2+x+10中有因式(x﹣2),【注:把x=a代入多项式,能使多项式的值为0,则多项式一定含有因式(x﹣a)】,于是我们可以把多项式写成:x3﹣5x2+x+10=(x﹣2)(x2+mx+n),分别求出m、n后再代入x3﹣5x2+x+10=(x﹣2)(x2+mx+n),就可以把多项式x3﹣5x2+x+10因式分解,这种因式分解的方法叫“试根法”. ①求式子中m、n的值; ②用“试根法”分解多项式x3+5x2+8x+4. 25.请按照研究问题的步骤依次完成任务. 【问题背景】 (1)如图1的图形我们把它称为“8字形”, 请说理证明∠A+∠B=∠C+∠D. 【简单应用】 (2)如图2,AP、CP分别平分∠BAD、∠BCD,若∠ABC=20°,∠ADC=26°,求∠P的度数(可直接使用问题(1)中的结论) 【问题探究】 (3)如图3,直线AP平分∠BAD的外角∠FAD,CP平分∠BCD的外角∠BCE, 若∠ABC=36°,∠ADC=16°,猜想∠P的度数为 ; 【拓展延伸】 (4)在图4中,若设∠C=x,∠B=y,∠CAP=∠CAB,∠CDP=∠CDB,试问∠P与∠C、∠B之间的数量关系为 (用x、y表示∠P) ; (5)在图5中,AP平分∠BAD,CP平分∠BCD的外角∠BCE,猜想∠P与∠B、D的关系,直接写出结论 . 26.如图,在等边△ABC中,AB=AC=BC=6cm,现有两点M、N分别从点A、B同时出发,沿三角形的边运动,已知点M的速度为1cm/s,点N的速度为2cm/s.当点N第一次回到点B时,点M、N同时停止运动,设运动时间为ts. (1)当t为何值时,M、N两点重合; (2)当点M、N分别在AC、BA边上运动,△AMN的形状会不断发生变化. ①当t为何值时,△AMN是等边三角形; ②当t为何值时,△AMN是直角三角形; (3)若点M、N都在BC边上运动,当存在以MN为底边的等腰△AMN时,求t的值. 【参考答案】 一、选择题 2.D 解析:D 【分析】根据中心对称图形与轴对称图形的概念进行判断即可. 【详解】解:A.既不是中心对称图形,也不是轴对称图形,故此选项不符合题意; B.不是中心对称图形,是轴对称图形,故此选项不符合题意; C.不是中心对称图形,也不是轴对称图形,故此选项不符合题意; D.既是中心对称图形,也是轴对称图形,故此选项符合题意; 故选:D. 【点睛】本题考查的是中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后与自身重合. 3.C 解析:C 【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定. 【详解】解:数据0.0000412米可用科学记数法表示为4.12×10-5米, 故选:C. 【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定. 4.C 解析:C 【分析】根据同底数幂相乘运算法则计算并判定A;根据幂的乘方运算法则计算并判定B;根据单项式乘以单项式法则计算并判定C;根据多项式除以单项式法则计算并判定D. 【详解】解:A、,故此选项不符合题意; B、,故此选项不符合题意; C、,故此选项符合题意; D、,故此选项不符合题意; 故选:C. 【点睛】本题考查同底数幂相乘,幂的乘方,单项式乘以单项式,多项式除以单项式,熟练掌握相关运算法则是解题的关键. 5.D 解析:D 【分析】把逐一代入各选项计算,即可解答. 【详解】解:A. 当时, ,故A不符合题意; B. 分式有意义时,,故B不符合题意; C. 当时,,故C不符合题意; D. 当时,,故D符合题意, 故选:D. 【点睛】本题考查分式的值为0,分式有意义的条件等知识,是基础考点,掌握相关知识是解题关键. 6.B 解析:B 【分析】根据零指数幂的意义、平方差公式、完全平方公式以及添括号法则即可求出答案. 【详解】解:①当a=0时,不成立,故①不符合题意; ②因式分解:a2-b2=(a+b)(a-b),故②不符合题意; ③4b2+4b+1是完全平方式,故③符合题意; ④a+b+c=a-(-b-c),故④不符合题意; 故选:B. 【点睛】本题考查零指数幂的意义、平方差公式、完全平方公式以及添括号法则,本题属于基础题型. 7.C 解析:C 【分析】根据分式的基本性质,结合分式加法和分式除法的运算法则进行分析计算,从而作出判断. 【详解】解:A、原式=,故此选项不符合题意; B、原式=,故此选项不符合题意; C、原式=,故此选项符合题意; D、原式=,故此选项不符合题意; 故选:C. 【点睛】本题考查分式的混合运算,理解分式的基本性质,掌握分式混合运算的运算顺序和计算法则是解题关键. 8.D 解析:D 【分析】根据题目给的条件可知道直角边和直角,因为需用“HL”的方法判定≌,故只能添上斜边这一条件,即可解答. 【详解】解:∵,, ∴添加条件,根据“HL”即可判定≌;或添加条件,也可得出,根据“HL”即可判定≌,故D正确. 故选:D. 【点睛】本题主要考查了利用“HL”判定三角形全等,掌握三角形全等的判定是解题的关键. 9.C 解析:C 【分析】根据关于x的方程的解是整数,且一次函数y=(k-3)x+k+2的图象不经过第三象限,可以求得满足条件的k的值,从而可以得到满足条件的所有整数k的和. 【详解】解:由分式方程得,x=, ∵分式方程的解是整数, ∴是整数且不等于2, ∴k不等于1 ∵一次函数y=(k-3)x+k+2的图象不经过第三象限, ∴, 解得-2≤k<3, ∵是整数且不等于2, ∴k=-2,0, ∵(-2)+0=-2, ∴满足条件的所有整数k的值的和是-2, 故选:C. 【点睛】本题考查一次函数的性质、分式方程的解,解答本题的关键是明确题意,求出满足条件的k的值,利用一次函数的性质和分式方程的知识解答. 10.D 解析:D 【分析】利用两个以a和b为直角边三角形面积+一个直角边为c的等腰直角三角形面积和=上底为a,下第为b,高为(a+b)的梯形面积推导勾股定理可判断A,利用以a与b为两直角边四个全等三角形面积+边长为c的小正方形面积和=以a+b的和为边正方形面积推导勾股定理可判断B,利用以a与b为两直角边四个全等三角形面积+边长为(b-a)的小正方形面积和=以c为边正方形面积推导勾股定理可判断C,利用四个小图形面积和=大正方形面积推导完全平方公式可判断D. 【详解】解:A、∵两个以a和b为直角边三角形面积+一个直角边为c的等腰直角三角形面积和=上底为a,下第为b,高为(a+b)的梯形面积, ∴ab+c2+ab=(a+b)(a+b), ∴整理得:a2+b2=c2,即能证明勾股定理,故本选项不符合题意; B、∵以a与b为两直角边四个全等三角形面积+边长为c的小正方形面积和=以a+b的和为边正方形面积, ∴4×ab+c2=(a+b)2, ∴整理得:a2+b2=c2,即能证明勾股定理,故本选项不符合题意; C、∵以a与b为两直角边四个全等三角形面积+边长为(b-a)的小正方形面积和=以c为边正方形面积, ∴4×ab+(b﹣a)2=c2, ∴整理得:a2+b2=c2,即能证明勾股定理,故本选项不符合题意; D、∵四个小图形面积和=大正方形面积, ∴ab+ b2+ a2+ ab=(a+b)2, ∴a2+ 2ab +b2=(a+b)2, 根据图形证明完全平方公式,不能证明勾股定理,故本选项符合题意; 故选:D. 【点睛】本题考查利用面积推导勾股定理与完全平方公式,掌握利用面积推导勾股定理与完全平方公式是解题关键. 11.A 解析:A 【分析】根据角平分线性质即可推出②,根据勾股定理即可推出AR=AS,根据等腰三角形性质推出∠QAP=∠QPA,推出∠QPA=∠BAP,根据平行线判定推出QP∥AB即可;没有条件证明△BRP≌△QSP. 【详解】试题分析: 解:∵PR⊥AB,PS⊥AC,PR=PS, ∴点P在∠A的平分线上,∠ARP=∠ASP=90°, ∴∠SAP=∠RAP, 在Rt△ARP和Rt△ASP中,由勾股定理得:AR2=AP2﹣PR2,AS2=AP2﹣PS2, ∵AP=AP,PR=PS, ∴AR=AS,∴②正确; ∵AQ=QP, ∴∠QAP=∠QPA, ∵∠QAP=∠BAP, ∴∠QPA=∠BAP, ∴QP∥AR,∴③正确; 没有条件可证明 △BRP≌△QSP,∴④错误; 连接RS, ∵PR=PS, ∵PR⊥AB,PS⊥AC, ∴点P在∠BAC的角平分线上, ∴PA平分∠BAC,∴①正确. 故答案为①②③. 故选A. 点睛:本题考查了等边三角形的性质和判定,全等三角形的性质和判定,平行线的性质和判定,角平分线性质的应用,熟练掌握全等三角形的判定和性质是解题的关键. 二、填空题 12. 【分析】根据分式有意义的条件,分式值为0的条件即可求得的值 【详解】解:∵分式的值为零, ∴ 解得 故答案为: 【点睛】本题考查了分式值为0,分式有意义的添加,理解分式值为0的前提是分式必须有意义是解题的关键. 13. 【分析】根据关于y轴对称的点的特点为:横坐标互为相反数,纵坐标相等,直接求解即可. 【详解】解:关于y轴对称的点的特点为:横坐标互为相反数,纵坐标相等, ∴, 故答案为: . 【点睛】题目主要考查坐标系中对称点的特点,熟练掌握关于坐标轴对称的点的特点是解题关键. 14.4或5##5或4 【分析】根据异分母分式加减法计算得,利用x为整数,且为正整数,得到x-3=1或x-3=2,由此得到x的值. 【详解】解: = = = = ∵x为整数,且为正整数, ∴x-3=1或x-3=2, ∴x=4或5, 故答案为4或5. 【点睛】此题考查了异分母分式的加减法,正确掌握异分母分式加减法计算法则并结合题意得到x-3=1或x-3=2是解题的关键. 15. 【分析】根据即可代入求解. 【详解】解:. 故答案是:. 【点睛】本题考查了同底数的幂的除法运算,正确理解是关键. 16.80° 【分析】根据对称的性质,易求得∠C+∠EPF=180°,由 ∠ACB=50°,易求得∠D+∠G=50°,继而求得答案; 【详解】∵ PD⊥AC,PG⊥BC, ∴∠PEC=∠PFC=90 解析:80° 【分析】根据对称的性质,易求得∠C+∠EPF=180°,由 ∠ACB=50°,易求得∠D+∠G=50°,继而求得答案; 【详解】∵ PD⊥AC,PG⊥BC, ∴∠PEC=∠PFC=90°, ∴ ∠C+∠EPF=180°, ∵∠C=50°, ∵∠D+∠G+∠EPF=180°, ∴ ∠D+∠G=50°, 由对称可知:∠G=∠GPN,∠D=∠DPM, L ∴∠GPN+∠DPM=50°, ∴∠MPN=130°-50°=80°, 故答案为:80°. 【点睛】此题考查了最短路径问题以及线段垂直平分线的性质,关键是注意掌握数形结合思想的应用. 17.-3或5 【分析】先根据两平方项确定出这两个数,再根据完全平方公式的乘积二倍项即可确定m的值. 【详解】解:由题意可得, , ∴ , 解得:m=-3或m=5 故答案为:-3或5. 【点 解析:-3或5 【分析】先根据两平方项确定出这两个数,再根据完全平方公式的乘积二倍项即可确定m的值. 【详解】解:由题意可得, , ∴ , 解得:m=-3或m=5 故答案为:-3或5. 【点睛】本题主要考查了完全平方式,解题的关键是掌握完全平方展开式的特征. 18.六 【分析】根据多边形内角和公式进行解答即可. 【详解】解:设多边形为n边形, 则(n-2)·180=720, 解得n=6 故答案为:六. 【点睛】本题考查多边形的内角和,掌握多边形的内 解析:六 【分析】根据多边形内角和公式进行解答即可. 【详解】解:设多边形为n边形, 则(n-2)·180=720, 解得n=6 故答案为:六. 【点睛】本题考查多边形的内角和,掌握多边形的内角和公式(n-2)·180°是解题关键. 19.7或3.5 【分析】分两种情况:(1)当P在AC上,Q在BC上时;(2)当P在AC上,Q在AC上时,即P、Q重合时; 【详解】解:当P在AC上,Q在BC上时, ∵∠ACB=90°, ∴∠PC 解析:7或3.5 【分析】分两种情况:(1)当P在AC上,Q在BC上时;(2)当P在AC上,Q在AC上时,即P、Q重合时; 【详解】解:当P在AC上,Q在BC上时, ∵∠ACB=90°, ∴∠PCE+∠QCF=90°, ∵PE⊥l于E,QF⊥l于F. ∴∠PEC=∠CFQ=90°, ∴∠EPC+∠PCE=90°, ∴∠EPC=∠QCF, ∵△PEC与△QFC全等, ∴此时是△PCE≌△CQF, ∴PC=CQ, ∴8-t=10-3t, 解得t=1, ∴CQ=10-3t=7; 当P在AC上,Q在AC上时,即P、Q重合时,则CQ=PC, 由题意得,8-t=3t-10, 解得t=4.5, ∴CQ=3t-10=3.5, 综上,当△PEC与△QFC全等时,满足条件的CQ的长为7或3.5, 故答案为:7或3.5. 【点睛】本题主要考查了全等三角形的性质,根据题意得出关于的方程是解题的关键. 三、解答题 20.(1);(2). 【分析】(1)直接利用平方差进行分解即可; (2)首先提取公因式2(x-y),进而利用平方差公式分解因式得出答案. 【详解】解:(1) (2)原式. 【点睛】本题考查了提 解析:(1);(2). 【分析】(1)直接利用平方差进行分解即可; (2)首先提取公因式2(x-y),进而利用平方差公式分解因式得出答案. 【详解】解:(1) (2)原式. 【点睛】本题考查了提取公因式法以及公式法分解因式,正确应用公式是解题的关键. 2【分析】先去分母、去括号,然后移项合并,系数化为1,最后进行检验即可. 【详解】解: 去分母得: 去括号得: 移项合并得: 系数化为1得: 检验:当时,, ∴是原分式方程的解. 解析: 【分析】先去分母、去括号,然后移项合并,系数化为1,最后进行检验即可. 【详解】解: 去分母得: 去括号得: 移项合并得: 系数化为1得: 检验:当时,, ∴是原分式方程的解. 【点睛】本题考查了解分式方程.解题的关键在于正确的去分母. 22.见解析 【分析】利用AAS定理证明△ACB≌△CED,根据全等三角形的对应边相等证明即可. 【详解】证明:∵AB∥CD, ∴∠BAC=∠ECD, 在△ABC和△CED中, , ∴△AC 解析:见解析 【分析】利用AAS定理证明△ACB≌△CED,根据全等三角形的对应边相等证明即可. 【详解】证明:∵AB∥CD, ∴∠BAC=∠ECD, 在△ABC和△CED中, , ∴△ACB≌△CED(AAS), ∴BC=ED. 【点睛】本题主要考查了全等三角形的判定,熟练掌握全等三角形的判定方法——边角边、角边角、角角边、边边边是解题的关键. 23.(1)见解析;(2);(3) 【分析】(1)延长BO交AC于D,由外角的性质可得∠BOC=∠B+∠A+∠C; (2)由(1)知,,由角平分线的性质和外角的性质即可求解; (3)由题意知:∠AB 解析:(1)见解析;(2);(3) 【分析】(1)延长BO交AC于D,由外角的性质可得∠BOC=∠B+∠A+∠C; (2)由(1)知,,由角平分线的性质和外角的性质即可求解; (3)由题意知:∠ABO1000=∠ABO,∠OBO1000=∠ABO,∠ACO1000=∠ACO,∠OCO1000=∠ACO,由三角形的外角性质可求解. 【详解】解:(1)如图1,延长BO交AC于D, ∴, , ∴, 即. (2)由(1)知, ∵∠ABE、∠ACE的二等分线(即角平分线)BF、CF交于点F. ∴, ∵,, ∴, ∴, ∴, ∴. (3)由题意知:∠ABO1000=∠ABO,∠OBO1000=∠ABO,∠ACO1000=∠ACO,∠OCO1000=∠ACO, ∴∠BOC=∠OBO1000+∠OCO1000+∠BO1000C=(∠ABO+∠ACO)+∠BO1000C, ∠BO1000C=∠ABO1000+∠ACO1000+∠BAC=(∠ABO+∠ACO)+∠BAC, 则∠ABO+∠ACO=(∠BO1000C﹣∠BAC), 代入∠BOC=(∠ABO+∠ACO)+∠BO1000C, ∴∠BOC=×(∠BO1000C﹣∠BAC)+∠BO1000C, 解得:∠BO1000C=(∠BOC+∠BAC)=∠BOC+∠BAC, ∵∠BOC=m°,∠BAC=n°, ∴∠BO1000C=m°+n°=()°; 故答案为:. 【点睛】此题考查了三角形的外角性质、角平分线的定义等知识,灵活运用这些性质解决问题是解题的关键. 24.(1)种粽子单价为元,种粽子单价为元 (2)种粽子最多能购进个 【分析】(1)设种粽子单价为元,则种粽子单价为元,由题意:用元采购种粽子与元采购种粽子的个数相同.列出分式方程,解方程即可; ( 解析:(1)种粽子单价为元,种粽子单价为元 (2)种粽子最多能购进个 【分析】(1)设种粽子单价为元,则种粽子单价为元,由题意:用元采购种粽子与元采购种粽子的个数相同.列出分式方程,解方程即可; (2)设种粽子能采购个,则种粽子能采购个,由题意:商场计划用不超过元的资金采购,两种粽子,列出一元一次不等式,解不等式即可. (1)解:设种粽子单价为元,则种粽子单价为元,根据题意,得:,解得:,经检验,是原方程的解,且符合题意,.答:种粽子单价为元,种粽子单价为元. (2)解:设种粽子能采购个,则种粽子能采购个,依题意,得:,解得:,答:种粽子最多能购进个. 【点睛】本题考查了分式方程的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)根据各数量之间的关系,正确列出一元一次不等式. 25.(1)降次;(2)①m=﹣3,n=﹣5;②(x+1)(x+2)2. 【分析】(1)根据材料回答即可; (2)①分别令x=0和x=1即可得到关于m和n的方程,即可求出m和n的值; ②把x=﹣1代 解析:(1)降次;(2)①m=﹣3,n=﹣5;②(x+1)(x+2)2. 【分析】(1)根据材料回答即可; (2)①分别令x=0和x=1即可得到关于m和n的方程,即可求出m和n的值; ②把x=﹣1代入x3+5x2+8x+4,得出多项式含有因式(x+1),再利用①中方法解出a和b,即可代入原式进行分解. 【详解】解:(1)根据因式分解的定义可知:因式分解的作用也可以看做是降次, 故答案为:降次; (2)①在等式x3﹣5x2+x+10=(x﹣2)(x2+mx+n)中, 令x=0,可得:,解得:n=-5, 令x=1,可得:, 解得:m=﹣3, 故答案为:m=﹣3,n=﹣5; ②把x=﹣1代入x3+5x2+8x+4,得x3+5x2+8x+4=0, 则多项式x3+5x2+8x+4可分解为(x+1)(x2+ax+b)的形式, 同①方法可得:a=4,b=4, 所以x3+5x2+8x+4=(x+1)(x2+4x+4), =(x+1)(x+2)2. 【点睛】本题考查了因式分解,二元一次方程组的应用,解题的关键是读懂材料中的意思,利用所学知识进行解答. 26.(1)见解析;(2)∠P=23º;(3)∠P=26º;(4)∠P=;(5)∠P=. 【分析】(1)根据三角形内角和定理即可证明; (2)如图2,根据角平分线的性质得到∠1=∠2,∠3=∠4,列方 解析:(1)见解析;(2)∠P=23º;(3)∠P=26º;(4)∠P=;(5)∠P=. 【分析】(1)根据三角形内角和定理即可证明; (2)如图2,根据角平分线的性质得到∠1=∠2,∠3=∠4,列方程组即可得到结论; (3)由AP平分∠BAD的外角∠FAD,CP平分∠BCD的外角∠BCE,推出∠1=∠2,∠3=∠4,推出∠PAD=180°-∠2,∠PCD=180°-∠3,由∠P+(180°-∠1)=∠D+(180°-∠3),∠P+∠1=∠B+∠4,推出2∠P=∠B+∠D,即可解决问题; (4)根据题意得出∠B+∠CAB=∠C+∠BDC,再结合∠CAP=∠CAB,∠CDP=∠CDB,得到y+(∠CAB-∠CAB)=∠P+(∠BDC-∠CDB),从而可得∠P=y+∠CAB-∠CAB-∠CDB+∠CDB=; (5)根据题意得出∠B+∠BAD=∠D+∠BCD,∠DAP+∠P=∠PCD+∠D,再结合AP平分∠BAD,CP平分∠BCD的外角∠BCE,得到∠BAD+∠P=[∠BCD+(180°-∠BCD)]+∠D,所以∠P=90°+∠BCD-∠BAD +∠D=. 【详解】解:(1)证明:在△AOB中,∠A+∠B+∠AOB=180°, 在△COD中,∠C+∠D+∠COD=180°, ∵∠AOB=∠COD, ∴∠A+∠B=∠C+∠D; (2)解:如图2,∵AP、CP分别平分∠BAD,∠BCD, ∴∠1=∠2,∠3=∠4, 由(1)的结论得:, ①+②,得2∠P+∠2+∠3=∠1+∠4+∠B+∠D, ∴∠P=(∠B+∠D)=23°; (3)解:如图3, ∵AP平分∠BAD的外角∠FAD,CP平分∠BCD的外角∠BCE, ∴∠1=∠2,∠3=∠4, ∴∠PAD=180°-∠2,∠PCD=180°-∠3, ∵∠P+(180°-∠1)=∠D+(180°-∠3), ∠P+∠1=∠B+∠4, ∴2∠P=∠B+∠D, ∴∠P=(∠B+∠D)=×(36°+16°)=26°; 故答案为:26°; (4)由题意可得:∠B+∠CAB=∠C+∠BDC, 即y+∠CAB=x+∠BDC,即∠CAB-∠BDC=x-y, ∠B+∠BAP=∠P+∠PDB, 即y+∠BAP=∠P+∠PDB, 即y+(∠CAB-∠CAP)=∠P+(∠BDC-∠CDP), 即y+(∠CAB-∠CAB)=∠P+(∠BDC-∠CDB), ∴∠P=y+∠CAB-∠CAB-∠CDB+∠CDB = y+(∠CAB-∠CDB) =y+(x-y) = 故答案为:∠P=; (5)由题意可得:∠B+∠BAD=∠D+∠BCD, ∠DAP+∠P=∠PCD+∠D, ∴∠B-∠D=∠BCD-∠BAD, ∵AP平分∠BAD,CP平分∠BCD的外角∠BCE, ∴∠BAP=∠DAP,∠PCE=∠PCB, ∴∠BAD+∠P=(∠BCD+∠BCE)+∠D, ∴∠BAD+∠P=[∠BCD+(180°-∠BCD)]+∠D, ∴∠P=90°+∠BCD-∠BAD +∠D =90°+(∠BCD-∠BAD)+∠D =90°+(∠B-∠D)+∠D =, 故答案为:∠P=. 【点睛】本题考查三角形内角和,三角形的外角的性质、多边形的内角和等知识,解题的关键是学会用方程组的思想思考问题,属于中考常考题型. 27.(1)当M、N运动6秒时,点N追上点M;(2)①,△AMN是等边三角形;②当或时,△AMN是直角三角形;(3) 【详解】(1)首先设点M、N运动x秒后,M、N两点重合,表示出M,N的运动路程,N的 解析:(1)当M、N运动6秒时,点N追上点M;(2)①,△AMN是等边三角形;②当或时,△AMN是直角三角形;(3) 【详解】(1)首先设点M、N运动x秒后,M、N两点重合,表示出M,N的运动路程,N的运动路程比M的运动路程多6cm,列出方程求解即可; (2)①根据题意设点M、N运动t秒后,可得到等边三角形△AMN,然后表示出AM,AN的长,由于∠A等于60°,所以只要AM=AN三角形ANM就是等边三角形; ②分别就∠AMN=90°和∠ANM=90°列方程求解可得; (3)首先假设△AMN是等腰三角形,可证出△ACM≌△ABN,可得CM=BN,设出运动时间,表示出CM,NB,NM的长,列出方程,可解出未知数的值. 【解答】解:(1)设点M、N运动x秒后,M、N两点重合, x×1+6=2x, 解得:x=6, 即当M、N运动6秒时,点N追上点M; (2)①设点M、N运动t秒后,可得到等边三角形△AMN,如图1, AM=t,AN=6﹣2t, ∵AB=AC=BC=6cm, ∴∠A=60°,当AM=AN时,△AMN是等边三角形, ∴t=6﹣2t, 解得t=2, ∴点M、N运动2秒后,可得到等边三角形△AMN. ②当点N在AB上运动时,如图2, 若∠AMN=90°, ∵BN=2t,AM=t, ∴AN=6﹣2t, ∵∠A=60°, ∴2AM=AN,即2t=6﹣2t, 解得; 如图3,若∠ANM=90°, 由2AN=AM得2(6﹣2t)=t, 解得. 综上所述,当t为或时,△AMN是直角三角形; (3)当点M、N在BC边上运动时,可以得到以MN为底边的等腰三角形, 由(1)知6秒时M、N两点重合,恰好在C处, 如图4,假设△AMN是等腰三角形, ∴AN=AM, ∴∠AMN=∠ANM, ∴∠AMC=∠ANB, ∵AB=BC=AC, ∴△ACB是等边三角形, ∴∠C=∠B, 在△ACM和△ABN中, ∵∠AMC=∠ANB,∠C=∠B,AC=AB, ∴△ACM≌△ABN(AAS), ∴CM=BN, ∴t﹣6=18﹣2t, 解得t=8,符合题意. 所以假设成立,当M、N运动8秒时,能得到以MN为底的等腰三角形. 【点睛】本题是三角形综合题,主要考查了等边三角形的判定与性质,含30°角的直角三角形的性质,全等三角形的判定与性质,将动点问题转化为线段的长是解题的关键.- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 数学 初二 上册 期末 综合 检测 试题 答案
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【精****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【精****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【精****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【精****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文