人教版八年级上学期期末强化数学综合检测试题(一)[001].doc
《人教版八年级上学期期末强化数学综合检测试题(一)[001].doc》由会员分享,可在线阅读,更多相关《人教版八年级上学期期末强化数学综合检测试题(一)[001].doc(19页珍藏版)》请在咨信网上搜索。
人教版八年级上学期期末强化数学综合检测试题(一) 一、选择题 1、下列图形是轴对称图形的是( ) A. B. C. D. 2、华为Mate20手机搭载了全球首款7纳米制程芯片,7纳米就是0.000000070米.数据0.00000007用科学记数法表示为( ) A. B. C. D. 3、计算(a2+ab)÷a的结果是( ) A.a+b B.a2+b C.a+ab D.a3+a2b 4、使分式有意义的的取值范围为( ) A. B. C. D. 5、下列各式由左到右的变形中,属于因式分解的是( ) A.10x2﹣5x=5x(2x﹣1) B.a(m+n)=am+an C.(a+b)2=a2+b2 D.x2﹣16+6x=(x+4)(x﹣4)+6x 6、下列各式与相等的是( ) A. B. C. D. 7、如图,等腰△ABC中,AB=AC,点D,E分别在腰AB,AC上,添加下列条件,不能判定△ABE≌△ACD的是( ) A.AE =AD B.∠AEB=∠ADC C.BE =CD D.∠EBC=∠DCB 8、若关于的分式方程的解为,则的值为( ) A. B. C. D.2 9、如图,∠BOC=9°,点A在OB上,且OA=1,按下列要求画图:以A为圆心,1为半径向右画弧交OC于点,得第1条线段;再以为圆心,1为半径向右画弧交OB于点,得第2条线段;再以为圆心,1为半径向右画弧交OC于点,得第3条线段 ;……;这样画下去,直到得第n条线段,之后就不能再画出符合要求的线段了,则n的值为( ) A.9 B.21 C.35 D.100 二、填空题 10、如图所示,锐角△ABC中,D,E分别是AB,AC边上的点,△ADC≌,△AEB≌,且,BE、CD交于点F,若∠BAC=40°,则∠BFC的大小是( ) A.105° B.100° C.110° D.115° 11、当x=___时,分式的值为0. 12、若点P(2,3)关于轴的对称点是点 (,),则=_____. 13、已知a+b=5,ab=3,=_____. 14、计算:(﹣0.25)2021×42022=_____. 15、如图,在等边中,是的中点,是的中点,是上任意一点.如果,,那么的最小值是 . 16、如果是完全平方式,则__. 17、已知,则______. 18、如图,在△ABC中,∠ACB=90°,AC=8,BC=10,点P从点A出发沿线段AC以每秒1个单位长度的速度向终点C运动,点Q从点B出发沿折线BC﹣CA以每秒3个单位长度的速度向终点A运动,P、Q两点同时出发.分别过P、Q两点作PE⊥l于E,QF⊥l于F,当△PEC与△QFC全等时,CQ的长为______. 三、解答题 19、分解因式 (1); (2). 20、解方程: (1)=; (2)+1、 21、已知:如图,点D在线段AC上,点B在线段AE上,AE=AC,BE=DC,求证:∠E=∠C. 22、已知:直线,直线AD与直线BC交于点E,∠AEC=110°. (1)如图①,BF平分∠ABE交AD于F,DG平分∠CDE交BC于G,求∠AFB+∠CGD的度数; (2)如图②,∠ABC=30°,在∠BAE的平分线上取一点P,连接PC,当∠PCD=∠PCB时,直接写出∠APC的度数. 23、第5代移动通信技术简称5G,某地已开通5G业务,经测试5G下载速度是4G下载速度的15倍,小明和小强分别用5G与4G下载一部600兆的公益片,小明比小强所用的时间快140秒,求该地5G下载速度是每秒多少兆? 24、若正整数k满足个位数字为1,其他数位上的数字均不为1且十位与百位上的数字相等, 我们称这样的数k为“言唯一数”,交换其首位与个位的数字得到一个新数k',并记F(k)=. (1)最大的四位“言唯一数”是 ,最小的三位“言唯一数”是 ; (2)证明:对于任意的四位“言唯一数”m,m+m'能被11整除; (3)设四位“言唯一数”n=1000x+100y+10y+1(2≤x≤9,0≤y≤9且y≠1,x、y均为整数),若F(n)仍然为“言唯一数”,求所有满足条件的四位“言唯一数”n. 25、如图,在等边△ABC中,线段AM为BC边上的中线.动点D在直线AM上时,以CD为一边在CD的下方作等边△CDE,连结BE. (1)求∠CAM的度数; (2)若点D在线段AM上时,求证:△ADC≌△BEC; (3)当动D在直线AM上时,设直线BE与直线AM的交点为O,试判断∠AOB是否为定值?并说明理由. 一、选择题 1、D 【解析】D 【分析】根据轴对称图形的概念进行解答即可. 【详解】解:A.不是轴对称图形,故此选项不符合题意; B.不是轴对称图形,故此选项不合题意; C.不是轴对称图形,故此选项不合题意; D.是轴对称图形,故此选项符合题意; 故选:D. 【点睛】本题考查了轴对称图形,解题的关键是掌握轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴. 2、C 【解析】C 【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定. 【详解】解:; 故选:C. 【点睛】本题考查科学记数法;熟练掌握科学记数法中与的确定方法是解题的关键. 3、A 【解析】A 【分析】利用多项式除以单项式的运算法则进行计算即可. 【详解】解:(a2+ab)÷a=a+b, 故选:A. 【点睛】本题考查了多项式除以单项式,正确的计算是解题的关键. 4、B 【解析】B 【分析】根据分式有意义的条件列不等式求解即可. 【详解】解:∵分式有意义, ∴,解得, 故选:B. 【点睛】本题考查了分式有意义的条件,解题关键是掌握分式有意义的条件是分母不为0. 5、A 【解析】A 【分析】利用因式分解的定义判断即可. 【详解】解:A、符合因式分解的定义,故本选项符合题意; B、是整式的乘法,不是因式分解,故本选项不符合题意; C、等号左右两边式子不相等,故本选项不符合题意; D、右边不是整式的积的形式,不符合因式分解的定义,故本选项不符合题意. 故选:A. 【点睛】此题考查了因式分解,熟练掌握因式分解的定义是解本题的关键.因式分解的定义:把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做分解因式. 6、B 【解析】B 【详解】解:A、,故此选项不符合题意; B、,故此选项符合题意; C、,故此选项不符合题意; D、,故此选项不符合题意; 故选:B. 【点睛】本题考查分式的基本性质,解题的关键是熟练运用分式的基本性质,属于基础题型. 7、C 【解析】C 【分析】根据判定三角形全等的条件逐一判断即可. 【详解】解:A.∵AB=AC,,AE =AD, ∴△ABE≌△ACD(SAS),故该选项不符合题意; B.∵∠AEB=∠ADC,AB=AC,, ∴△ABE≌△ACD(AAS),故该选项不符合题意; C.AB=AC,,BE =CD,不能证明△ABE≌△ACD,符合题意; D.∵, ∴, ∵∠EBC=∠DCB, ∴, 又∵AB=AC,, ∴,故该选项不符合题意, 故选:C 【点睛】本题考查了全等三角形的判定方法,熟练掌握全等三角形的判定方法是解题的关键. 8、A 【解析】A 【分析】将x=2回代到方程中即可求出a值. 【详解】将x=2代入方程 得: 解得a=-4 故选:A. 【点睛】本题考查了分式方程的解,通过已知分式方程的解求未知数的知识.解题的关键是将x的值回代到原方程. 9、A 【解析】A 【分析】根据等腰三角形的性质和三角形外角的性质依次可得∠A1 AB的度数,∠A2 A1 C的度数,∠A3A2 B的度数,∠A4 A3C的度数,依此得到规律,再根据三角形外角需要小于90°即可求解. 【详解】解:由题意可知:AO= A1A,A1A= A2A1, …; 则∠AOA1=∠OA1A,∠A1AA2=∠A1A2A,…; ∵∠BOC=9°, ∴∠A1AB=2∠BOC= 18°, 同理可得∠A2A1C= 27°, ∠A3A2B = 36°, ∠A4A3C = 45°,∠A5A4B= 54°, ∠A6A5C=63°,∠A7A6B= 72°,∠A8A7C=81°,∠A9A8B=90°, ∴第10个三角形将有两个底角等于90°,不符合三角形的内角和定理, ∴最多能画9条线段; 故选:A. 【点睛】本题考查了等腰三角形的性质:等腰三角形的两个底角相等:三角形外角的性质:三角形的一个外角等于和它不相邻的两个内角的和;准确地找到规律是解决本题的关键. 二、填空题 10、B 【解析】B 【分析】延长C′D交AB′于H.利用全等三角形的性质,平行线的性质,三角形的外角的性质证明∠BFC=∠C′+∠AHC′+∠CAD,再求出∠C′+∠AHC′即可解决问题. 【详解】解:延长C′D交AB′于H. ∵△AEB≌△AEB′, ∴∠ABE=∠B′,∠EAB=∠EAB′=40°, ∵C′H∥EB′, ∴∠AHC′=∠B′, ∵△ADC≌△ADC′, ∴∠C′=∠ACD,∠DAC=∠DAC′=40°, ∵∠BFC=∠DBF+∠BDF,∠BDF=∠CAD+∠ACD, ∴∠BFC=∠AHC′+∠C′+∠CAD, ∵∠DAC=∠DAC′=∠CAB′=40°, ∴∠C′AH=120°, ∴∠C′+∠AHC′=60°, ∴∠BFC=60°+40°=100°, 故选:B. 【点睛】本题考查了全等三角形的性质,平行线的性质,三角形的内角和定理以及三角形外角的性质等知识,熟练掌握基本性质是解题的关键. 11、3 【分析】根据分式值为零时,分子为0分母不为0可列式计算求解. 【详解】解:由题意得x﹣3=0,3x+1≠0, 解得:x=3, 故答案为:2、 【点睛】本题主要考查了分式的值为零的条件,熟练掌握分式值为零时,分子为0,分母不为0是解题的关键. 12、3 【分析】直接利用关于y轴的对称点的坐标特点:横坐标互为相反数,纵坐标不变,即点P(x,y)关于y轴的对称点的坐标是(-x,y),进而得出a的值. 【详解】点P(2,3)关于y轴的对称点是点(-2,a), 则a=2、 故答案为:2、 【点睛】此题主要考查了关于y轴的对称点的坐标特点,正确掌握关于y轴对称点的性质是解题关键. 13、. 【分析】将a+b=5、ab=3代入原式=,计算可得. 【详解】当a+b=5、ab=3时, 原式= = = =. 故答案为. 【点睛】本题主要考查分式的加减法,解题的关键是熟练掌握分式的加减运算法则和完全平方公式. 14、﹣4 【分析】积的乘方,把每一个因式分别乘方,再把所得的幂相乘,据此计算即可. 【详解】解: . 故答案为:. 【点睛】本题主要考查了幂的乘方与积的乘方,熟记幂的运算法则是解答本题的关键. 15、【分析】从题型可知为”将军饮马”的题型,连接CE,CE即为所求最小值. 【详解】 ∵△ABC是等边三角形, ∴B点关于AD的对称点就是C点, 连接CE交AD于点H,此时HE+HB的值最小. ∴CH 【解析】 【分析】从题型可知为”将军饮马”的题型,连接CE,CE即为所求最小值. 【详解】 ∵△ABC是等边三角形, ∴B点关于AD的对称点就是C点, 连接CE交AD于点H,此时HE+HB的值最小. ∴CH=BH, ∴HE+HB=CE, 根据等边三角形的性质,可知三条高的长度都相等, ∴CE=AD=. 故答案为: . 【点睛】本题考查三角形中动点最值问题,关键在于寻找对称点即可求出最值. 16、±6 【分析】根据平方项确定出这两个数,再根据乘积二倍项列式即可确定出值. 【详解】解:, , 解得. 故答案为:. 【点睛】本题主要考查了完全平方式,掌握完全平方公式的结构是解题的关键. 【解析】±6 【分析】根据平方项确定出这两个数,再根据乘积二倍项列式即可确定出值. 【详解】解:, , 解得. 故答案为:. 【点睛】本题主要考查了完全平方式,掌握完全平方公式的结构是解题的关键. 17、-1 【分析】根据代入计算,继而求得结果. 【详解】解:∵,, ∴, ∴. 故答案为:. 【点睛】本题主要考查了完全平方公式,理解是解题关键. 【解析】-1 【分析】根据代入计算,继而求得结果. 【详解】解:∵,, ∴, ∴. 故答案为:. 【点睛】本题主要考查了完全平方公式,理解是解题关键. 18、7或3.5 【分析】分两种情况:(1)当P在AC上,Q在BC上时;(2)当P在AC上,Q在AC上时,即P、Q重合时; 【详解】解:当P在AC上,Q在BC上时, ∵∠ACB=90°, ∴∠PCE+∠Q 【解析】7或3.5 【分析】分两种情况:(1)当P在AC上,Q在BC上时;(2)当P在AC上,Q在AC上时,即P、Q重合时; 【详解】解:当P在AC上,Q在BC上时, ∵∠ACB=90°, ∴∠PCE+∠QCF=90°, ∵PE⊥l于E,QF⊥l于F. ∴∠PEC=∠CFQ=90°, ∴∠EPC+∠PCE=90°, ∴∠EPC=∠QCF, ∵△PEC与△QFC全等, ∴此时是△PCE≌△CQF, ∴PC=CQ, ∴8-t=10-3t, 解得t=1, ∴CQ=10-3t=7; 当P在AC上,Q在AC上时,即P、Q重合时,则CQ=PC, 由题意得,8-t=3t-10, 解得t=4.5, ∴CQ=3t-10=3.5, 综上,当△PEC与△QFC全等时,满足条件的CQ的长为7或3.5, 故答案为:7或3.4、 【点睛】本题主要考查了全等三角形的性质,根据题意得出关于的方程是解题的关键. 三、解答题 19、(1)5; (2)(a-1)(a+4). 【分析】(1)原式提取5,再利用完全平方公式分解即可; (2)原式整理后,利用十字相乘法分解即可. (1) 解: =5() =5; (2) 解: =-16+ 【解析】(1)5; (2)(a-1)(a+4). 【分析】(1)原式提取5,再利用完全平方公式分解即可; (2)原式整理后,利用十字相乘法分解即可. (1) 解: =5() =5; (2) 解: =-16+3a+12 =+3a-4 =(a-1)(a+4). 【点睛】此题考查了提公因式法与公式法的综合运用,以及因式分解-十字相乘法,熟练掌握因式分解的方法是解本题的关键. 20、(1)x=; (2)x=; 【分析】(1)方程两边同时乘以x(x+3),把分式方程化成整式方程,解整式方程检验后,即可得出分式方程的解; (2)方程两边同时乘以2(x-1),把分式方程化成整式方程, 【解析】(1)x=; (2)x=; 【分析】(1)方程两边同时乘以x(x+3),把分式方程化成整式方程,解整式方程检验后,即可得出分式方程的解; (2)方程两边同时乘以2(x-1),把分式方程化成整式方程,解整式方程检验后,即可得出分式方程的解. (1) = 解:方程两边同时乘以x(x+3)得: x+3=5x, 解得:x=, 检验:当x=时,x(x+3)≠0, ∴原分式方程的解为x=; (2) +2 解:因式分解得:+2 方程两边同时乘以2(x-1)得: 2x=3+4(x-1), 解得:x=, 检验:当x=时,2(x-1)≠0, ∴原分式方程的解为x=; 【点睛】本题考查了解分式方程,把分式方程化成整式方程是解决问题的关键. 21、见解析 【分析】利用SAS证明△ABC≌△ADE即可得出结论. 【详解】证明:∵AE=AC,BE=DC, ∴AB=AD, 在△ABC和△ADE中, , ∴△ABC≌△ADE(SAS), ∴∠E=∠C 【解析】见解析 【分析】利用SAS证明△ABC≌△ADE即可得出结论. 【详解】证明:∵AE=AC,BE=DC, ∴AB=AD, 在△ABC和△ADE中, , ∴△ABC≌△ADE(SAS), ∴∠E=∠C. 【点睛】本题主要考查了全等三角形的判定与性质,证明△ABC≌△ADE是解题的关键. 22、(1)195° (2)50°或10° 【分析】(1)过点E作MN∥AB.利用平行线的判定和性质并结合角平分线的概念分析求解; (2)分P点在BC的左侧、P在BC的右侧且在CD上方、P在BC的右侧且在 【解析】(1)195° (2)50°或10° 【分析】(1)过点E作MN∥AB.利用平行线的判定和性质并结合角平分线的概念分析求解; (2)分P点在BC的左侧、P在BC的右侧且在CD上方、P在BC的右侧且在CD下方三种情况讨论,结合角度的倍数关系和平行线的性质分析求解. (1) 解:过点E作MN∥AB,如下图①所示: ∵AB∥CD,MN∥AB, ∴AB∥MN∥CD, ∴∠BAE=∠AEM,∠DCE=∠CEM,∠ABE=∠BEN,∠NED=∠EDC, ∵∠AEC=110°, ∴∠BED=110°, ∴∠BAE+∠DCE=∠AEM+∠CEM=∠AEC=110°, ∠ABE+∠CDE=∠BEN+∠NED=∠BED=110°, ∵BF平分∠ABE,DG平分∠CDE, ∴∠ABF=∠ABE,∠CDG=∠CDE, ∴∠AFB+∠CGD=180°-(∠BAE+∠ABF)+180°-(∠DCE+∠CDG) =180°-∠BAE-∠ABE+180°-∠DCE-∠CDE =360°-(∠BAE+∠DCE)-(∠ABE+∠CDE) =360°-110°-×110° =195°, ∴∠AFB+∠CGD的度数为195°. (2) 解:分类讨论: 情况一:当点P位于BC左侧时,如下图②所示: 此时∠PCD=∠PCB不可能成立,故此情况不存在; 情况二:当点P位于BC右侧且位于CD上方时,过点P作PM∥AB,如下图③所示: ∵∠AEC=110°,∠ABC=30°, ∴∠BAE=110°-30°=80°, ∵AB∥CD,MP∥AB, ∴AB∥MP∥CD, ∴∠APM=∠BAP=∠BAE=40°, ∠ABC=∠BCD=30°, 又∵∠PCD=∠PCB, ∴∠PCD=∠BCD=10°, ∴∠MPC=∠PCD=10°, ∴∠APC=∠MPC+∠APM=10°+40°=50°; 情况三:当点P位于BC右侧且位于CD下方时,过点P作PM∥AB,如下图④所示: ∵∠AEC=110°,∠ABC=30°, ∴∠BAE=110°-30°=80°, ∵AB∥CD,MP∥AB, ∴AB∥MP∥CD, ∴∠APM=∠BAP=∠BAE=40°, ∠ABC=∠BCD=30°, 又∵∠PCD=∠PCB, ∴∠PCD=∠BCD=30°, ∴∠MPC=∠PCD=30°, ∴∠APC=∠APM-∠MPC=40°-30°=10°, 综上,∠APC的度数为50°或10°. 【点睛】本题考查平行线的判定和性质、三角形的外角性质、角平分线的定义、对顶角相等等知识,属于中考常考题型,掌握平行线的判定和性质,正确添加辅助线是解题关键. 23、60兆 【分析】设该地4G的下载速度是每秒x兆,则该地5G的下载速度是每秒15x兆,根据“小明比小强所用的时间快140秒”列出方程求解即可. 【详解】解:设该地4G的下载速度是每秒x兆,则该地5G的 【解析】60兆 【分析】设该地4G的下载速度是每秒x兆,则该地5G的下载速度是每秒15x兆,根据“小明比小强所用的时间快140秒”列出方程求解即可. 【详解】解:设该地4G的下载速度是每秒x兆,则该地5G的下载速度是每秒15x兆 由题意得: 解得:x=4, 经检验:x=4是原分式方程的解,且符合题意, 15×4=60, 答:该地5G的下载速度是每秒60兆. 【点睛】本题主要考查了分式方程的应用,解题关键是正确理解题意,找出题目中的等量关系,设出未知数列出方程. 24、(1)9991;221;(2)详见解析;(3)满足条件的所有的四位“言唯一数”为和 【分析】根据题目给出的新定义,正整数k满足个位数字为1,其他数位上的数字均不为1且十位与百位上的数字相等,称这样的 【解析】(1)9991;221;(2)详见解析;(3)满足条件的所有的四位“言唯一数”为和 【分析】根据题目给出的新定义,正整数k满足个位数字为1,其他数位上的数字均不为1且十位与百位上的数字相等,称这样的数k为“言唯一数”,解答即可. 【详解】(1)最大的四位“言唯一数”是 9991 ,最小的三位“言唯一数”是 221 ; (2)证明:设,则 都为正整数,则也是正整数 对于任意的四位“言唯一数”,能被整除. (3) (,且,、均为整数) . 则 仍然为言唯一数, 末尾数字为0,129末尾数字为9 则的末尾数字为2, 或 ①当时,, 时,,此时 ②当时,, 时,,此时 满足条件的所有的四位“言唯一数”为和 【点睛】本题主要考查了对因式分解的应用,对新定义的理解程度时解答本题的关键. 25、(1)30°;(2)见解析;(3)是定值,理由见解析 【分析】(1)根据等边三角形的性质可以直接得出结论; (2)根据等边三角形的性质就可以得出,,,由等式的性质就可以,根据就可以得出; (3)分情 【解析】(1)30°;(2)见解析;(3)是定值,理由见解析 【分析】(1)根据等边三角形的性质可以直接得出结论; (2)根据等边三角形的性质就可以得出,,,由等式的性质就可以,根据就可以得出; (3)分情况讨论:当点在线段上时,如图1,由(2)可知,就可以求出结论;当点在线段的延长线上时,如图2,可以得出而有而得出结论;当点在线段的延长线上时,如图3,通过得出同样可以得出结论. 【详解】解:(1)是等边三角形, . 线段为边上的中线, , . 故答案为:30°; (2)与都是等边三角形, ,,, , . 在和中, , ; (3)是定值,, 理由如下: ①当点在线段上时,如图1, 由(2)可知,则, 又, , 是等边三角形,线段为边上的中线, 平分,即, . ②当点在线段的延长线上时,如图2, 与都是等边三角形, ,,, , , 在和中, , , , 同理可得:, . ③当点在线段的延长线上时,如图3, 与都是等边三角形, ,,, , , 在和中, , , , 同理可得:, , ,, . 综上,当动点在直线上时,是定值,. 【点睛】本题考查了等边三角形的性质的运用,直角三角形的性质的运用,等式的性质的运用,全等三角形的判定及性质的运用,解答时证明三角形全等是关键.- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 001 人教版八 年级 学期 期末 强化 数学 综合 检测 试题
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【a199****6536】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【a199****6536】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【a199****6536】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【a199****6536】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文