人教版七年级数学下册期末解答题压轴题及答案.doc
《人教版七年级数学下册期末解答题压轴题及答案.doc》由会员分享,可在线阅读,更多相关《人教版七年级数学下册期末解答题压轴题及答案.doc(34页珍藏版)》请在咨信网上搜索。
人教版七年级数学下册期末解答题压轴题及答案 一、解答题 1.如图1,用两个边长相同的小正方形拼成一个大的正方形. (1)如图2,若正方形纸片的面积为1,则此正方形的对角线AC的长为 dm. (2)如图3,若正方形的面积为16,李明同学想沿这块正方形边的方向裁出一块面积为12的长方形纸片,使它的长和宽之比为3∶2,他能裁出吗?请说明理由. 2.如图所示的正方形纸板是由两张大小相同的长方形纸板拼接而成的,已知一个长方形纸板的面积为162平方厘米,求正方形纸板的边长. 3.张华想用一块面积为400cm2的正方形纸片,沿着边的方向剪出一块面积为300cm2的长方形纸片,使它的长宽之比为3:2.他不知能否裁得出来,正在发愁.李明见了说:“别发愁,一定能用一块面积大的纸片裁出一块面积小的纸片.”你同意李明的说法吗?张华能用这块纸片裁出符合要求的纸片吗? 4.如图,在3×3的方格中,有一阴影正方形,设每一个小方格的边长为1个单位.请解决下面的问题. (1)阴影正方形的面积是________?(可利用割补法求面积) (2)阴影正方形的边长是________? (3)阴影正方形的边长介于哪两个整数之间?请说明理由. 5.求下图的方格中阴影部分正方形面积与边长. 二、解答题 6.如图1,点在直线上,点在直线上,点在,之间,且满足. (1)证明:; (2)如图2,若,,点在线段上,连接,且,试判断与的数量关系,并说明理由; (3)如图3,若(为大于等于的整数),点在线段上,连接,若,则______. 7.如图1,已知直线CD∥EF,点A,B分别在直线CD与EF上.P为两平行线间一点. (1)若∠DAP=40°,∠FBP=70°,则∠APB= (2)猜想∠DAP,∠FBP,∠APB之间有什么关系?并说明理由; (3)利用(2)的结论解答: ①如图2,AP1,BP1分别平分∠DAP,∠FBP,请你写出∠P与∠P1的数量关系,并说明理由; ②如图3,AP2,BP2分别平分∠CAP,∠EBP,若∠APB=β,求∠AP2B.(用含β的代数式表示) 8.已知,AB∥CD,点E在CD上,点G,F在AB上,点H在AB,CD之间,连接FE,EH,HG,∠AGH=∠FED,FE⊥HE,垂足为E. (1)如图1,求证:HG⊥HE; (2)如图2,GM平分∠HGB,EM平分∠HED,GM,EM交于点M,求证:∠GHE=2∠GME; (3)如图3,在(2)的条件下,FK平分∠AFE交CD于点K,若∠KFE:∠MGH=13:5,求∠HED的度数. 9.如图,直线,点是、之间(不在直线,上)的一个动点. (1)如图1,若与都是锐角,请写出与,之间的数量关系并说明理由; (2)把直角三角形如图2摆放,直角顶点在两条平行线之间,与交于点, 与交于点,与交于点,点在线段上,连接,有,求的值; (3)如图3,若点是下方一点,平分, 平分,已知,求的度数. 10.阅读下面材料: 小亮同学遇到这样一个问题: 已知:如图甲,ABCD,E为AB,CD之间一点,连接BE,DE,得到∠BED. 求证:∠BED=∠B+∠D. (1)小亮写出了该问题的证明,请你帮他把证明过程补充完整. 证明:过点E作EFAB, 则有∠BEF= . ∵ABCD, ∴ , ∴∠FED= . ∴∠BED=∠BEF+∠FED=∠B+∠D. (2)请你参考小亮思考问题的方法,解决问题:如图乙, 已知:直线ab,点A,B在直线a上,点C,D在直线b上,连接AD,BC,BE平分∠ABC,DE平分∠ADC,且BE,DE所在的直线交于点E. ①如图1,当点B在点A的左侧时,若∠ABC=60°,∠ADC=70°,求∠BED的度数; ②如图2,当点B在点A的右侧时,设∠ABC=α,∠ADC=β,请你求出∠BED的度数(用含有α,β的式子表示). 三、解答题 11.如图1,由线段组成的图形像英文字母,称为“形”. (1)如图1,形中,若,则______; (2)如图2,连接形中两点,若,试探求与的数量关系,并说明理由; (3)如图3,在(2)的条件下,且的延长线与的延长线有交点,当点在线段的延长线上从左向右移动的过程中,直接写出与所有可能的数量关系. 12.如图,AB⊥AK,点A在直线MN上,AB、AK分别与直线EF交于点B、C,∠MAB+∠KCF=90°. (1)求证:EF∥MN; (2)如图2,∠NAB与∠ECK的角平分线交于点G,求∠G的度数; (3)如图3,在∠MAB内作射线AQ,使∠MAQ=2∠QAB,以点C为端点作射线CP,交直线AQ于点T,当∠CTA=60°时,直接写出∠FCP与∠ACP的关系式. 13.已知射线射线CD,P为一动点,AE平分,CE平分,且AE与CE相交于点E.(注意:此题不允许使用三角形,四边形内角和进行解答) (1)在图1中,当点P运动到线段AC上时,.直接写出的度数; (2)当点P运动到图2的位置时,猜想与之间的关系,并加以说明; (3)当点P运动到图3的位置时,(2)中的结论是否还成立?若成立,请说明理由:若不成立,请写出与之间的关系,并加以证明. 14.课题学习:平行线的“等角转化”功能. 阅读理解: 如图1,已知点A是BC外一点,连接AB,AC,求∠BAC+∠B+∠C的度数. (1)阅读并补充下面推理过程 解:过点A作ED∥BC, ∴∠B=∠EAB,∠C= 又∵∠EAB+∠BAC+∠DAC=180° ∴∠B+∠BAC+∠C=180° 解题反思: 从上面推理过程中,我们发现平行线具有“等角转化”的功能,将∠BAC,∠B,∠C“凑”在一起,得出角之间的关系,使问题得以解决. 方法运用: (2)如图2,已知AB∥ED,求∠B+∠BCD+∠D的度数.(提示:过点C作CF∥AB) 深化拓展: (3)如图3,已知AB∥CD,点C在点D的右侧,∠ADC=70°,点B在点A的左侧,∠ABC=60°,BE平分∠ABC,DE平分∠ADC,BE,DE所在的直线交于点E,点E在AB与CD两条平行线之间,求∠BED的度数. 15.已知两条直线l1,l2,l1∥l2,点A,B在直线l1上,点A在点B的左边,点C,D在直线l2上,且满足. (1)如图①,求证:AD∥BC; (2)点M,N在线段CD上,点M在点N的左边且满足,且AN平分∠CAD; (Ⅰ)如图②,当时,求∠DAM的度数; (Ⅱ)如图③,当时,求∠ACD的度数. 四、解答题 16.在△ABC中,射线AG平分∠BAC交BC于点G,点D在BC边上运动(不与点G重合),过点D作DE∥AC交AB于点E. (1)如图1,点D在线段CG上运动时,DF平分∠EDB ①若∠BAC=100°,∠C=30°,则∠AFD= ;若∠B=40°,则∠AFD= ; ②试探究∠AFD与∠B之间的数量关系?请说明理由; (2)点D在线段BG上运动时,∠BDE的角平分线所在直线与射线AG交于点F试探究∠AFD与∠B之间的数量关系,并说明理由 17.在中,射线平分交于点,点在边上运动(不与点重合),过点作交于点. (1)如图1,点在线段上运动时,平分. ①若,,则_____;若,则_____; ②试探究与之间的数量关系?请说明理由; (2)点在线段上运动时,的角平分线所在直线与射线交于点.试探究与之间的数量关系,并说明理由. 18.如图,平分,平分, 请判断与的位置关系并说明理由; 如图,当且与的位置关系保持不变,移动直角顶点,使,当直角顶点点移动时,问与否存在确定的数量关系?并说明理由. 如图,为线段上一定点,点为直线上一动点且与的位置关系保持不变,①当点在射线上运动时(点除外),与有何数量关系?猜想结论并说明理由.②当点在射线的反向延长线上运动时(点除外),与有何数量关系?直接写出猜想结论,不需说明理由. 19.【问题探究】如图1,DF∥CE,∠PCE=∠α,∠PDF=∠β,猜想∠DPC与α、β之间有何数量关系?并说明理由; 【问题迁移】 如图2,DF∥CE,点P在三角板AB边上滑动,∠PCE=∠α,∠PDF=∠β. (1)当点P在E、F两点之间运动时,如果α=30°,β=40°,则∠DPC= °. (2)如果点P在E、F两点外侧运动时(点P与点A、B、E、F四点不重合),写出∠DPC与α、β之间的数量关系,并说明理由. (图1) (图2) 20.问题情境:如图1,AB∥CD,∠PAB=130°,∠PCD=120°.求∠APC度数. 小明的思路是:如图2,过P作PE∥AB,通过平行线性质,可得∠APC=50°+60°=110°. 问题迁移: (1)如图3,AD∥BC,点P在射线OM上运动,当点P在A、B两点之间运动时,∠ADP=∠α,∠BCP=∠β.∠CPD、∠α、∠β之间有何数量关系?请说明理由; (2)在(1)的条件下,如果点P在A、B两点外侧运动时(点P与点A、B、O三点不重合),请你直接写出∠CPD、∠α、∠β间的数量关系. 【参考答案】 一、解答题 1.(1);(2)不能,理由见解析 【分析】 (1)由正方形面积,可求得正方形边长,然后利用勾股定理即可求出对角线长; (2)利用方程思想求出长方形的长边,然后与正方形边长比较大小即可. 【详解】 解: 解析:(1);(2)不能,理由见解析 【分析】 (1)由正方形面积,可求得正方形边长,然后利用勾股定理即可求出对角线长; (2)利用方程思想求出长方形的长边,然后与正方形边长比较大小即可. 【详解】 解:(1)∵正方形纸片的面积为, ∴正方形的边长, ∴. 故答案为:. (2)不能; 根据题意设长方形的长和宽分别为和. ∴长方形面积为:, 解得:, ∴长方形的长边为. ∵, ∴他不能裁出. 【点睛】 本题考查了算术平方根在长方形和正方形面积中的应用,灵活的进行算术平方根计算及无理数大小比较是解题的关键. 2.正方形纸板的边长是18厘米 【分析】 根据正方形的面积公式进行解答. 【详解】 解:设小长方形的宽为x厘米,则小长方形的长为厘米,即得正方形纸板的边长是厘米,根据题意得: , ∴, 取正值,可得, 解析:正方形纸板的边长是18厘米 【分析】 根据正方形的面积公式进行解答. 【详解】 解:设小长方形的宽为x厘米,则小长方形的长为厘米,即得正方形纸板的边长是厘米,根据题意得: , ∴, 取正值,可得, ∴答:正方形纸板的边长是18厘米. 【点评】 本题考查了算术平方根的实际应用,解题的关键是熟悉正方形的面积公式. 3.不同意,理由见解析. 【详解】 试题分析:设面积为300平方厘米的长方形的长宽分为3x厘米,2x厘米,则3x•2x=300,x2=50,解得x=,而面积为400平方厘米的正方形的边长为20厘米,由于 解析:不同意,理由见解析. 【详解】 试题分析:设面积为300平方厘米的长方形的长宽分为3x厘米,2x厘米,则3x•2x=300,x2=50,解得x=,而面积为400平方厘米的正方形的边长为20厘米,由于>20,所以用一块面积为400平方厘米的正方形纸片,沿着边的方向裁不出一块面积为300平方厘米的长方形纸片,使它的长宽之比为3:2. 试题解析:解:不同意李明的说法.设长方形纸片的长为3x (x>0)cm,则宽为2x cm,依题意得:3x•2x=300,6x2=300,x2=50,∵x>0,∴x==,∴长方形纸片的长为 cm,∵50>49,∴>7,∴>21,即长方形纸片的长大于20cm,由正方形纸片的面积为400 cm2,可知其边长为20cm,∴长方形纸片的长大于正方形纸片的边长. 答:李明不能用这块纸片裁出符合要求的长方形纸片. 点睛:本题考查了算术平方根的定义:一个正数的正的平方根叫这个数的算术平方根;0的算术平方根为0.也考查了估算无理数的大小. 4.(1)5;(2);(3)2与3两个整数之间,见解析 【分析】 (1)通过割补法即可求出阴影正方形的面积; (2)根据实数的性质即可求解; (3)根据实数的估算即可求解. 【详解】 (1)阴影正方形的 解析:(1)5;(2);(3)2与3两个整数之间,见解析 【分析】 (1)通过割补法即可求出阴影正方形的面积; (2)根据实数的性质即可求解; (3)根据实数的估算即可求解. 【详解】 (1)阴影正方形的面积是3×3-4×=5 故答案为:5; (2)设阴影正方形的边长为x,则x2=5 ∴x=(-舍去) 故答案为:; (3)∵ ∴ ∴阴影正方形的边长介于2与3两个整数之间. 【点睛】 本题考查了无理数的估算能力和不规则图形的面积的求解方法:割补法.通过观察可知阴影部分的面积是5个小正方形的面积和.会利用估算的方法比较无理数的大小. 5.8; 【分析】 用大正方形的面积减去4个小直角三角形的面积可得到所求的正方形的面积为8,然后利用正方形面积公式求8的算术平方根即可. 【详解】 解:正方形面积=4×4-4××2×2=8; 正方形的边 解析:8; 【分析】 用大正方形的面积减去4个小直角三角形的面积可得到所求的正方形的面积为8,然后利用正方形面积公式求8的算术平方根即可. 【详解】 解:正方形面积=4×4-4××2×2=8; 正方形的边长==. 【点睛】 本题考查了算术平方根:一般地,如果一个正数x的平方等于a,即x2=a,那么这个正数x叫做a的算术平方根.记为. 二、解答题 6.(1)见解析;(2)见解析;(3)n-1 【分析】 (1)连接AB,根据已知证明∠MAB+∠SBA=180°,即可得证; (2)作CF∥ST,设∠CBT=α,表示出∠CAN,∠ACF,∠BCF,根据 解析:(1)见解析;(2)见解析;(3)n-1 【分析】 (1)连接AB,根据已知证明∠MAB+∠SBA=180°,即可得证; (2)作CF∥ST,设∠CBT=α,表示出∠CAN,∠ACF,∠BCF,根据AD∥BC,得到∠DAC=120°,求出∠CAE即可得到结论; (3)作CF∥ST,设∠CBT=β,得到∠CBT=∠BCF=β,分别表示出∠CAN和∠CAE,即可得到比值. 【详解】 解:(1)如图,连接, , , , , (2), 理由:作,则 如图, 设,则. ,, ,, . 即. (3)作,则 如图,设,则. , , , , , 故答案为. 【点睛】 本题主要考查平行线的性质和判定,解题关键是角度的灵活转换,构建数量关系式. 7.(1)110°;(2)猜想:∠APB=∠DAP+∠FBP,理由见解析;(3)①∠P=2∠P1,理由见解析;②∠AP2B=. 【分析】 (1)过P作PM∥CD,根据两直线平行,内错角相等可得∠APM= 解析:(1)110°;(2)猜想:∠APB=∠DAP+∠FBP,理由见解析;(3)①∠P=2∠P1,理由见解析;②∠AP2B=. 【分析】 (1)过P作PM∥CD,根据两直线平行,内错角相等可得∠APM=∠DAP,再根据平行公理求出CD∥EF然后根据两直线平行,内错角相等可得∠MPB=∠FBP,最后根据∠APM+∠MPB=∠DAP+∠FBP等量代换即可得证; (2)结论:∠APB=∠DAP+∠FBP. (3)①根据(2)的规律和角平分线定义解答; ②根据①的规律可得∠APB=∠DAP+∠FBP,∠AP2B=∠CAP2+∠EBP2,然后根据角平分线的定义和平角等于180°列式整理即可得解. 【详解】 (1)证明:过P作PM∥CD, ∴∠APM=∠DAP.(两直线平行,内错角相等), ∵CD∥EF(已知), ∴PM∥CD(平行于同一条直线的两条直线互相平行), ∴∠MPB=∠FBP.(两直线平行,内错角相等), ∴∠APM+∠MPB=∠DAP+∠FBP.(等式性质) 即∠APB=∠DAP+∠FBP=40°+70°=110°. (2)结论:∠APB=∠DAP+∠FBP. 理由:见(1)中证明. (3)①结论:∠P=2∠P1; 理由:由(2)可知:∠P=∠DAP+∠FBP,∠P1=∠DAP1+∠FBP1, ∵∠DAP=2∠DAP1,∠FBP=2∠FBP1, ∴∠P=2∠P1. ②由①得∠APB=∠DAP+∠FBP,∠AP2B=∠CAP2+∠EBP2, ∵AP2、BP2分别平分∠CAP、∠EBP, ∴∠CAP2=∠CAP,∠EBP2=∠EBP, ∴∠AP2B=∠CAP+∠EBP, = (180°-∠DAP)+ (180°-∠FBP), =180°- (∠DAP+∠FBP), =180°- ∠APB, =180°- β. 【点睛】 本题考查了平行线的性质,角平分线的定义,熟记性质与概念是解题的关键,此类题目,难点在于过拐点作平行线. 8.(1)见解析;(2)见解析;(3)40° 【分析】 (1)根据平行线的性质和判定解答即可; (2)过点H作HP∥AB,根据平行线的性质解答即可; (3)过点H作HP∥AB,根据平行线的性质解答即可. 解析:(1)见解析;(2)见解析;(3)40° 【分析】 (1)根据平行线的性质和判定解答即可; (2)过点H作HP∥AB,根据平行线的性质解答即可; (3)过点H作HP∥AB,根据平行线的性质解答即可. 【详解】 证明:(1)∵AB∥CD, ∴∠AFE=∠FED, ∵∠AGH=∠FED, ∴∠AFE=∠AGH, ∴EF∥GH, ∴∠FEH+∠H=180°, ∵FE⊥HE, ∴∠FEH=90°, ∴∠H=180°﹣∠FEH=90°, ∴HG⊥HE; (2)过点M作MQ∥AB, ∵AB∥CD, ∴MQ∥CD, 过点H作HP∥AB, ∵AB∥CD, ∴HP∥CD, ∵GM平分∠HGB, ∴∠BGM=∠HGM=∠BGH, ∵EM平分∠HED, ∴∠HEM=∠DEM=∠HED, ∵MQ∥AB, ∴∠BGM=∠GMQ, ∵MQ∥CD, ∴∠QME=∠MED, ∴∠GME=∠GMQ+∠QME=∠BGM+∠MED, ∵HP∥AB, ∴∠BGH=∠GHP=2∠BGM, ∵HP∥CD, ∴∠PHE=∠HED=2∠MED, ∴∠GHE=∠GHP+∠PHE=2∠BGM+2∠MED=2(∠BGM+∠MED), ∴∠GHE=∠2GME; (3)过点M作MQ∥AB,过点H作HP∥AB, 由∠KFE:∠MGH=13:5,设∠KFE=13x,∠MGH=5x, 由(2)可知:∠BGH=2∠MGH=10x, ∵∠AFE+∠BFE=180°, ∴∠AFE=180°﹣10x, ∵FK平分∠AFE, ∴∠AFK=∠KFE= ∠AFE, 即, 解得:x=5°, ∴∠BGH=10x=50°, ∵HP∥AB,HP∥CD, ∴∠BGH=∠GHP=50°,∠PHE=∠HED, ∵∠GHE=90°, ∴∠PHE=∠GHE﹣∠GHP=90°﹣50°=40°, ∴∠HED=40°. 【点睛】 本题考查了平行线的判定与性质,熟练掌握平行线的判定与性质定理以及灵活构造平行线是解题的关键. 9.(1)见解析;(2);(3)75° 【分析】 (1)根据平行线的性质、余角和补角的性质即可求解. (2)根据平行线的性质、对顶角的性质和平角的定义解答即可. (3)根据平行线的性质和角平分线的定义以 解析:(1)见解析;(2);(3)75° 【分析】 (1)根据平行线的性质、余角和补角的性质即可求解. (2)根据平行线的性质、对顶角的性质和平角的定义解答即可. (3)根据平行线的性质和角平分线的定义以及三角形内角和解答即可. 【详解】 解:(1)∠C=∠1+∠2, 证明:过C作l∥MN,如下图所示, ∵l∥MN, ∴∠4=∠2(两直线平行,内错角相等), ∵l∥MN,PQ∥MN, ∴l∥PQ, ∴∠3=∠1(两直线平行,内错角相等), ∴∠3+∠4=∠1+∠2, ∴∠C=∠1+∠2; (2)∵∠BDF=∠GDF, ∵∠BDF=∠PDC, ∴∠GDF=∠PDC, ∵∠PDC+∠CDG+∠GDF=180°, ∴∠CDG+2∠PDC=180°, ∴∠PDC=90°-∠CDG, 由(1)可得,∠PDC+∠CEM=∠C=90°, ∴∠AEN=∠CEM, ∴, (3)设BD交MN于J. ∵BC平分∠PBD,AM平分∠CAD,∠PBC=25°, ∴∠PBD=2∠PBC=50°,∠CAM=∠MAD, ∵PQ∥MN, ∴∠BJA=∠PBD=50°, ∴∠ADB=∠AJB-∠JAD=50°-∠JAD=50°-∠CAM, 由(1)可得,∠ACB=∠PBC+∠CAM, ∴∠ACB+∠ADB=∠PBC+∠CAM+50°-∠CAM=25°+50°=75°. 【点睛】 本题考查了平行线的性质、余角和补角的性质,解题的关键是根据平行找出角度之间的关系. 10.(1)∠B,EF,CD,∠D;(2)①65°;②180°﹣ 【分析】 (1)根据平行线的判定定理与性质定理解答即可; (2)①如图1,过点E作EF∥AB,当点B在点A的左侧时,根据∠ABC=60°, 解析:(1)∠B,EF,CD,∠D;(2)①65°;②180°﹣ 【分析】 (1)根据平行线的判定定理与性质定理解答即可; (2)①如图1,过点E作EF∥AB,当点B在点A的左侧时,根据∠ABC=60°,∠ADC=70°,参考小亮思考问题的方法即可求∠BED的度数; ②如图2,过点E作EF∥AB,当点B在点A的右侧时,∠ABC=α,∠ADC=β,参考小亮思考问题的方法即可求出∠BED的度数. 【详解】 解:(1)过点E作EF∥AB, 则有∠BEF=∠B, ∵AB∥CD, ∴EF∥CD, ∴∠FED=∠D, ∴∠BED=∠BEF+∠FED=∠B+∠D; 故答案为:∠B;EF;CD;∠D; (2)①如图1,过点E作EF∥AB,有∠BEF=∠EBA. ∵AB∥CD, ∴EF∥CD. ∴∠FED=∠EDC. ∴∠BEF+∠FED=∠EBA+∠EDC. 即∠BED=∠EBA+∠EDC, ∵BE平分∠ABC,DE平分∠ADC, ∴∠EBA=∠ABC=30°,∠EDC=∠ADC=35°, ∴∠BED=∠EBA+∠EDC=65°. 答:∠BED的度数为65°; ②如图2,过点E作EF∥AB,有∠BEF+∠EBA=180°. ∴∠BEF=180°﹣∠EBA, ∵AB∥CD, ∴EF∥CD. ∴∠FED=∠EDC. ∴∠BEF+∠FED=180°﹣∠EBA+∠EDC. 即∠BED=180°﹣∠EBA+∠EDC, ∵BE平分∠ABC,DE平分∠ADC, ∴∠EBA=∠ABC=,∠EDC=∠ADC=, ∴∠BED=180°﹣∠EBA+∠EDC=180°﹣. 答:∠BED的度数为180°﹣. 【点睛】 本题考查了平行线的判定与性质,解决本题的关键是熟练掌握平行线的判定与性质. 三、解答题 11.(1)50°;(2)∠A+∠C=30°+α,理由见解析;(3)∠A-∠DCM=30°+α或30°-α 【分析】 (1)过M作MN∥AB,由平行线的性质即可求得∠M的值. (2)延长BA,DC交于E, 解析:(1)50°;(2)∠A+∠C=30°+α,理由见解析;(3)∠A-∠DCM=30°+α或30°-α 【分析】 (1)过M作MN∥AB,由平行线的性质即可求得∠M的值. (2)延长BA,DC交于E,应用四边形的内角和定理与平角的定义即可解决问题. (3)分两种情形分别求解即可; 【详解】 解:(1)过M作MN∥AB, ∵AB∥CD, ∴AB∥MN∥CD, ∴∠1=∠A,∠2=∠C, ∴∠AMC=∠1+∠2=∠A+∠C=50°; 故答案为:50°; (2)∠A+∠C=30°+α, 延长BA,DC交于E, ∵∠B+∠D=150°, ∴∠E=30°, ∵∠BAM+∠DCM=360°-(∠EAM+∠ECM)=360°-(360°-∠E-∠M)=30°+α; 即∠A+∠C=30°+α; (3)①如下图所示: 延长BA、DC使之相交于点E,延长MC与BA的延长线相交于点F, ∵∠B+∠D=150°,∠AMC=α,∴∠E=30° 由三角形的内外角之间的关系得: ∠1=30°+∠2 ∠2=∠3+α ∴∠1=30°+∠3+α ∴∠1-∠3=30°+α 即:∠A-∠C=30°+α. ②如图所示,210-∠A=(180°-∠DCM)+α,即∠A-∠DCM=30°-α. 综上所述,∠A-∠DCM=30°+α或30°-α. 【点睛】 本题考查了平行线的性质.解答该题时,通过作辅助线准确作出辅助线l∥AB,利用平行线的性质(两直线平行内错角相等)将所求的角∠M与已知角∠A、∠C的数量关系联系起来,从而求得∠M的度数. 12.(1)见解析;(2)∠CGA=45°;(3)∠FCP=2∠ACP或∠FCP+2∠ACP=180°. 【分析】 (1)有垂直定义可得∠MAB+∠KCN=90°,然后根据同角的余角相等可得∠KAN=∠K 解析:(1)见解析;(2)∠CGA=45°;(3)∠FCP=2∠ACP或∠FCP+2∠ACP=180°. 【分析】 (1)有垂直定义可得∠MAB+∠KCN=90°,然后根据同角的余角相等可得∠KAN=∠KCF,从而判断两直线平行; (2)设∠KAN=∠KCF=α,过点G作GH∥EF,结合角平分线的定义和平行线的判定及性质求解; (3)分CP交射线AQ及射线AQ的反向延长线两种情况结合角的和差关系分类讨论求解. 【详解】 解:(1)∵AB⊥AK ∴∠BAC=90° ∴∠MAB+∠KAN=90° ∵∠MAB+∠KCF=90° ∴∠KAN=∠KCF ∴EF∥MN (2)设∠KAN=∠KCF=α 则∠BAN=∠BAC+∠KAN=90°+α ∠KCB=180°-∠KCF=180°-α ∵AG平分∠NAB,CG平分∠ECK ∴∠GAN=∠BAN=45°+α,∠KCG=∠KCB=90°-α ∴∠FCG=∠KCG+∠KCF=90°+α 过点G作GH∥EF ∴∠HGC=∠FCG=90°+α 又∵MN∥EF ∴MN∥GH ∴∠HGA=∠GAN=45°+α ∴∠CGA=∠HGC-∠HGA=(90°+α)-(45°+α)=45° (3)①当CP交射线AQ于点T ∵ ∴ 又∵ ∴ 由(1)可得:EF∥MN ∴ ∵ ∴ ∵, ∴ ∴ 即∠FCP+2∠ACP=180° ②当CP交射线AQ的反向延长线于点T,延长BA交CP于点G ,由EF∥MN得 ∴ 又∵,, ∴ ∵, ∴ ∴ ∴ 由①可得 ∴ ∴ 综上,∠FCP=2∠ACP或∠FCP+2∠ACP=180°. 【点睛】 本题考查平行线的判定和性质以及角的和差关系,准确理解题意,正确推理计算是解题关键. 13.(1);(2),证明见解析;(3),证明见解析. 【分析】 (1)过点作,先根据平行线的性质、平行公理推论可得,从而可得,再根据平行线的性质可得,然后根据角平分线的定义可得,最后根据角的和差即可得; 解析:(1);(2),证明见解析;(3),证明见解析. 【分析】 (1)过点作,先根据平行线的性质、平行公理推论可得,从而可得,再根据平行线的性质可得,然后根据角平分线的定义可得,最后根据角的和差即可得; (2)过点作,过点作,先根据(1)可得,再根据(1)同样的方法可得,由此即可得出结论; (3)过点作,过点作,先根据(1)可得,再根据平行线的性质、平行公理推论可得,然后根据角的和差、等量代换即可得出结论. 【详解】 解:(1)如图,过点作, , , , , , 又,且点运动到线段上, , 平分,平分, , ; (2)猜想,证明如下: 如图,过点作,过点作, 由(1)已得:, 同理可得:, ; (3),证明如下: 如图,过点作,过点作, 由(1)已得:, 即, , ,即, , , ,即, , , , , 即. 【点睛】 本题考查了平行线的性质、平行公理推论、角平分线的定义等知识点,熟练掌握平行线的性质是解题关键. 14.(1)∠DAC;(2)360°;(3)65° 【分析】 (1)根据平行线的性质即可得到结论; (2)过C作CF∥AB根据平行线的性质得到∠D=∠FCD,∠B=∠BCF,然后根据已知条件即可得到结论; 解析:(1)∠DAC;(2)360°;(3)65° 【分析】 (1)根据平行线的性质即可得到结论; (2)过C作CF∥AB根据平行线的性质得到∠D=∠FCD,∠B=∠BCF,然后根据已知条件即可得到结论; (3)过点E作EF∥AB,然后根据两直线平行内错角相等,即可求∠BED的度数. 【详解】 解:(1)过点A作ED∥BC, ∴∠B=∠EAB,∠C=∠DCA, 又∵∠EAB+∠BAC+∠DAC=180°, ∴∠B+∠BAC+∠C=180°. 故答案为:∠DAC; (2)过C作CF∥AB, ∵AB∥DE, ∴CF∥DE, ∴∠D=∠FCD, ∵CF∥AB, ∴∠B=∠BCF, ∵∠BCF+∠BCD+∠DCF=360°, ∴∠B+∠BCD+∠D=360°; (3)如图3,过点E作EF∥AB, ∵AB∥CD, ∴AB∥CD∥EF, ∴∠ABE=∠BEF,∠CDE=∠DEF, ∵BE平分∠ABC,DE平分∠ADC,∠ABC=60°,∠ADC=70°, ∴∠ABE=∠ABC=30°,∠CDE=∠ADC=35°, ∴∠BED=∠BEF+∠DEF=30°+35°=65°. 【点睛】 此题考查了平行线的判定与性质,解题的关键是正确添加辅助线,利用平行线的性质进行推算. 15.(1)证明见解析;(2)(Ⅰ);(Ⅱ). 【分析】 (1)先根据平行线的性质可得,再根据角的和差可得,然后根据平行线的判定即可得证; (2)(Ⅰ)先根据平行线的性质可得,从而可得,再根据角的和差可得 解析:(1)证明见解析;(2)(Ⅰ);(Ⅱ). 【分析】 (1)先根据平行线的性质可得,再根据角的和差可得,然后根据平行线的判定即可得证; (2)(Ⅰ)先根据平行线的性质可得,从而可得,再根据角的和差可得,然后根据即可得; (Ⅱ)设,从而可得,先根据角平分线的定义可得,再根据角的和差可得,然后根据建立方程可求出x的值,从而可得的度数,最后根据平行线的性质即可得. 【详解】 (1), , 又, , ; (2)(Ⅰ), , , , 由(1)已得:, , ; (Ⅱ)设,则, 平分, , , , , 由(1)已得:, ,即, 解得, , 又, . 【点睛】 本题考查了平行线的判定与性质、角的和差、角平分线的定义、一元一次方程的几何应用等知识点,熟练掌握平行线的判定与性质是解题关键. 四、解答题 16.(1)①115°;110°;②;理由见解析;(2);理由见解析 【分析】 (1)①若∠BAC=100°,∠C=30°,由三角形内角和定理求出∠B=50°,由平行线的性质得出∠EDB=∠C=30°,由 解析:(1)①115°;110°;②;理由见解析;(2);理由见解析 【分析】 (1)①若∠BAC=100°,∠C=30°,由三角形内角和定理求出∠B=50°,由平行线的性质得出∠EDB=∠C=30°,由角平分线定义得出,,由三角形的外角性质得出∠DGF=100°,再由三角形的外角性质即可得出结果;若∠B=40°,则∠BAC+∠C=180°-40°=140°,由角平分线定义得出,,由三角形的外角性质即可得出结果; ②由①得:∠EDB=∠C,,,由三角形的外角性质得出∠DGF=∠B+∠BAG,再由三角形的外角性质即可得出结论; (2)由(1)得:∠EDB=∠C,,,由三角形的外角性质和三角形内角和定理即可得出结论. 【详解】 (1)①若∠BAC=100°,∠C=30°, 则∠B=180°-100°-30°=50°, ∵DE∥AC, ∴∠EDB=∠C=30°, ∵AG平分∠BAC,DF平分∠EDB, ∴,, ∴∠DGF=∠B+∠BAG=50°+50°=100°, ∴∠AFD=∠DGF+∠FDG=100°+15°=115°; 若∠B=40°,则∠BAC+∠C=180°-40°=140°, ∵AG平分∠BAC,DF平分∠EDB, ∴,, ∵∠DGF=∠B+∠BAG, ∴∠AFD=∠DGF+∠FDG=∠B+∠BAG+∠FDG = 故答案为:115°;110°; ②; 理由如下:由①得:∠EDB=∠C,,, ∵∠DGF=∠B+∠BAG, ∴∠AFD=∠DGF+∠FDG =∠B+∠BAG+∠FDG = ; (2)如图2所示:; 理由如下: 由(1)得:∠EDB=∠C,,, ∵∠AHF=∠B+∠BDH, ∴∠AFD=180°-∠BAG-∠AHF . 【点睛】 本题考查了三角形内角和定理、三角形的外角性质、平行线的性质等知识;熟练掌握三角形内角和定理和三角形的外角性质是解题的关键. 17.(1)①115°,110°;②,证明见解析;(2),证明见解析. 【解析】 【分析】 (1)①根据角平分线的定义求得∠CAG=∠BAC=50°;再由平行线的性质可得∠EDG=∠C=30°,∠FMD= 解析:(1)①115°,110°;②,证明见解析;(2),证明见解析. 【解析】 【分析】 (1)①根据角平分线的定义求得∠CAG=∠BAC=50°;再由平行线的性质可得∠EDG=∠C=30°,∠FMD=∠GAC=50°;由三角形的内角和定理求得∠AFD的度数即可;已知AG平分∠BAC,DF平分∠EDB,根据角平分线的定义可得∠CAG=∠BAC,∠FDM=∠EDG;由DE//AC,根据平行线的性质可得∠EDG=∠C,∠FMD=∠GAC;即可得∠FDM +∠FMD=∠EDG +∠GAC=∠C+∠BAC=(∠BAC+∠C)=×140°=70°;再由三角形的内角和定理可求得∠AFD=110°; ②∠AFD=90°+∠B,已知AG平分∠BAC,DF平分∠EDB,根据角平分线的定义可得∠CAG=∠BAC,∠FDM=∠EDG;由DE//AC,根据平行线的性质可得∠EDG=∠C,∠FMD=∠GAC;由此可得∠FDM +∠FMD=∠EDG +∠GAC=∠C+∠BAC=(∠BAC+∠C)=×(180°-∠B)=90°-∠B;再由三角形的内角和定理可得∠AFD=90°+∠B; (2)∠AFD=90°-∠B,已知AG平分∠BAC,DF平分∠EDB,根据角平分线的定义可得∠CAG=∠BAC,∠NDE=∠EDB,即可得∠FDM=∠NDE=- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 人教版 七年 级数 下册 期末 解答 压轴 答案
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【快乐****生活】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【快乐****生活】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【快乐****生活】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【快乐****生活】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文