人教版初二上册压轴题模拟数学综合检测试卷带解析(一)[001].doc
《人教版初二上册压轴题模拟数学综合检测试卷带解析(一)[001].doc》由会员分享,可在线阅读,更多相关《人教版初二上册压轴题模拟数学综合检测试卷带解析(一)[001].doc(23页珍藏版)》请在咨信网上搜索。
人教版初二上册压轴题模拟数学综合检测试卷带解析(一) 1.已知,如图1,射线分别与直线相交于两点,的平分线与直线相交于点,射线交于点,设,,且. (1) ______°,______°;直线与的位置关系是______; (2)如图2,若点是射线上任意一点,且,试找出与之间存在的数量关系,证明你的结论; (3)若将图中的射线绕着端点逆时针方向旋转(如图3),分别与相交于点和时,作的角平分线与射线相交于点,问在旋转的过程中的值变不变?若不变,请求出其值;若变化,请说明理由. 3.已知△ABC是等边三角形,△ADE的顶点D在边BC上 (1)如图1,若AD=DE,∠AED=60°,求∠ACE的度数; (2)如图2,若点D为BC的中点,AE=AC,∠EAC=90°,连CE,求证:CE=2BF; (3)如图3,若点D为BC的一动点,∠AED=90°,∠ADE=30°,已知△ABC的面积为4,当点D在BC上运动时,△ABE的面积是否发生变化?若不变,请求出其面积;若变化请说明理由. 3.如图1,在平面直角坐标系中,直线AB分别交y轴、x轴于点A(0,a),点B(b,0),且a、b满足a2-4a+4+=0. (1)求a,b的值; (2)以AB为边作Rt△ABC,点C在直线AB的右侧,且∠ACB=45°,求点C的坐标; (3)若(2)的点C在第四象限(如图2),AC与 x轴交于点D,BC与y轴交于点E,连接 DE,过点C作CF⊥BC交x轴于点F. ①求证:CF=BC; ②直接写出点C到DE的距离. 4.已知,. (1)若,作,点在内. ①如图1,延长交于点,若,,则的度数为 ; ②如图2,垂直平分,点在上,,求的值; (2)如图3,若,点在边上,,点在边上,连接,,,求的度数. 5.在中,,点在边上,且是射线上一动点(不与点重合,且),在射线上截取,连接. 当点在线段上时, ①若点与点重合时,请说明线段; ②如图2,若点不与点重合,请说明; 当点在线段的延长线上时,用等式表示线段之间的数量关系(直接写出结果,不需要证明). 6.已知在四边形ABCD中,∠ABC+∠ADC=180°,AB=BC. (1)如图1,若∠BAD=90°,AD=2,求CD的长度; (2)如图2,点P、Q分别在线段AD、DC上,满足PQ=AP+CQ,求证:∠PBQ=90°−∠ADC; (3)如图3,若点Q运动到DC的延长线上,点P也运动到DA的延长线上时,仍然满足PQ=AP+CQ,则(2)中的结论是否成立?若成立,请给出证明过程,若不成立,请写出∠PBQ与∠ADC的数量关系,并给出证明过程. 7.[背景]角的平分线是常见的几何模型,利用轴对称构造三角形全等可解决有关问题. [问题]在四边形ABDE中,C是BD边的中点. (1)如图1,若AC平分∠BAE,∠ACE=90°,则线段AE、AB、DE的长度满足的数量关系为______;(直接写出答案) (2)如图2,AC平分∠BAE,EC平分∠AED,若∠ACE=120°,则线段AB、BD、DE、AE的长度满足怎样的数量关系?写出结论并证明; (3)如图3,若∠ACE=120°,AB=4,DE=9,BD=12,则AE的最大值是______.(直接写出答案) 8.我们不妨约定:把“有一组邻边相等”的凸四边形叫做“菠菜四边形”. (1)如下:①平行四边形,②矩形,③菱形,④正方形,一定是“菠菜四边形”的是________(填序号); (2)如图1,四边形ABCD为“菠菜四边形”,且∠BAD=∠BCD=90°,AD=AB,AE⊥CD于点E,若AE=4,求四边形ABCD的面积; (3)①如图2,四边形ABCD为“菠菜四边形”,且AB=AD,记四边形ABCD,△BOC,△AOD的面积依次为S,,,若.求证:ADBC; ②在①的条件下,延长BA、CD交于点E,记BC=m,DC=n,求证:. 【参考答案】 2.(1)30,30,AB//CD;(2)+=180°,证明见解析;(3)不变,. 【分析】(1)利用非负数的性质可知:α=β=40°,推出∠EMF=∠MFN即可解决问题; (2)结论:∠FMN+∠ 解析:(1)30,30,AB//CD;(2)+=180°,证明见解析;(3)不变,. 【分析】(1)利用非负数的性质可知:α=β=40°,推出∠EMF=∠MFN即可解决问题; (2)结论:∠FMN+∠GHF=180°.只要证明GH∥PN即可解决问题; (3)结论:的值不变,=2.如图3中,作∠PEM1的平分线交M1Q的延长线于R.只要证明∠R=∠FQM1,∠FPM1=2∠R即可; 【详解】解:(1)∵, ∴60-2α=0,β-30=0, ∴α=β=30°, ∴∠PFM=∠MFN=30°,∠EMF=30°, ∴∠EMF=∠MFN, ∴AB∥CD; (2)结论:∠FMN+∠GHF=180°, 理由如下:如图2中, ∵AB∥CD, ∴∠MNF=∠PME, ∵∠MGH=∠MNF, ∴∠PME=∠MGH, ∴GH∥PN, ∴∠GHM=∠FMN, ∵∠GHF+∠GHM=180°, ∴∠FMN+∠GHF=180°; (3)的值不变,=2. 理由如下:如图3中,作∠PEM1的平分线交M1Q的延长线于R, ∵AB∥CD, ∴∠PEM1=∠PFN, ∵∠PER=∠PEM1,∠PFQ=∠PFN, ∴∠PER=∠PFQ, ∴ER∥FQ, ∴∠FQM1=∠R, 设∠PER=∠REB=x,∠PM1R=∠RM1B=y, 则有:,可得∠EPM1=2∠R, ∴∠EPM1=2∠FQM1, ∴=2. 【点睛】本题考查几何变换综合题、平行线的判定和性质、角平分线的定义、非负数的性质等知识,解题的关键是灵活运用所学知识解决问题,学会添加常用辅助线,构造平行线解决问题. 3.(1)60°;(2)见解析;(3)不变, 【分析】(1)由题意,先证△ADE是等边三角形,再证△BAD≌△CAE,得∠ACE=∠B=60°; (2)由题意,先求出∠BEC=30°,然后求出∠CF 解析:(1)60°;(2)见解析;(3)不变, 【分析】(1)由题意,先证△ADE是等边三角形,再证△BAD≌△CAE,得∠ACE=∠B=60°; (2)由题意,先求出∠BEC=30°,然后求出∠CFE=90°,利用直角三角形中30度角所对直角边等于斜边的一半,即可得证; (3)延长AE至F,使EF=AE,连DF、CF,先证明△ADF是等边三角形,然后证明△EGF≌△EHA,结合HG是定值,即可得到答案. 【详解】解:(1)根据题意, ∵AD=DE,∠AED=60°, ∴△ADE是等边三角形, ∴AD=AE,∠DAE=60°, ∵AB=AC,∠BAC=60°, ∴, 即, ∴△BAD≌△CAE, ∴∠ACE=∠B=60°; (2)连CF,如图: ∵AB=AC=AE, ∴∠AEB=∠ABE, ∵∠BAC=60°,∠EAC=90°, ∴∠BAE=150°, ∴∠AEB=∠ABE=15°; ∵△ACE是等腰直角三角形, ∴∠AEC=45°, ∴∠BEC=30°,∠EBC=45°, ∵AD垂直平分BC,点F在AD上, ∴CF=BF, ∴∠FCB=∠EBC=45°, ∴∠CFE=90°, 在直角△CEF中,∠CFE=90°,∠CEF=30°, ∴CE=2CF=2BF; (3)延长AE至F,使EF=AE,连DF、CF,如图: ∵∠AED=90°,EF=AE, ∴DE是中线,也是高, ∴△ADF是等腰三角形, ∵∠ADE=30°, ∴∠DAE=60°, ∴△ADF是等边三角形; 由(1)同理可求∠ACF=∠ABC=60°, ∴∠ACF=∠BAC=60°, ∴CF∥AB, 过E作EG⊥CF于G,延长GE交BA的延长线于点H, 易证△EGF≌△EHA, ∴EH=EG=HG, ∵HG是两平行线之间的距离,是定值, ∴S△ABE=S△ABC=; 【点睛】本题考查了等边三角形的判定和性质,等腰三角形的判定和性质,垂直平分线的性质,全等三角形的判定和性质,含30度角的直角三角形的性质,解题的关键是熟练掌握所学的知识,正确的作出辅助线,从而进行解题. 4.(1)a=2,b=-1;(2)满足条件的点C(2,1)或(1,-1);(3)①证明见解析;②1. 【分析】(1)可得(a−2)2+=0,由非负数的性质可得出答案; (2)分两种情况:∠BAC=9 解析:(1)a=2,b=-1;(2)满足条件的点C(2,1)或(1,-1);(3)①证明见解析;②1. 【分析】(1)可得(a−2)2+=0,由非负数的性质可得出答案; (2)分两种情况:∠BAC=90°或∠ABC=90°,根据等腰直角三角形的性质及全等三角形的性质可求出点C的坐标; (3)①如图3,过点C作CL⊥y轴于点L,则CL=1=BO,根据AAS可证明△BOE≌△CLE,得出BE=CE,根据ASA可证明△ABE≌△BCF,得出BE=CF,则结论得证; ②如图4,过点C作CK⊥ED于点K,过点C作CH⊥DF于点H,根据SAS可证明△CDE≌△CDF,可得∠BAE=∠CBF,由角平分线的性质可得CK=CH=1. 【详解】(1)∵a2−4a+4+=0, ∴(a−2)2+=0, ∵(a-2)2≥0,≥0, ∴a-2=0,2b+2=0, ∴a=2,b=-1; (2)由(1)知a=2,b=-1, ∴A(0,2),B(-1,0), ∴OA=2,OB=1, ∵△ABC是直角三角形,且∠ACB=45°, ∴只有∠BAC=90°或∠ABC=90°, Ⅰ、当∠BAC=90°时,如图1, ∵∠ACB=∠ABC=45°, ∴AB=CB, 过点C作CG⊥OA于G, ∴∠CAG+∠ACG=90°, ∵∠BAO+∠CAG=90°, ∴∠BAO=∠ACG, 在△AOB和△BCP中, , ∴△AOB≌△CGA(AAS), ∴CG=OA=2,AG=OB=1, ∴OG=OA-AG=1, ∴C(2,1), Ⅱ、当∠ABC=90°时,如图2, 同Ⅰ的方法得,C(1,-1); 即:满足条件的点C(2,1)或(1,-1) (3)①如图3,由(2)知点C(1,-1), 过点C作CL⊥y轴于点L,则CL=1=BO, 在△BOE和△CLE中, , ∴△BOE≌△CLE(AAS), ∴BE=CE, ∵∠ABC=90°, ∴∠BAO+∠BEA=90°, ∵∠BOE=90°, ∴∠CBF+∠BEA=90°, ∴∠BAE=∠CBF, 在△ABE和△BCF中, , ∴△ABE≌△BCF(ASA), ∴BE=CF, ∴CF=BC; ②点C到DE的距离为1. 如图4,过点C作CK⊥ED于点K,过点C作CH⊥DF于点H, 由①知BE=CF, ∵BE=BC, ∴CE=CF, ∵∠ACB=45°,∠BCF=90°, ∴∠ECD=∠DCF, ∵DC=DC, ∴△CDE≌△CDF(SAS), ∴∠BAE=∠CBF, ∴CK=CH=1. 【点睛】此题考查三角形综合题,非负数的性质,等腰直角三角形的判定和性质,全等三角形的判定和性质,坐标与图形的性质,等腰三角形的性质,点到直线的距离,角平分线的性质,解题的关键是学会添加常用辅助线,构造全等三角形解决问题. 5.(1)①15°;②;(2) 【分析】(1)①根据等腰直角三角形的性质,连接,得,,所对的直角边是斜边的一半,可得,所以可得,,,和是等腰三角形,由外角性质计算可得; ②构造“一线三垂直”模型,证 解析:(1)①15°;②;(2) 【分析】(1)①根据等腰直角三角形的性质,连接,得,,所对的直角边是斜边的一半,可得,所以可得,,,和是等腰三角形,由外角性质计算可得; ②构造“一线三垂直”模型,证明三角形,利用面积比等于等高的三角形的底边的比,结合已知条件即可解得. (2)构造等边,通过证明,等边代换,得出等腰三角形,代入角度计算即得. 【详解】(1)①连接AE,在,因为,, ,, ,, , , , ,, , , , 故答案为:. ②过C作交DF延长线于G,连接AE AD垂直平分BE, , , , , 故答案为:; (2)以AB向下构造等边,连接DK, 延长AD,BK交于点T, ,, , , ,, 等边中,,, ,, 在和中, , 等边三角形三线合一可知,BD是边AK的垂直平分线, , , , , 故答案为:. 【点睛】考查了等腰直角三角形的性质,外角的性质,等腰三角形的判定和性质,构造等边三角形的方法证明全等,全等三角形的性质应用很关键,熟记几何图形的性质和判定是解决图形问题的重要方法依据. 6.(1)①证明见解析;②证明见解析;(2)BF=AE-CD 【分析】(1)①根据等边对等角,求到,再由含有60°角的等腰三角形是等边三角形得到是等边三角形,之后根据等边三角形的性质以及邻补角的性质得 解析:(1)①证明见解析;②证明见解析;(2)BF=AE-CD 【分析】(1)①根据等边对等角,求到,再由含有60°角的等腰三角形是等边三角形得到是等边三角形,之后根据等边三角形的性质以及邻补角的性质得到,推出,根据全等三角形的性质即可得出结论;②过点A做AG∥EF交BC于点G,由△DEF为等边三角形得到DA=DG,再推出AE=GF,根据线段的和差即可整理出结论; (2)根据题意画出图形,作出AG,由(1)可知,AE=GF,DC=BG,再由线段的和差和等量代换即可得到结论. 【详解】(1)①证明: ,且E与A重合, 是等边三角形 在和中 ②如图2,过点A做AG∥EF交BC于点G, ∵∠ADB=60° DE=DF ∴△DEF为等边三角形 ∵AG∥EF ∴∠DAG=∠DEF=60°,∠AGD=∠EFD=60° ∴∠DAG=∠AGD ∴DA=DG ∴DA-DE=DG-DF,即AE=GF 由①易证△AGB≌△ADC ∴BG=CD ∴BF=BG+GF=CD+AE (2)如图3,和(1)中②相同,过点A做AG∥EF交BC于点G, 由(1)可知,AE=GF,DC=BG, 故. 【点睛】本题考查了全等三角形的判定和性质,等边三角形的判定和性质,等腰三角形的判定和性质,正确的作出辅助线是解题的关键. 7.(1)CD=2;(2)证明见解析;(3)(2)中结论不成立,应该是:,理由见解析. 【分析】(1)如图1,利用HL证得两个直角三角形全等:Rt△BAD≌Rt△BCD,则其对应边相等:AD=DC=2 解析:(1)CD=2;(2)证明见解析;(3)(2)中结论不成立,应该是:,理由见解析. 【分析】(1)如图1,利用HL证得两个直角三角形全等:Rt△BAD≌Rt△BCD,则其对应边相等:AD=DC=2; (2)如图2,延长DC,在上面找一点K,使得CK=AP,连接BK,通过证△BPA≌△BCK(SAS)得到:∠1=∠2,BP=BK.然后由全等三角形△PBQ≌△BKQ的对应角相等求得∠PBQ=∠ABC,结合已知条件“∠ABC+∠ADC=180°”可以推知∠PBQ=90°-∠ADC; (3)(2)中结论不成立,应该是:∠PBQ=90°+∠ADC. 如图3,在CD延长线上找一点K,使得KC=AP,连接BK,构建全等三角形:△BPA≌△BCK(SAS),由该全等三角形的性质和全等三角形的判定定理SSS证得:△PBQ≌△BKQ,则其对应角相等:∠PBQ=∠KBQ,结合四边形的内角和是360度可以推得:∠PBQ=90°+∠ADC. 【详解】(1)∵, ∴ 在Rt△BAD和Rt△BCD中, ∴Rt△BAD≌Rt△BCD(HL) ∴AD=DC=2 ∴DC=2 (2)如图,延长DC,在上面找一点K,使得CK=AP,连接BK ∵ ∴ ∵ ∴ 在△BPA和△BCK中 ∴△BPA≌△BCK(SAS) ∴,BP=BK ∵PQ=AP+CQ ∴PQ=QK 在△PBQ和△BKQ中 ∴△PBQ≌△BKQ(SSS) ∴ ∴ ∴ ∵ ∴ ∴ ∴ (3)(2)中结论不成立,应该是: 在CD延长线上找一点K,使得KC=AP,连接BK ∵ ∴ ∵ ∴ 在△BPA和△BCK中 ∴△BPA≌△BCK(SAS) ∴,BP=BK ∴ ∵PQ=AP+CQ ∴PQ=QK 在△PBQ和△BKQ中 ∴△PBQ≌△BKQ(SSS) ∴ ∴ ∴ ∴ 【点睛】本题考查了全等三角形的判定与性质.在应用全等三角形的判定时,要注意三角形间的公共边和公共角,必要时添加适当辅助线构造三角形. 8.(1)AE=AB+DE (2)AE=AB+DE+BD (3) 【分析】(1)在AE上取一点F,使AF=AB,及可以得出△ACB≌△ACF,就可以得出BC=FC,∠ACB=∠ACF,就可以得出△ 解析:(1)AE=AB+DE (2)AE=AB+DE+BD (3) 【分析】(1)在AE上取一点F,使AF=AB,及可以得出△ACB≌△ACF,就可以得出BC=FC,∠ACB=∠ACF,就可以得出△CEF≌△CED.就可以得出结论; (3)在AE上取点F,使AF=AB,连接CF,在AE上取点G,使EG=ED,连接CG.可以求得CF=CG,△CFG是等边三角形,就有FG=CG=BD,进而得出结论; (3)作B关于AC的对称点F,D关于EC的对称点G,连接AF,FC,CG,EG,FG.根据两点之间线段最短解决问题即可. (1) AE=AB+DE; 理由:在AE上取一点F,使AF=AB, ∵AC平分∠BAE, ∴∠BAC=∠FAC. 在△ACB和△ACF中, , ∴△ACB≌△ACF(SAS), ∴BC=FC,∠ACB=∠ACF. ∵C是BD边的中点. ∴BC=CD, ∴CF=CD. ∵∠ACE=90°, ∴∠ACB+∠DCE=90°,∠ACF+∠ECF=90° ∴∠ECF=∠ECD. 在△CEF和△CED中, , ∴△CEF≌△CED(SAS), ∴EF=ED. ∵AE=AF+EF, ∴AE=AB+DE, 故答案为:AE=AB+DE; (2) 猜想:AE=AB+DE+BD. 证明:在AE上取点F,使AF=AB,连接CF,在AE上取点G,使EG=ED,连接CG. ∵C是BD边的中点, ∴CB=CD=BD. ∵AC平分∠BAE, ∴∠BAC=∠FAC. 在△ACB和△ACF中, ∴△ACB≌△ACF(SAS), ∴CF=CB, ∴∠BCA=∠FCA. 同理可证:CD=CG, ∴∠DCE=∠GCE. ∵CB=CD, ∴CG=CF ∵∠ACE=120°, ∴∠BCA+∠DCE=180°-120°=60°. ∴∠FCA+∠GCE=60°. ∴∠FCG=60°. ∴△FGC是等边三角形. ∴FG=FC=BD. ∵AE=AF+EG+FG. ∴AE=AB+DE+BD. (3) 作B关于AC的对称点F,D关于EC的对称点G,连接AF,FC,CG,EG,FG,如图所示: ∵C是BD边的中点, ∴CB=CD=BD=, ∵△ACB≌△ACF(SAS), ∴CF=CB=, ∴∠BCA=∠FCA, 同理可证:CD=CG=, ∴∠DCE=∠GCE, ∵CB=CD, ∴CG=CF, ∵∠ACE=120°, ∴∠BCA+∠DCE=180°-120°=60°, ∴∠FCA+∠GCE=60°, ∴∠FCG=60°, ∴△FGC是等边三角形, ∴FC=CG=FG=, ∵AE≤AF+FG+EG, ∴当A、F、G、E共线时AE的值最大,最大值为. 故答案为:. 【点睛】本题考查了四边形的综合题,角平分线的性质的运用,全等三角形的判定及性质的运用,等边三角形的性质的运用,勾股定理的运用,解答时证明三角形全等是关键. 9.(1)③ ④ (2)16 (3)①见解析;②见解析 【分析】(1)根据菠菜四边形的定义结合各个特殊四边形的定义即可得出结论; (2)过A作,交CB的延长线于F,求出四边形AFCE是矩形,则, 解析:(1)③ ④ (2)16 (3)①见解析;②见解析 【分析】(1)根据菠菜四边形的定义结合各个特殊四边形的定义即可得出结论; (2)过A作,交CB的延长线于F,求出四边形AFCE是矩形,则,求出,得出,有全等的出AE=AF=3,,求出,求出,代入求解即可; (3)记面积为,则,,根据已知条件可得,进而可得,得出 由平分线的性质结合等腰三角形的性质可得BD平分,过点D作于点H,作于点N,则DH=DN,则,由此即可得出结论. (1) 根据菱形于正方形的定义值,一定是菠菜四边形的是菱形与正方形, 故答案为:③④ (2) 如图,过A作,交CB的延长线于F, ∴ 四边形AFCE是矩形 则 四边形AFCE是正方形, 即四边形ABCD的面积为16 (3) ①记, ∴ ∵ ∴ ∴ ∵ ∴ ∴ ∴ ∴ 如图:作, ∴ ∴ AMAD ∴四边形AMND为平行四边形 ∴ADMN ∴ADBC ②∵ADBC ∴ 又∵AD=AB ∴ ∴ ∴BD平分 如图: ∵ ∴ ∴ 又∵ ∴ ∴ 【点睛】本题考查全等三角形的性质与判定,三角形的面积,角平分线的性质,对于同第登高的三角形的面积相等的推到是关键.- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 001 人教版 初二 上册 压轴 模拟 数学 综合 检测 试卷 解析
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【w****g】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【w****g】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【w****g】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【w****g】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文