人教版中学七年级数学下册期末质量检测试卷(附答案).doc
《人教版中学七年级数学下册期末质量检测试卷(附答案).doc》由会员分享,可在线阅读,更多相关《人教版中学七年级数学下册期末质量检测试卷(附答案).doc(26页珍藏版)》请在咨信网上搜索。
人教版中学七年级数学下册期末质量检测试卷(附答案) 一、选择题 1.“49的平方根是”的表达式正确的是() A. B. C. D. 2.下列图中的“笑脸”,是由上面教师寄语中的图像平移得到的是( ) A. B. C. D. 3.在平面直角坐标系中,下列各点位于第三象限的是( ) A. B. C. D. 4.下列命题中,假命题是( ) A.对顶角相等 B.两直线平行,内错角相等 C.在同一平面内,垂直于同一直线的两直线平行 D.过一点有且只有一条直线与已知直线平行 5.如图,,平分,,点在的延长线上,连接,,下列结论:①;②平分;③;④.其中正确的个数为( ) A.1个 B.2个 C.3个 D.4个 6.下列叙述中,①1的立方根为±1;②4的平方根为±2;③-8立方根是-2;④的算术平方根为.正确的是( ) A.①②③ B.①②④ C.①③④ D.②③④ 7.如图,,,则的大小是( ) A. B. C. D. 8.如图,动点在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点,第2次接着运动到点,第3次接着运动到点,…,按这样的运动规律,经过第2021次运动后,动点的坐标是( ) A. B. C. D. 九、填空题 9.9的算术平方根是 . 十、填空题 10.点关于轴的对称点的坐标为,则的值是______. 十一、填空题 11.如图,AD∥BC,BD为∠ABC的角平分线,DE、DF分别是∠ADB和∠ADC的角平分线,且∠BDF=α,则∠A与∠C的等量关系是________________(等式中含有α) 十二、填空题 12.如图,,,,则∠CAD的度数为____________. 十三、填空题 13.如图,将长方形沿折叠,使点C落在边上的点F处,若,则___º. 十四、填空题 14.阅读下列解题过程: 计算: 解:设① 则② 由②-①得, 运用所学到的方法计算:______________. 十五、填空题 15.如果点P(x,y)的坐标满足x+y=xy,那么称点P为“美丽点”,若某个“美丽点”P到y轴的距离为2,则点P的坐标为___. 十六、填空题 16.如图,在平面直角坐标系中,一动点从原点O出发,按向上,向右,向下,向右的方向不断移动,每移动一个单位,得到点,,,,…,那么点的坐标为__________. 十七、解答题 17.计算: (1); (2). 十八、解答题 18.求下列各式中的值: (1); (2). 十九、解答题 19.按逻辑填写步骤和理由,将下面的证明过程补充完整. 如图,,点在直线上,点、在直线上,且,点在线段上,连接,且平分. 求证:. 证明:( ) ( ) (平角定义) 平分(已知) ( ) ( ) (已知) ( ) (等量代换) 二十、解答题 20.将△ABO向右平移4个单位,再向下平移1个单位,得到三角形A′B′O′ (1)请画出平移后的三角形A′B′O′. (2)写出点A′、O′的坐标. 二十一、解答题 21.已知某正数的两个平方根分别是和的立方根是是的整数部分. (1)求的值; (2)求的算术平方根. 二十二、解答题 22.如图,用两个面积为的小正方形纸片剪拼成一个大的正方形. (1)大正方形的边长是________; (2)请你探究是否能将此大正方形纸片沿着边的方向裁出一个面积为的长方形纸片,使它的长宽之比为,若能,求出这个长方形纸片的长和宽,若不能,请说明理由. 二十三、解答题 23.已知:直线AB∥CD,M,N分别在直线AB,CD上,H为平面内一点,连HM,HN. (1)如图1,延长HN至G,∠BMH和∠GND的角平分线相交于点E.求证:2∠MEN﹣∠MHN=180°; (2)如图2,∠BMH和∠HND的角平分线相交于点E. ①请直接写出∠MEN与∠MHN的数量关系: ; ②作MP平分∠AMH,NQ∥MP交ME的延长线于点Q,若∠H=140°,求∠ENQ的度数.(可直接运用①中的结论) 二十四、解答题 24.如图,直线,一副三角板(,,)按如图①放置,其中点在直线上,点均在直线上,且平分. (1)求的度数. (2)如图②,若将三角形绕点以每秒的速度按逆时针方向旋转(的对应点分别为).设旋转时间为秒. ①在旋转过程中,若边,求的值; ②若在三角形绕点旋转的同时,三角形绕点以每秒的速度按顺时针方向旋转(的对应点分别为).请直接写出当边时的值. 二十五、解答题 25.如果三角形的两个内角与满足,那么我们称这样的三角形是“准互余三角形”. (1)如图1,在中,,是的角平分线,求证:是“准互余三角形”; (2)关于“准互余三角形”,有下列说法: ①在中,若,,,则是“准互余三角形”; ②若是“准互余三角形”,,,则; ③“准互余三角形”一定是钝角三角形. 其中正确的结论是___________(填写所有正确说法的序号); (3)如图2,,为直线上两点,点在直线外,且.若是直线上一点,且是“准互余三角形”,请直接写出的度数. 【参考答案】 一、选择题 1.A 解析:A 【分析】 根据平方根的表示方法,即可得到答案. 【详解】 解:“49的平方根是”表示为:. 故选A. 【点睛】 本题主要考查平方根的表示法,掌握正数a的平方根表示为,是解题的关键. 2.D 【分析】 根据平移的性质,不改变图形的形状和大小,经过平移,对应点所连的线段平行且相等,对应线段平行且相等. 【详解】 解:A、B、C都不是由平移得到的,D是由平移得到的. 故选:D. 【点睛】 解析:D 【分析】 根据平移的性质,不改变图形的形状和大小,经过平移,对应点所连的线段平行且相等,对应线段平行且相等. 【详解】 解:A、B、C都不是由平移得到的,D是由平移得到的. 故选:D. 【点睛】 本题考查平移的基本性质是:①平移不改变图形的形状和大小;②经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等. 3.D 【分析】 根据各象限内点的坐标特征对各选项分析判断后利用排除法求解. 【详解】 解:A、(0,3)在y轴上,故本选项不符合题意; B、(−2,1)在第二象限,故本选项不符合题意; C、(1,−2)在第四象限,故本选项不符合题意; D、(-1,-1)在第三象限,故本选项符合题意. 故选:D. 【点睛】 本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解题的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-). 4.D 【分析】 根据对顶角的定义、平行线的性质、平行公理及其推论可直接进行排除选项. 【详解】 解:A、对顶角相等,是真命题,故不符合题意; B、两直线平行,内错角相等,是真命题,故不符合题意; C、在同一平面内,垂直于同一直线的两直线平行,是真命题,故不符合题意; D、过直线外一点有且只有一条直线与已知直线平行,所以原命题是假命题,故符合题意; 故选D. 【点睛】 本题主要考查命题、平行线的性质、平行公理及对顶角的定义,熟练掌握命题、平行线的性质、平行公理及对顶角的定义等相关知识点是解题的关键. 5.D 【分析】 结合平行线性质和平分线判断出①②正确,再结合平行线和平分线根据等量代换判断出③④正确即可. 【详解】 解:∵ABCD, ∴∠1=∠2, ∵AC平分∠BAD, ∴∠2=∠3, ∴∠1=∠3, ∵∠B=∠CDA, ∴∠1=∠4, ∴∠3=∠4, ∴BCAD, ∴①正确; ∴CA平分∠BCD, ∴②正确; ∵∠B=2∠CED, ∴∠CDA=2∠CED, ∵∠CDA=∠DCE+∠CED, ∴∠ECD=∠CED, ∴④正确; ∵BCAD, ∴∠BCE+∠AEC= 180°, ∴∠1+∠4+∠DCE+∠CED= 180°, ∴∠1+∠DCE = 90°, ∴∠ACE= 90°, ∴AC⊥EC, ∴③正确 故其中正确的有①②③④,4个, 故选:D. 【点睛】 此题考查平行线的性质和角平分线的性质,难度一般,利用性质定理判断是关键. 6.D 【分析】 分别求出每个数的立方根、平方根和算术平方根,再判断即可. 【详解】 ∵1的立方根为1,∴①错误; ∵4的平方根为±2,∴②正确; ∵−8的立方根是−2,∴③正确; ∵的算术平方根是,∴④正确; 正确的是②③④, 故选:D. 【点睛】 本题考查了平方根、算术平方根和立方根.解题的关键是掌握平方根、算术平方根和立方根的定义. 7.D 【分析】 根据同位角相等,两直线平行即可求解. 【详解】 解:如图: 因为,∠1=60°, 所以∠3=∠1=60°. 因为∠2+∠3=180°, 所以∠2=180°-60°=120°. 故选:D. 【点睛】 本题考查的是平行线的判定定理,掌握同位角相等,两直线平行是解题的关键. 8.C 【分析】 根据第1、5、9、......位置上点的变化规律即可求出第2021个位置的点的坐标. 【详解】 解:设第n次运动后的点记为An, 根据变化规律可知,, ......, ∴,n为正整数, 解析:C 【分析】 根据第1、5、9、......位置上点的变化规律即可求出第2021个位置的点的坐标. 【详解】 解:设第n次运动后的点记为An, 根据变化规律可知,, ......, ∴,n为正整数, 取,则, ∴, 故选:C. 【点睛】 本题主要考查点的坐标的变化规律,关键是要发现第1、5、9、......的位置上的点的变化规律,第2021个点刚好满足此规律. 九、填空题 9.【分析】 根据一个正数的算术平方根就是其正的平方根即可得出. 【详解】 ∵, ∴9算术平方根为3. 故答案为3. 【点睛】 本题考查了算术平方根,熟练掌握算术平方根的概念是解题的关键. 解析:【分析】 根据一个正数的算术平方根就是其正的平方根即可得出. 【详解】 ∵, ∴9算术平方根为3. 故答案为3. 【点睛】 本题考查了算术平方根,熟练掌握算术平方根的概念是解题的关键. 十、填空题 10.4 【分析】 根据横坐标不变,纵坐标相反,确定a,b的值,计算即可. 【详解】 ∵点关于轴的对称点的坐标为, ∴a=5,b= -1, ∴a+b= 5-1=4, 故答案为:4. 【点睛】 本题考查了坐 解析:4 【分析】 根据横坐标不变,纵坐标相反,确定a,b的值,计算即可. 【详解】 ∵点关于轴的对称点的坐标为, ∴a=5,b= -1, ∴a+b= 5-1=4, 故答案为:4. 【点睛】 本题考查了坐标系中轴对称问题,熟练掌握轴对称的坐标变化特点是解题的关键. 十一、填空题 11.∠A=∠C+2α 【分析】 由角平分线定义得出∠ABC=2∠CBD,∠ADC=2∠ADF,又因AD∥BC得出∠A+∠ABC=180°,∠ADC+∠C=180°,∠CBD=∠ADB,等量代换得∠A=∠ 解析:∠A=∠C+2α 【分析】 由角平分线定义得出∠ABC=2∠CBD,∠ADC=2∠ADF,又因AD∥BC得出∠A+∠ABC=180°,∠ADC+∠C=180°,∠CBD=∠ADB,等量代换得∠A=∠C+2α即可得到答案. 【详解】 解:如图所示: ∵BD为∠ABC的角平分线, ∴∠ABC=2∠CBD, 又∵AD∥BC, ∴∠A+∠ABC=180°, ∴∠A+2∠CBD=180°, 又∵DF是∠ADC的角平分线, ∴∠ADC=2∠ADF, 又∵∠ADF=∠ADB+α ∴∠ADC=2∠ADB+2α, 又∵∠ADC+∠C=180°, ∴2∠ADB+2α+∠C=180°, ∴∠A+2∠CBD=2∠ADB+2α+∠C 又∵∠CBD=∠ADB, ∴∠A=∠C+2α, 故答案为:∠A=∠C+2α. 【点睛】 本题考查了平行线的性质,解题需要熟练掌握角平分线的定义,平行线的性质和等式的性质,重点掌握平行线的性质. 十二、填空题 12.【分析】 根据两直线平行内错角相等可得,,再根据角之间的关系即可求出的度数. 【详解】 解:∵∥,, ∴, ∴ 故答案为: 【点睛】 本题主要考查了平行线的相关知识,熟练运用两直线平行内错角相等是 解析: 【分析】 根据两直线平行内错角相等可得,,再根据角之间的关系即可求出的度数. 【详解】 解:∵∥,, ∴, ∴ 故答案为: 【点睛】 本题主要考查了平行线的相关知识,熟练运用两直线平行内错角相等是解答此题的关键. 十三、填空题 13.23 【分析】 根据∠EFB求出∠BEF,根据翻折的性质,可得到∠DEC=∠DEF,从而求出∠DEC的度数,即可得到∠EDC. 【详解】 解:∵△DFE是由△DCE折叠得到的, ∴∠DEC=∠FED 解析:23 【分析】 根据∠EFB求出∠BEF,根据翻折的性质,可得到∠DEC=∠DEF,从而求出∠DEC的度数,即可得到∠EDC. 【详解】 解:∵△DFE是由△DCE折叠得到的, ∴∠DEC=∠FED, 又∵∠EFB=44°,∠B=90°, ∴∠BEF=46°, ∴∠DEC=(180°-46°)=67°, ∴∠EDC=90°-∠DEC=23°, 故答案为:23. 【点睛】 本题考查角的计算,熟练掌握翻折的性质,找到相等的角是解决本题的关键. 十四、填空题 14.. 【分析】 设S=,等号两边都乘以5可解决. 【详解】 解:设S=① 则5S=② ②-①得4S=, 所以S=. 故答案是:. 【点睛】 本题考查了有理数运算中的规律性问题,此题参照例子,采用类比的 解析:. 【分析】 设S=,等号两边都乘以5可解决. 【详解】 解:设S=① 则5S=② ②-①得4S=, 所以S=. 故答案是:. 【点睛】 本题考查了有理数运算中的规律性问题,此题参照例子,采用类比的方法就可以解决. 十五、填空题 15.(2,2),(-2,) 【分析】 直接利用某个“美丽点”到y轴的距离为2,得出x的值,进而求出y的值求出答案. 【详解】 解:∵某个“美丽点”到y轴的距离为2, ∴x=±2, ∵x+y=xy, ∴当 解析:(2,2),(-2,) 【分析】 直接利用某个“美丽点”到y轴的距离为2,得出x的值,进而求出y的值求出答案. 【详解】 解:∵某个“美丽点”到y轴的距离为2, ∴x=±2, ∵x+y=xy, ∴当x=2时, 则y+2=2y, 解得:y=2, ∴点P的坐标为(2,2), 当x=-2时, 则y-2=-2y, 解得:y=, ∴点P的坐标为(-2,), 综上所述:点P的坐标为(2,2)或(-2,). 故答案为:(2,2)或(-2,). 【点睛】 此题主要考查了点的坐标,正确分类讨论是解题关键. 十六、填空题 16.【分析】 由题意可知,每隔四次移动重复一次,继续得出A5,A6,A7,A8,…,归纳出点An的一般规律,从而可求得结果. 【详解】 ∵,,, ∴根据点的平移规律,可分别得:,,,,,,,,…,,, 解析: 【分析】 由题意可知,每隔四次移动重复一次,继续得出A5,A6,A7,A8,…,归纳出点An的一般规律,从而可求得结果. 【详解】 ∵,,, ∴根据点的平移规律,可分别得:,,,,,,,,…,,,, ∵2021=505×4+1 ∴的横坐标为2×505=1010,纵坐标为1 即 故答案为: 【点睛】 本题考查了平面直角坐标系中点的坐标的规律问题,点平移的坐标特征,体现了由特殊到一般的数学思想,关键是由前面若干点的的坐标寻找出规律. 十七、解答题 17.(1)5;(2)4﹣. 【分析】 (1)直接利用二次根式以及立方根的性质分别化简得出答案; (2)直接去绝对值进而计算得出答案. 【详解】 (1)原式=4+2﹣ =5; (2)原式=3﹣(﹣) =3 解析:(1)5;(2)4﹣. 【分析】 (1)直接利用二次根式以及立方根的性质分别化简得出答案; (2)直接去绝对值进而计算得出答案. 【详解】 (1)原式=4+2﹣ =5; (2)原式=3﹣(﹣) =3﹣+ =4﹣. 【点睛】 此题主要考查了实数运算,正确化简各数是解题关键. 十八、解答题 18.(1)或;(2) 【分析】 (1)直接根据求平方根的方法解方程即可; (2)直接根据求立方根的方法解方程即可. 【详解】 解:(1)∵, ∴, ∴, ∴或; (2)∵, ∴, ∴. 【点睛】 本题主 解析:(1)或;(2) 【分析】 (1)直接根据求平方根的方法解方程即可; (2)直接根据求立方根的方法解方程即可. 【详解】 解:(1)∵, ∴, ∴, ∴或; (2)∵, ∴, ∴. 【点睛】 本题主要考查了利用求平方根和求立方根的方法解方程,解题的关键在于能够熟练掌握相关知识进行求解. 十九、解答题 19.已知;垂直定义;;2;角平分线定义;等角的余角相等;;两直线平行,内错角相等 【分析】 根据题意和图形可以将题目中的证明过程补充完整,从而可以解答本题. 【详解】 证明:∵AB⊥AC(已知), ∴∠ 解析:已知;垂直定义;;2;角平分线定义;等角的余角相等;;两直线平行,内错角相等 【分析】 根据题意和图形可以将题目中的证明过程补充完整,从而可以解答本题. 【详解】 证明:∵AB⊥AC(已知), ∴∠BAC=90°(垂直的定义), ∴∠2+∠3=90°, ∵∠1+∠4+∠BAC=180°(平角定义), ∴∠1+∠4=180°-∠BAC=90°, ∵AC平分∠DAF(已知), ∴∠1=∠2(角平分线的定义), ∴∠3=∠4(等角的余角相等), ∵a∥b(已知), ∴∠4=∠5(两直线平行,内错角相等), ∴∠3=∠5(等量代换). 故答案为:已知;垂直定义;90;2;角平分线定义;等角的余角相等;5;两直线平行,内错角相等. 【点睛】 本题考查了垂直的定义、角平分线的定义、平行线的性质和余角的定义,解题的关键是要找准线和对应的角,不能弄混淆. 二十、解答题 20.(1)见解析;(2)A′,O′ 【分析】 (1)分别作出A,B,O的对应点A′,B′,O′即可. (2)根据点的位置写出坐标即可. 【详解】 解:(1)如图,△A′B′O′即为所求作. (2)A′( 解析:(1)见解析;(2)A′,O′ 【分析】 (1)分别作出A,B,O的对应点A′,B′,O′即可. (2)根据点的位置写出坐标即可. 【详解】 解:(1)如图,△A′B′O′即为所求作. (2)A′(2,1),O′(4,−1). 【点睛】 本题考查作图−平移变换,解题的关键是熟练掌握基本知识,属于中考常考题型. 二十一、解答题 21.(1),,c=4;(2)4 【分析】 (1)由题意可得出,得出a的值,代入中得出b的值,再根据即可得出c的值; (2)代入a、b、c的值求出代数式的值,再求算术平方根即可. 【详解】 解:(1)∵某 解析:(1),,c=4;(2)4 【分析】 (1)由题意可得出,得出a的值,代入中得出b的值,再根据即可得出c的值; (2)代入a、b、c的值求出代数式的值,再求算术平方根即可. 【详解】 解:(1)∵某正数的两个平方根分别是和 ∴ ∴ 又∵的立方根是3 ∴ ∴ 又∵,c是的整数部分 ∴ (2) 故的算术平方根是4. 【点睛】 本题考查的知识点是平方根、算术平方根、立方根、估算无理数的大小,属于基础题目,解此题的难点在于c值的确定,学会用“逼近法”求无理数的整数部分是解此题的关键. 二十二、解答题 22.(1)4;(2)不能,理由见解析. 【分析】 (1)根据已知正方形的面积求出大正方形的边长即可; (2)先设未知数根据面积=14(cm2)列方程,求出长方形的边长,将长方形的长与正方形边长比较大小再 解析:(1)4;(2)不能,理由见解析. 【分析】 (1)根据已知正方形的面积求出大正方形的边长即可; (2)先设未知数根据面积=14(cm2)列方程,求出长方形的边长,将长方形的长与正方形边长比较大小再判断即可. 【详解】 解:(1)两个正方形面积之和为:2×8=16(cm2), ∴拼成的大正方形的面积=16(cm2), ∴大正方形的边长是4cm; 故答案为:4; (2)设长方形纸片的长为2xcm,宽为xcm, 则2x•x=14, 解得:, 2x=2>4, ∴不存在长宽之比为且面积为的长方形纸片. 【点睛】 本题考查了算术平方根,能够根据题意列出算式是解此题的关键. 二十三、解答题 23.(1)见解析;(2)①2∠MEN+∠MHN=360°;②20° 【分析】 (1)过点E作EP∥AB交MH于点Q,利用平行线的性质、角平分线性质、邻补角和为180°,角与角之间的基本运算、等量代换等即 解析:(1)见解析;(2)①2∠MEN+∠MHN=360°;②20° 【分析】 (1)过点E作EP∥AB交MH于点Q,利用平行线的性质、角平分线性质、邻补角和为180°,角与角之间的基本运算、等量代换等即可得证. (2)①过点H作GI∥AB,利用(1)中结论2∠MEN﹣∠MHN=180°,利用平行线的性质、角平分线性质、邻补角和为180°,角与角之间的基本运算、等量代换等得出∠AMH+∠HNC=360°﹣(∠BMH+∠HND),进而用等量代换得出2∠MEN+∠MHN=360°. ②过点H作HT∥MP,由①的结论得2∠MEN+∠MHN=360°,∠H=140°,∠MEN=110°.利用平行线性质得∠ENQ+∠ENH+∠NHT=180°,由角平分线性质及邻补角可得∠ENQ+∠ENH+140°﹣(180°﹣∠BMH)=180°.继续使用等量代换可得∠ENQ度数. 【详解】 解:(1)证明:过点E作EP∥AB交MH于点Q.如答图1 ∵EP∥AB且ME平分∠BMH, ∴∠MEQ=∠BME=∠BMH. ∵EP∥AB,AB∥CD, ∴EP∥CD,又NE平分∠GND, ∴∠QEN=∠DNE=∠GND.(两直线平行,内错角相等) ∴∠MEN=∠MEQ+∠QEN=∠BMH+∠GND=(∠BMH+∠GND). ∴2∠MEN=∠BMH+∠GND. ∵∠GND+∠DNH=180°,∠DNH+∠MHN=∠MON=∠BMH. ∴∠DHN=∠BMH﹣∠MHN. ∴∠GND+∠BMH﹣∠MHN=180°, 即2∠MEN﹣∠MHN=180°. (2)①:过点H作GI∥AB.如答图2 由(1)可得∠MEN=(∠BMH+∠HND), 由图可知∠MHN=∠MHI+∠NHI, ∵GI∥AB, ∴∠AMH=∠MHI=180°﹣∠BMH, ∵GI∥AB,AB∥CD, ∴GI∥CD. ∴∠HNC=∠NHI=180°﹣∠HND. ∴∠AMH+∠HNC=180°﹣∠BMH+180°﹣∠HND=360°﹣(∠BMH+∠HND). 又∵∠AMH+∠HNC=∠MHI+∠NHI=∠MHN, ∴∠BMH+∠HND=360°﹣∠MHN. 即2∠MEN+∠MHN=360°. 故答案为:2∠MEN+∠MHN=360°. ②:由①的结论得2∠MEN+∠MHN=360°, ∵∠H=∠MHN=140°, ∴2∠MEN=360°﹣140°=220°. ∴∠MEN=110°. 过点H作HT∥MP.如答图2 ∵MP∥NQ, ∴HT∥NQ. ∴∠ENQ+∠ENH+∠NHT=180°(两直线平行,同旁内角互补). ∵MP平分∠AMH, ∴∠PMH=∠AMH=(180°﹣∠BMH). ∵∠NHT=∠MHN﹣∠MHT=140°﹣∠PMH. ∴∠ENQ+∠ENH+140°﹣(180°﹣∠BMH)=180°. ∵∠ENH=∠HND. ∴∠ENQ+∠HND+140°﹣90°+∠BMH=180°. ∴∠ENQ+(HND+∠BMH)=130°. ∴∠ENQ+∠MEN=130°. ∴∠ENQ=130°﹣110°=20°. 【点睛】 本题考查了平行线的性质,角平分线的性质,邻补角,等量代换,角之间的数量关系运算,辅助线的作法,正确作出辅助线是解题的关键,本题综合性较强. 二十四、解答题 24.(1)60°;(2)①6s;②s或s 【分析】 (1)利用平行线的性质角平分线的定义即可解决问题. (2)①首先证明∠GBC=∠DCN=30°,由此构建方程即可解决问题. ②分两种情形:如图③中,当 解析:(1)60°;(2)①6s;②s或s 【分析】 (1)利用平行线的性质角平分线的定义即可解决问题. (2)①首先证明∠GBC=∠DCN=30°,由此构建方程即可解决问题. ②分两种情形:如图③中,当BG∥HK时,延长KH交MN于R.根据∠GBN=∠KRN构建方程即可解决问题.如图③-1中,当BG∥HK时,延长HK交MN于R.根据∠GBN+∠KRM=180°构建方程即可解决问题. 【详解】 解:(1)如图①中, ∵∠ACB=30°, ∴∠ACN=180°-∠ACB=150°, ∵CE平分∠ACN, ∴∠ECN=∠ACN=75°, ∵PQ∥MN, ∴∠QEC+∠ECN=180°, ∴∠QEC=180°-75°=105°, ∴∠DEQ=∠QEC-∠CED=105°-45°=60°. (2)①如图②中, ∵BG∥CD, ∴∠GBC=∠DCN, ∵∠DCN=∠ECN-∠ECD=75°-45°=30°, ∴∠GBC=30°, ∴5t=30, ∴t=6s. ∴在旋转过程中,若边BG∥CD,t的值为6s. ②如图③中,当BG∥HK时,延长KH交MN于R. ∵BG∥KR, ∴∠GBN=∠KRN, ∵∠QEK=60°+4t,∠K=∠QEK+∠KRN, ∴∠KRN=90°-(60°+4t)=30°-4t, ∴5t=30°-4t, ∴t=s. 如图③-1中,当BG∥HK时,延长HK交MN于R. ∵BG∥KR, ∴∠GBN+∠KRM=180°, ∵∠QEK=60°+4t,∠EKR=∠PEK+∠KRM, ∴∠KRM=90°-(180°-60°-4t)=4t-30°, ∴5t+4t-30°=180°, ∴t=s. 综上所述,满足条件的t的值为s或s. 【点睛】 本题考查几何变换综合题,考查了平行线的性质,旋转变换,角平分线的定义等知识,解题的关键是理解题意,学会用分类讨论的思想思考问题,学会利用参数构建方程解决问题,属于中考压轴题. 二十五、解答题 25.(1)见解析;(2)①③;(3)∠APB的度数是10°或20°或40°或110° 【分析】 (1)由和是的角平分线,证明即可; (2)根据“准互余三角形”的定义逐个判断即可; (3)根据“准互余三角 解析:(1)见解析;(2)①③;(3)∠APB的度数是10°或20°或40°或110° 【分析】 (1)由和是的角平分线,证明即可; (2)根据“准互余三角形”的定义逐个判断即可; (3)根据“准互余三角形”的定义,分类讨论:①2∠A+∠ABC=90°;②∠A+2∠APB=90°;③2∠APB+∠ABC=90°;④2∠A+∠APB=90°,由三角形内角和定理和外角的性质结合“准互余三角形”的定义,即可求出答案. 【详解】 (1)证明:∵在中,, ∴, ∵BD是的角平分线, ∴, ∴, ∴是“准互余三角形”; (2)①∵, ∴, ∴是“准互余三角形”, 故①正确; ②∵, , ∴, ∴不是“准互余三角形”, 故②错误; ③设三角形的三个内角分别为,且, ∵三角形是“准互余三角形”, ∴或, ∴, ∴, ∴“准互余三角形”一定是钝角三角形, 故③正确; 综上所述,①③正确, 故答案为:①③; (3)∠APB的度数是10°或20°或40°或110°; 如图①, 当2∠A+∠ABC=90°时,△ABP是“准直角三角形”, ∵∠ABC=50°, ∴∠A=20°, ∴∠APB=110°; 如图②,当∠A+2∠APB=90°时,△ABP是“准直角三角形”, ∵∠ABC=50°, ∴∠A+∠APB=50°, ∴∠APB=40°; 如图③,当2∠APB+∠ABC=90°时,△ABP是“准直角三角形”, ∵∠ABC=50°, ∴∠APB=20°; 如图④,当2∠A+∠APB=90°时,△ABP是“准直角三角形”, ∵∠ABC=50°, ∴∠A+∠APB=50°, 所以∠A=40°, 所以∠APB=10°; 综上,∠APB的度数是10°或20°或40°或110°时,是“准互余三角形”. 【点睛】 本题是三角形综合题,考查了三角形内角和定理,三角形的外角的性质,解题关键是理解题意,根据三角形内角和定理和三角形的外角的性质,结合新定义进行求解.- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 人教版 中学 七年 级数 下册 期末 质量 检测 试卷 答案
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【快乐****生活】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【快乐****生活】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【快乐****生活】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【快乐****生活】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文