天津耀华嘉诚国际中学数学八年级上册期末试卷.doc
《天津耀华嘉诚国际中学数学八年级上册期末试卷.doc》由会员分享,可在线阅读,更多相关《天津耀华嘉诚国际中学数学八年级上册期末试卷.doc(17页珍藏版)》请在咨信网上搜索。
天津耀华嘉诚国际中学数学八年级上册期末试卷 一、选择题 1、下列平面图形中,不是轴对称图形的是( ) A. B. C. D. 2、第五代蜂窝移动通信技术简称5C,是具有高速率、低时延和大连接特点的新代宽带移动通信技术,是实现人机物互联的网络基础设施.据媒体报道,5C网络的理论下载速度为1.25GB/s,这就意味着我们下载张25M的照片只需要0.02,将0.002用科学记数法表( ) A.2×10-2 B.2×10-3 C.0.2×10-2 D.0.2×10-3 3、下列运算正确的是( ) A. B. C. D. 4、函数中,自变量的取值范围是( ) A. B. C.且 D.且 5、下列等式从左到右的变形是因式分解的是( ) A. B. C. D. 6、下列等式成立的是( ) A. B. C. D. 7、如图,AC,BD相交于点O,OA=OC,要使△AOB≌△COD,则下列添加的条件中错误的是( ) A.∠A=∠C B.∠B=∠D C.OB=OD D.AB=CD 8、下列说法错误的是( ). A.“对角线互相平分的四边形是平行四边形”是真命题 B.中心对称的两个图形中,连接对称点的线段都被对称中心平分 C.用若干正六边形能镶嵌整个平面 D.解分式方程时,产生增根,则 9、如图,将△ABC绕点C顺时针旋转35°得到△DEC,边ED,AC相交于点F,若∠A=30°,则∠AFD的度数为( ) A.65° B.15° C.115° D.75° 二、填空题 10、如图,中,,于,平分,且于,与相交于点,是边的中点,连接与相交于点,下列结论正确的有( )个 ①;②;③;④是等腰三角形;⑤. A.个 B.个 C.个 D.个 11、如果分式的值为0,那么x的取值为_______. 12、已知点P(a-1,2a-4)关于y轴的对称点在第二象限,则a的取值范围是_______. 13、已知,则的值是_____________. 14、若,则__________. 15、如图,已知,直线于点D,且,点P是直线a上一动点,连接PB,PC,若,,,则周长的最小值是______. 16、若是一个完全平方式,则的值是 ___________. 17、若,,则__________. 18、如图,AB=12cm,∠CAB=∠DBA=62°,AC=BD=9cm.点P在线段AB上以3cm/s的速度由点A向点B运动,同时,点Q在线段BD上由点B向点D运动.设点Q的运动速度为xcm/s.当以B、P、Q为顶点的三角形与△ACP全等时,x的值为 __________________. 三、解答题 19、因式分解: (1) (2) 20、解方程:﹣=1. 21、如图,,F,E分别在AB,AC上,且.求证:. 22、已知:. (1)如图1,求证:; (2)如图2,连接,,点P在射线上,,射线交于点M,补全图形后请探究的数量关系,并证明你的结论. 23、某商场准备购进、两种商品进行销售.有关信息如下表: 进价(元) 售价(元) 产品 500 产品 120 已知2000元购进产品的数量与400元购进的产品数量相等. (1)求表中的值; (2)该商场准备购进、两种商品共50件,若要使这些产品售完后利润不低于3200元,种产品至少要购进多少件? 24、阅读理解应用 待定系数法:设某一多项式的全部或部分系数为未知数、利用当两个多项式为恒等式时,同类项系数相等的原理确定这些系数,从而得到待求的值. 待定系数法可以应用到因式分解中,例如问题:因式分解. 因为为三次多项式,若能因式分解,则可以分解成一个一次多项式和一个二次多项式的乘积. 故我们可以猜想可以分解成,展开等式右边得: ,根据待定系数法原理,等式两边多项式的同类项的对应系数相等:,,可以求出,. 所以. (1)若取任意值,等式恒成立,则________; (2)已知多项式有因式,请用待定系数法求出该多项式的另一因式; (3)请判断多项式是否能分解成的两个均为整系数二次多项式的乘积,并说明理由. 25、△ABC、△DPC都是等边三角形. (1)如图1,求证:AP=BD; (2)如图2,点P在△ABC内,M为AC的中点,连PM、PA、PB,若PA⊥PM,且PB=2PM. ①求证:BP⊥BD; ②判断PC与PA的数量关系并证明. 一、选择题 1、A 【解析】A 【分析】根据轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴,这时,我们也可以说这个图形关于这条直线对称,进而判断得出答案. 【详解】解:B、C、D都是轴对称图形,A不是轴对称图形, 故选:A. 【点睛】本题主要考查了轴对称图形的识别,正确掌握轴对称图形的定义是解题关键. 2、B 【解析】B 【分析】根据绝对值小于1的数用科学记数法表示即可,把一个绝对值小于1的数数表示为a×10-n(1≤|a|< 10, n为正整数)的形式,指数n由原数左边起第一个不为零的数字前面的0的个数所决定,不为0的数字前面有几个0,-n就是负几. 【详解】解:0.002=2× 10-3, 故选:B. 【点睛】此题主要考查了用科学记数法表示绝对值小于1的数, 一般形式为a×10-n(1≤|a|< 10, n为正整数), n为由原数左边起第一个不为零的数字前面的0的个数所决定,熟练掌握科学记数法表示绝对值小于1的数的方法是解题的关键. 3、C 【解析】C 【分析】根据运算的法则逐一运算判断即可. 【详解】解:A. ,选项错误,不符合题意; B. ,选项错误,不符合题意; C. ,选项正确,符合题意; D. ,选项错误,不符合题意. 故选:C. 【点睛】本题主要考查了同底数幂的乘除法,幂的乘方,积的乘方,熟悉掌握运算的法则是解题的关键. 4、D 【解析】D 【分析】根据二次根式与分式有意义的条件列出不等式组即可求解. 【详解】解:由题意得: x+3≥0且2+x≠0, ∴x≥-3且x≠-2, 故选:D. 【点睛】本题考查了函数自变量的取值范围,熟练掌握二次根式与分式有意义的条件是解题的关键. 5、D 【解析】D 【分析】把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做分解因式,根据因式分解的定义进行判断即可. 【详解】解:A. ,属于整式乘法,故本选项不符合题意; B. ,不属于因数分解,故本选项不符合题意; C. ,不属于因数分解,故本选项不符合题意; D.,属于因数分解,故本选项符合题意; 故选:D. 【点睛】本题考查了因式分解的意义,解题的关键是熟记定义,因式分解与整式乘法是相反方向的变形,即互逆运算,二者是一个式子的不同表现形式.因式分解是两个或几个因式积的表现形式,整式乘法是多项式的表现形式. 6、C 【解析】C 【分析】根据分式的基本性质进行计算逐一判断即可. 【详解】解:A、,故A不符合题意; B、,故B不符合题意; C、,故C符合题意; D、,故D不符合题意; 故选:C. 【点睛】本题考查了分式的基本性质,熟练掌握分式的基本性质是解题的关键. 7、D 【解析】D 【分析】根据全等三角形的判定定理依次分析判断即可. 【详解】∵∠AOB=∠COD,OB=OD, ∴当添加∠A=∠C时,可根据“AAS”判断△AOB≌△COD; 当添加∠B=∠D时,可根据“ASA”判断△AOB≌△COD; 当添加OB=OD时,可根据“SAS”判断△AOB≌△COD. 如果添加 AB=CD,则根据“SSA”不能判定△AOB≌△COD. 故选:D. 【点睛】此题考查了全等三角形的判定定理,熟记全等三角形的判定定理并应用是解题的关键. 8、D 【解析】D 【分析】根据平行四边形的判定定理可以判断A,根据中心对称的性质可以判断B,根据正多边形镶嵌的条件可以判断C,根据分式方程产生增根的情况计算即可判断D. 【详解】解:A选项,平行四边形的一个判定定理是:对角线互相平分的四边形是平行四边形,是真命题,正确,符合题意; B选项,中心对称的两个图形中,连接对称点的线段都被对称中心平分,正确,符合题意; C选项,正六边形的每个内角都是,,可以镶嵌整个平面,正确,符合题意; D选项,原分式方程化为,因为分式方程有增根,故可将代入得,错误,不符合题意; 故选D. 【点睛】本题考查了真命题和假命题的判断、平行四边形的判定定理、中心对称的性质、平面镶嵌、分式方程,正确掌握相关性质是解题的关键. 9、A 【解析】A 【分析】将△ABC绕点C顺时针旋转35°得到△DEC,得∠ACD=35°,∠A=∠D=30°, 【详解】解:∵将△ABC绕点C顺时针旋转35°得到△DEC, ∴∠ACD=35°,∠A=∠D=30°, ∴∠AFD =∠ACD+∠D=35°+30°=65°, 故选:A. 【点睛】本题主要考查了旋转的性质,三角形外角的性质等知识,熟练掌握旋转的性质是解题的关键. 二、填空题 10、B 【解析】B 【分析】只要证明△BDF≌△CDA,△BAC是等腰三角形,∠DGF=∠DFG=67.5°,即可判断①②③④正确,作GM⊥BD于M,只要证明GH<DG即可判断⑤错误. 【详解】∵CD⊥AB,BE⊥AC, ∴∠BDC=∠ADC=∠AEB=90°, ∴∠A+∠ABE=90°,∠ABE+∠DFB=90°, ∴∠A=∠DFB, ∵∠ABC=45°,∠BDC=90°, ∴∠DCB=90°−45°=45°=∠DBC, ∴BD=DC, 在△BDF和△CDA中 , ∴△BDF≌△CDA(AAS), ∴BF=AC,故①正确. ∵∠ABE=∠EBC=22.5°,BE⊥AC, ∴∠A=∠BCA=67.5°,故③正确, ∴BA=BC, ∵BE⊥AC, ∴AE=EC=AC=BF,故②正确, ∵BE平分∠ABC,∠ABC=45°, ∴∠ABE=∠CBE=22.5°, ∵∠BDF=∠BHG=90°, ∴∠BGH=∠BFD=67.5°, ∴∠DGF=∠DFG=67.5°, ∴DG=DF,故④正确. 作GM⊥AB于M. ∵∠GBM=∠GBH,GH⊥BC, ∴GH=GM<DG, ∴S△DGB>S△GHB, ∵S△ABE=S△BCE, ∴S四边形ADGE<S四边形GHCE.故⑤错误, ∴①②③④正确, 故选B. 【点睛】此题是三角形综合题,考查了等腰三角形的性质,直角三角形的性质,全等三角形的性质和判定,三角形的面积等知识点的综合运用,第五个问题难度比较大,添加辅助线是解题关键,属于中考选择题中的压轴题. 11、 【分析】根据分式的分子为0,分母不为0,可得答案. 【详解】分式的值为0, ,且, , 故答案为:. 【点睛】本题考查了分式为0条件,分式的分子为0,分母不为0是解题的关键. 12、##2<a 【分析】根据关于y轴的对称点在第二象限可得点P在第一象限,再根据第一象限内点的坐标符号可得,再解不等式组即可. 【详解】解:∵点P(a-1,2a-4)关于y轴的对称点在第二象限, ∴点P在第一象限, ∴, 解得:a>2, 故答案为:a>1、 【点睛】此题主要考查了关于y轴的对称点的坐标,以及一元一次不等式组的解法,关键是掌握解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到. 13、0 【分析】将转化为,再代入所求式子中求解即可. 【详解】解:∵, ∴, ∴, ∴ , 故答案为:0. 【点睛】本题考查分式的求值、分式的加减、等式的性质,熟练掌握分式的加减运算法则,利用整体代入求解是解答的关键. 14、8 【分析】首先将化为,再根据同底数幂的除法,得出,即,再将等式代入即可得出答案. 【详解】解:∵, ∴, ∴, ∴, 故答案为:7、 【点睛】本题主要考查了同底数幂的除法和幂的乘方,解题关键是熟练掌握同底数幂的除法和幂的乘方的计算公式.同底数幂的除法计算公式:,幂的乘方计算公式:. 15、8 【分析】先找出点关于的对称点,交于,则的周长最小,求出即可. 【详解】解:设直线与交于,当点与点重合时,最小,即的周长最小, 直线于点,且, 直线是的垂直平分线, , 的周长, 周长的最小值是 【解析】8 【分析】先找出点关于的对称点,交于,则的周长最小,求出即可. 【详解】解:设直线与交于,当点与点重合时,最小,即的周长最小, 直线于点,且, 直线是的垂直平分线, , 的周长, 周长的最小值是8, 故答案为:7、 【点睛】本题主要考查轴对称最短路线问题,解题的关键是确定点的位置. 16、±4 【分析】利用完全平方公式的结构特征判断即可得到k的值. 【详解】解:∵是一个完全平方式, ∴ 故答案为: 【点睛】本题考查了完全平方式的应用,两数的平方和,再加上或减去他们乘积的倍,就构成一个 【解析】±4 【分析】利用完全平方公式的结构特征判断即可得到k的值. 【详解】解:∵是一个完全平方式, ∴ 故答案为: 【点睛】本题考查了完全平方式的应用,两数的平方和,再加上或减去他们乘积的倍,就构成一个完全平方式,熟练掌握完全平方公式的特点是解题关键. 17、## 【分析】根据完全平方公式变形,代入求解即可. 【详解】解:∵, ∴, 故答案为:. 【点睛】本题考查了根据完全平方公式变形求值,掌握完全平方公式是解题的关键. 【解析】## 【分析】根据完全平方公式变形,代入求解即可. 【详解】解:∵, ∴, 故答案为:. 【点睛】本题考查了根据完全平方公式变形求值,掌握完全平方公式是解题的关键. 18、3或 【分析】△ACP与△BPQ全等,则分两种情况:①AC=BP,AP=BQ,②AC=BQ,AP=BP,建立方程组求得答案即可. 【详解】解: ∠CAB=∠DBA=62°, 为对应顶点, ①若△AC 【解析】3或 【分析】△ACP与△BPQ全等,则分两种情况:①AC=BP,AP=BQ,②AC=BQ,AP=BP,建立方程组求得答案即可. 【详解】解: ∠CAB=∠DBA=62°, 为对应顶点, ①若△ACP≌△BPQ, 则AC=BP,AP=BQ, 解得:; ②若△ACP≌△BQP, 则AC=BQ,AP=BP, , 解得:; 综上所述,当x=3或 时,△ACP与△BPQ全等. 故答案为3或. 【点睛】本题主要考查了全等三角形的判定与性质,解题的关键是注意分类讨论思想的渗透. 三、解答题 19、(1);(2) 【分析】(1)先提取公因式,再根据平方差公式即可因式分解; (2)根据完全平方公式即可因式分解. 【详解】 解:原式 解:原式 . 【点睛】此题主要考查因式分解,解题的关键是熟知提 【解析】(1);(2) 【分析】(1)先提取公因式,再根据平方差公式即可因式分解; (2)根据完全平方公式即可因式分解. 【详解】 解:原式 解:原式 . 【点睛】此题主要考查因式分解,解题的关键是熟知提取公因式法与公式法的应用. 20、无解 【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,检验即可. 【详解】解:﹣=1 去分母得:, 解得:x=3, 检验:当x=3时,(x+3)(x-3)=0, ∴x=3是分式方程 【解析】无解 【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,检验即可. 【详解】解:﹣=1 去分母得:, 解得:x=3, 检验:当x=3时,(x+3)(x-3)=0, ∴x=3是分式方程的增根,原方程无解. 【点睛】此题考查了解分式方程,解分式方程利用了转化的思想,注意要检验. 21、见解析 【分析】证明,由全等三角形的性质可得出. 【详解】证明:在与中, , ∴(SAS), ∴. 【点睛】本题考查了全等三角形的判定与性质,证明是解题的关键. 【解析】见解析 【分析】证明,由全等三角形的性质可得出. 【详解】证明:在与中, , ∴(SAS), ∴. 【点睛】本题考查了全等三角形的判定与性质,证明是解题的关键. 22、(1)答案见解析 (2)2(∠BMC+∠AEB)=3∠CAB,证明见解析 【分析】(1)如图1,过F作FH∥AB,根据平行线的性质得到∠1=∠2,∠3=∠FDC,由等量代换得到∠BFC=∠ABE+∠ 【解析】(1)答案见解析 (2)2(∠BMC+∠AEB)=3∠CAB,证明见解析 【分析】(1)如图1,过F作FH∥AB,根据平行线的性质得到∠1=∠2,∠3=∠FDC,由等量代换得到∠BFC=∠ABE+∠FCD,即可得到结论; (2)设∠BCP=∠DCP=,∠ABE=∠PBF=,∠PCF=,根据已知条件得到 ,由(1)知,∠AEB=∠ABE+∠DCF=,∠E=∠PBF+∠DCF=∠PBF+∠DCP-∠PCF=,于是得到2(∠BMC+∠E)=2()=6,等量代换即可得到结论. (1) 解:如图1,过F作FH∥AB, ∵AB∥CD, ∴FH∥CD, ∴∠1=∠2,∠3=∠FDC, ∵∠2=∠ABE, ∴∠1=ABE, ∵∠BFC=∠1+∠3, ∴∠BFC=∠ABE+∠FCD, ∵∠ABE=∠BFC, ∴∠AEB=∠ABE+∠DCF; (2) 解:设∠BCP=∠DCP=,∠ABE=∠PBF=,∠PCF=, ∵∠BCF=2∠ABE, ∴,即, 由(1)知,∠AEB=∠ABE+∠DCF=,∠E=∠PBF+∠DCF=∠PBF+∠DCP-∠PCF=, ∴2(∠BMC+∠E)=2()=6, ∵3∠CAB=3(∠E+∠ABE)=3()=6, ∴2(∠BMC+∠AEB)=3∠CAB. 【点睛】本题考查了平行线的性质,角平分线的定义,三角形内角与外角的关系,解题的关键是熟练掌握平行线的性质. 23、(1)400 (2)20件 【分析】(1)由2000元购进产品的数量与400元购进的产品数量相等,列出分式方程,解方程即可; (2)设种产品要购进件.由题意得:要使这些产品售完后利润不低于3200元 【解析】(1)400 (2)20件 【分析】(1)由2000元购进产品的数量与400元购进的产品数量相等,列出分式方程,解方程即可; (2)设种产品要购进件.由题意得:要使这些产品售完后利润不低于3200元,列出一元一次不等式,解不等式即可. (1) 解:由题意得: , 解这个方程得:, 经检验是原方程的根, ∴. 答:表中的值为:. (2) 设种产品要购进件.由题意得: , 解这个不等式得:, 答:种产品至少要购进20件. 【点睛】本题考查了分式方程的应用以及一元一次不等式的应用,找出等量关系正确列出分式方程、列出一元一次不等式是解题的关键. 24、(1)1;(2);(3)多项式能分解成两个均为整系数二次多项式的乘积,理由详见解析. 【分析】(1)根据题目中的待定系数法原理即可求得结果; (2)根据待定系数法原理先设另一个多项式,然后根据恒等原 【解析】(1)1;(2);(3)多项式能分解成两个均为整系数二次多项式的乘积,理由详见解析. 【分析】(1)根据题目中的待定系数法原理即可求得结果; (2)根据待定系数法原理先设另一个多项式,然后根据恒等原理即可求得结论; (3)根据待定系数原理和多项式乘以多项式即可求得结论. 【详解】(1)根据待定系数法原理,得3-a=2,a=1. 故答案为1. (2)设另一个因式为(x2+ax+b), (x+1)(x2+ax+b)=x3+ax2+bx+x2+ax+b =x3+(a+1)x2+(a+b)x+b ∴a+1=0 a=-1 b=3 ∴多项式的另一因式为x2-x+2、 答:多项式的另一因式x2-x+2、 (3)多项式x4+x2+1能分解成两个整系数二次多项式的乘积.理由如下: 设多项式x4+x2+1能分解成①(x2+1)(x2+ax+b)或②(x+1)(x3+ax2+bx+c)或③(x2+x+1)(x2+ax+1), ①(x2+1)(x2+ax+b) =x4+ax3+bx2+ax+b =x4+ax3+(b+1)x2+ax+b ∴a=0, b+1=1 , b=1 由b+1=1得b=0≠1,故此种情况不存在. ②(x+1)(x3+ax2+bx+c), =x4+ax3+bx2+cx+x3+ax2+bx+c =x4+(a+1)x3+(b+a)x2+(b+c)x+c ∴a+1=0 b+a=1 b+c=0 c=1 解得a=-1,b=2,c=1, 又 b+c=0,b=-1≠2,故此种情况不存在. ③(x2+x+1)(x2+ax+1) =x4+(a+1)x3+(a+2)x2+(a+1)x+1 ∴a+1=0,a+2=1, 解得a=-1. 即x4+x2+1=(x2+x+1)(x2-x+1) ∴x4+x2+1能分解成两个整系数二次三项式的乘积却不能分解成两个整系数二次二项式与二次三项式的乘积. 答:多项式x4+x2+1能分解成两个整系数二次三项式的乘积. 【点睛】本题考查了因式分解的应用、多项式乘以多项式,解决本题的关键是理解并会运用待定系数法原理. 25、(1)证明过程见解析; (2)①证明过程见解析;②PC=2PA,理由见解析. 【分析】(1)证明△BCD≌△ACP(SAS),可得结论; (2)①如图2中,延长PM到K,使得MK=PM,连接CK.证 【解析】(1)证明过程见解析; (2)①证明过程见解析;②PC=2PA,理由见解析. 【分析】(1)证明△BCD≌△ACP(SAS),可得结论; (2)①如图2中,延长PM到K,使得MK=PM,连接CK.证明△AMP≌△CMK(SAS),推出MP=MK,AP=CK,∠APM=∠K=90°,再证明△PDB≌△PCK(SSS),可得结论; ②结论:PC=2PA.想办法证明∠DPB=30°,可得结论. (1)证明:如图1中,∵△ABC,△CDP都是等边三角形,∴CB=CA,CD=CP,∠ACB=∠DCP=60°,∴∠BCD=∠ACP,在△BCD和△ACP中,,∴△BCD≌△ACP(SAS),∴BD=AP; (2)证明:如图2中,延长PM到K,使得MK=PM,连接CK.∵AP⊥PM,∴∠APM=90°,在△AMP和△CMK中,,∴△AMP≌△CMK(SAS),∴MP=MK,AP=CK,∠APM=∠K=90°,同法可证△BCD≌△ACP,∴BD=PA=CK,∵PB=2PM,∴PB=PK,∵PD=PC,∴△PDB≌△PCK(SSS),∴∠PBD=∠K=90°,∴PB⊥BD.②解:结论:PC=2PA.∵△PDB≌△PCK,∴∠DPB=∠CPK,设∠DPB=∠CPK=x,则∠BDP=90°-x,∵∠APC=∠CDB,∴90°+x=60°+90°-x,∴x=30°,∴∠DPB=30°,∵∠PBD=90°,∴PD=2BD,∵PC=PD,BD=PA,∴PC=2PA. 【点睛】本题属于三角形综合题,考查了全等三角形的判定和性质,等边三角形的性质,直角三角形30°角的性质等知识,解题的关键是学会添加常用辅助线,关注全等三角形解决问题.- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 天津 耀华嘉诚 国际 中学数学 年级 上册 期末试卷
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【w****g】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【w****g】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【w****g】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【w****g】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文