人教版初二上学期期末强化数学质量检测试题答案.doc
《人教版初二上学期期末强化数学质量检测试题答案.doc》由会员分享,可在线阅读,更多相关《人教版初二上学期期末强化数学质量检测试题答案.doc(22页珍藏版)》请在咨信网上搜索。
人教版初二上学期期末强化数学质量检测试题答案 一、选择题 1.剪纸是我国古老的民间艺术.下列四个剪纸图案为轴对称图形的是( ) A. B. C. D. 2.根据纸张的质量不同,厚度也不尽相同,500张打印纸()约厚0.052m,因此,一张纸的厚度大约是0.000104m,数据“0.000104”用科学记数法可表示为( ) A. B. C. D. 3.下列计算错误的是( ) A.a3·a -5=a -2 B.a5÷a -2=a7 C.(-2a2) 3= -8a5 D.=1 4.若代数式有意义,则的取值范围是( ) A.且 B.且 C. D.且 5.下列各式的变形中,属于因式分解的是( ) A. B. C. D. 6.分式可变形为( ) A. B. C. D. 7.如图,在△ACD和△BCE中,DA⊥AB,EB⊥AB,点C是AB的中点,添加下列条件后,不能判定△ACD≌△BCE的是( ) A.CD=CE B.AD=BE C.ADBE D.∠D=∠E 8.若二次根式有意义,且关于x的分式方程有正数解,则符合条件的整数m的和是( ) A.﹣7 B.﹣6 C.﹣5 D.﹣4 9.如图,在中,,P是BC上一动点(与B、C点不重合),于E,则等于( ) A.155° B.145° C.135° D.125° 10.如图,在中,以为腰作等腰直角三角形和等腰直角三角形,连接为边上的高线,延长交于点,下列结论①;②;③;④,其中正确的有( ) A.1个 B.2个 C.3个 D.4个 二、填空题 11.当x_______时,分式的值为零. 12.点关于y轴对称的点的坐标是______. 13.已知:,则A+B=_____. 14.已知am=2,an=6,则a2m﹣n的值是 _____. 15.如图,在等边三角形ABC中,BC边上的中线AD=5,E是AD上的一个动点,F是边AB上的一个动点,在点E,F运动的过程中,EB+EF的最小值是 ___. 16.如果x2-mx+4是一个完全平方式,则m的值为________. 17.如图,四边形∽四边形,,,,则______. 18.如图,△ABC中,AB=AC=10cm,BC=8cm,点E为AB的中点.如果点P在线段BC上以3cm/s的速度由B点向C点运动,同时,点Q在线段CA上由C点向A点运动.当点Q的运动速度为________cm/s时,能够使△BPE与△CQP全等. 三、解答题 19.分解因式: (1) (2); 20.先化简,再求值:,其中x=5. 21.如图,AC平分∠BAD,AB=AD.求证:BC=DC. 22.中,,点D,E分别是边上的点,点P是一动点,令,. 初探: (1)如图1,若点P在线段上,且,则________; (2)如图2,若点P在线段上运动,则之间的关系为__________; (3)如图3,若点P在线段的延长线上运动,则之间的关系为__________. 再探: (4)如图4,若点P运动到的内部,写出此时之间的关系,并说明理由. (5)若点P运动到的外部,请在图5中画出一种情形,写出此时之间的关系,并说明理由. 23.国泰公司和振华公司的全体员工踊跃参与“携手防疫,共渡难关”捐款活动,国泰公司共捐款100000元,振华公司共捐款140000元.下面是国泰、振华两公司员工的一段对话: (1)国泰、振华两公司各有多少人? (2)现国泰、振华两公司共同使用这笔捐款购买A,B两种防疫物资,A种防疫物资每箱12000元,B种防疫物资每箱10000元.若购买B种防疫物资不少于10箱,并恰好将捐款用完,有几种购买方案?请设计出来.(注:A,B两种防疫物资均需购买,并按整箱配送) 24.数学家波利亚说过:“为了得到一个方程,我们必须把同一个量一两种不同的方法表示出来,即将一个量算两次,从而建立相等关系,”这就是“算两次”原理,也称为富比尼(G.Fubini)原理,例如:对于一个图形,通过不同的方法计算图形的面积可以得到一个数学等式.计算如图1的面积,把图1看作一个大正方形,它的面积是(a+b)2;如果把图1看作是由2个长方形和2个小正方形组成的,它的面积为a2+2ab+b2,由此得到(a+b)2=a2+2ab+b2. (1)如图2,正方形ABCD是由四个边长分别为a,b的长方形和中间一个小正方形组成的,用不同的方法对 图2的面积进行计算,你发现的等式是 (用a,b表示) (2)应用探索结果解决问题: 已知:两数x,y满足x+y=7,xy=6,求x-y的值. (3)如图3,四个三角形都是全等的直角三角形,用不同的代数式表示大正方形的面积,由此得到的等式为 ;(用a,b,c表示) (4)解决问题:若a=n2-1,b=2n,c=n2+1,请通过计算说明a、b、c满足上面结论. 25.阅读理解题: 定义:如果一个数的平方等于﹣1,记为i2=﹣1,这个数i叫做虚数单位,把形如a+bi(a,b为实数)的数叫做复数,其中a叫这个复数的实部,b叫做这个复数的虚部,它的加、减、乘、除运算与代数式的运算类似. 例如:计算:(2﹣i)+(5+3i)=(2+5)+(﹣1+3)i=7+2i; (1+i)×(2﹣i)=1×2﹣i+2×i﹣i2=2+(﹣1+2)i+1=3+i; 根据以上信息,完成下列问题: (1)填空:i3= ,i4= ,i+i2+i3+…+i2021= ; (2)计算:(1+i)×(3﹣4i)﹣(﹣2+3i)(﹣2﹣3i); (3)已知a+bi=(a,b为实数),求的最小值. 26.如图1,A(﹣2,6),C(6,2),AB⊥y轴于点B,CD⊥x轴于点D. (1)求证:△AOB≌△COD; (2)如图2,连接AC,BD交于点P,求证:点P为AC中点; (3)如图3,点E为第一象限内一点,点F为y轴正半轴上一点,连接AF,EF.EF⊥CE且EF=CE,点G为AF中点.连接EG,EO,求证:∠OEG=45°. 【参考答案】 一、选择题 2.C 解析:C 【分析】根据轴对称图形的概念求解即可. 【详解】解:A、不是轴对称图形,本选项不符合题意; B、不是轴对称图形,本选项不符合题意; C、是轴对称图形,本选项符合题意; D、不是轴对称图形,本选项不符合题意. 故选:C. 【点睛】本题考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合, 3.D 解析:D 【分析】绝对值小于的正数也可以利用科学记数法表示,一般形式为,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的的个数所决定. 【详解】解:. 故选:D 【点睛】本题考查用科学记数法表示较小的数,一般形式为,其中,为由原数左边起第一个不为零的数字前面的的个数所决定. 4.C 解析:C 【分析】根据同底数幂的乘除法法则,幂的乘方运算法则以及0次幂的含义即可进行解答. 【详解】A:同底数幂相乘,底数不变,指数相加;故A正确,不符合题意; B:同底数幂相除,底数不变,指数相减;故B正确,不符合题意; C:(-2a2) 3= -8a6,故C错误,符合题意; D:任何非零数的零次幂都得1;故D正确,不符合题意; 故选:C 【点睛】本题主要考查了幂的运算,熟练地掌握同底数幂的乘除法运算法则,积的乘方和幂的乘方的运算法则以及0次幂的意义是解题的关键. 5.B 解析:B 【分析】根据二次根式和分式有意义的条件可得出,解之即得出答案. 【详解】根据题意可得, 解得: , ∴且. 故选:B. 【点睛】本题考查二次根式和分式有意义的条件.掌握被开方数为非负数,分式的分母不能为0是解题关键. 6.B 解析:B 【分析】根据因式分解的定义:把一个多项式化为整式的积的形式,对选项进行判断. 【详解】解:A、从左到右的变形为整式乘法,故不符合题意. B、左边为多项式,右边为整式的积,故符合题意. C、左边为多项式,右边为整式的积,但等号不成立,故不符合题意. D、左边、右边均为多项式,故不符合题意. 故选B. 【点睛】本题考查因式分解的定义,解决本题的关键是充分理解因式分解的定义. 7.D 解析:D 【分析】根据分式的基本性质进行恒等变形即可得到结论 【详解】解:根据分式的基本性质变形,并将分式的分子和分母同时乘以﹣1得,, 故选:D. 【点睛】本题考查的是分式的基本性质,熟知分子、分母同时乘以同一个不为0的数,分式的值不变是解答此题的关键. 8.C 解析:C 【分析】根据垂直定义得出∠A=∠B=90°,根据点C是AB的中点得出AC=BC,再根据两直角三角形全等的判定定理逐个判断即可. 【详解】解:∵DA⊥AB,EB⊥AB, ∴∠A=∠B=90°, ∵点C是AB的中点, ∴AC=BC, A.CD=CE,AC=BC,符合两直角三角形全等的判定定理HL,能推出△ACD≌△BCE,故本选项不符合题意; B.BD=BE,AC=BC,符合两直角三角形全等的判定定理SAS,能推出△ACD≌△BCE,故本选项不符合题意; C.∠A=∠B=90°,AC=BC,不符合两直角三角形全等的判定定理,不能推出△ACD≌△BCE,故本选项符合题意; D.∠D=∠E,∠A=∠B,AC=BC,符合两直角三角形全等的判定定理AAS,能推出△ACD≌△BCE,故本选项不符合题意; 故选:C. 【点睛】本题考查了全等三角形的判定定理,能熟记全等三角形的判定定理是解此题的关键,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS,两直角三角形全等还有HL等. 9.D 解析:D 【分析】根据二次根式有意义,可得,解出关于的分式方程 的解为,解为正数解,进而确定m的取值范围,注意增根时m的值除外,再根据m为整数,确定m的所有可能的整数值,求和即可. 【详解】解:去分母得,, 解得,, ∵关于x的分式方程有正数解, ∴ , ∴, 又∵是增根,当时, ,即, ∴, ∵有意义, ∴, ∴, 因此 且, ∵m为整数, ∴m可以为-4,-2,-1,0,1,2,其和为-4, 故选:D. 【点睛】考查二次根式的意义、分式方程的解法,以及分式方程产生增根的条件等知识,解题的关键是理解正数解,整数m的意义. 10.B 解析:B 【分析】先根据平行四边形的性质求出∠B的度数,再根据垂线的定义求出∠PEB的度数,即可利用三角形外角的性质求出∠CPE的度数. 【详解】解:∵四边形ABCD是平行四边形, ∴, ∴∠B=180°-∠A=55°, ∵PE⊥AB,即∠PEB=90°, ∴∠CPE=∠B+∠PEB=145°, 故选B. 【点睛】本题主要考查了平行四边形的性质,三角形外角的性质,垂线的定义熟知相关知识是解题的关键. 11.C 解析:C 【分析】根据∠EAN与∠BAD互余,∠ABC与∠BAD互余,利用同角的余角相等即可判断①;过E作EH⊥DN于点H,过F作FG⊥DN于点G,利用K字型全等,易证△AEH≌△BAD,从而判断②;同理可证△AFG≌△CAD,可得GF=AD=EH,再证△EHN≌△FGN,即可判断④;最后根据S△AEF=S△AEH+S△EHN+S△AFN,结合全等三角形即可判断③. 【详解】∵AD为BC边上的高,EAB=90° ∴∠EAN+∠BAD=90°,∠ABC+∠BAD=90° ∴∠EAN=∠ABC 故①正确; 如图所示,过E作EH⊥DN于点H,过F作FG⊥DN,交DN的延长线于点G, ∵△ABE为等腰直角三角形 ∴AE=AB 在△AEH与△BAD中, ∵∠AHE=∠BDA=90°,∠EAH=∠ABD,AE=AB ∴△AEH≌△BAD(AAS) 显然△EAN与△BAD不全等, 故②错误; 同理可证△AFG≌△CAD(AAS) ∴FG=AD, 又∵△AEH≌△BAD ∴EH=AD ∴FG=EH 在△EHN和△FGN中, ∵∠ENH=∠FNG,∠EHN=∠FGN=90°,EH=FG ∴△EHN≌△FGN(AAS) ∴EN=FN 故④正确; ∵△AEH≌△BAD,△AFG≌△CAD,△EHN≌△FGN ∴S△AEF=S△AEH+S△EHN+S△AFN =S△ABD+S△FGN+S△AFN = S△ABD+S△AFG =S△ABD+S△CAD =S△ABC, 故③正确; 正确的有①③④共3个. 故选C. 【点睛】本题考查全等三角形的判定与性质,熟练掌握K字型全等,作出辅助线是解题的关键. 二、填空题 12.= 3 【分析】根据分母为0是分式无意义,分式值为零的条件是分子等于零且分母不等于零列式计算即可. 【详解】解:根据题意, ∵分式的值为零, ∴, ∴; 故答案为:. 【点睛】本题考查的是分式为0的条件、分式有意义的条件,掌握分式值为零的条件是分子等于零且分母不等于零是解题的关键. 13.A 解析: 【分析】关于y轴的对称点的坐标特点为:横坐标互为相反数,纵坐标不变. 【详解】解:∵平面直角坐标系中点A的坐标为, ∴A点关于y轴对称的点坐标为, 故答案为:. 【点睛】本题主要考查了平面直角坐标系中对称点的规律.解决本题的关键是掌握好对称点的坐标规律:关于y轴对称的点,纵坐标相同,横坐标互为相反数. 14.A 解析:3 【分析】根据分式的加减运算将右边的分式合并之后,运用待定系数法建立关于A,B的方程组求解即可. 【详解】解:, ,解得:. 故答案为:3. 【点睛】本题考查分式的加减运算,解题的关键是熟练运用分式的加减运算法则,本题属于基础题型. 15. 【详解】当am=2,an=6时, 原式=(am)2÷an =22÷6 =4÷6 =. 故答案为:. 【点睛】本题考查了幂的乘方和同底数幂的除法,掌握am÷an=am-n(a≠0)是解题的关键. 16.5 【分析】根据等边三角形的性质,可知B与C关于AD对称,过C作CF⊥AB交AD于点E,交AB于点F,则EB+EF的最小值为CF的长,求出CF的长即可求解. 【详解】解:∵△ABC是等边三角形, 解析:5 【分析】根据等边三角形的性质,可知B与C关于AD对称,过C作CF⊥AB交AD于点E,交AB于点F,则EB+EF的最小值为CF的长,求出CF的长即可求解. 【详解】解:∵△ABC是等边三角形,D是BC边中点, ∴AD⊥BC, ∴B与C关于AD对称, 过C作CF⊥AB交AD于点E,交AB于点F, 则BE+EF=CE+EF=CF,则EB+EF的最小值为CF的长, ∵AD=5, ∴CF=5, 故答案为5. 【点睛】本题考查轴对称求最短距离,熟练掌握利用轴对称求最短距离的方法,此题确定EB+EF的最小值为CF的长是解题的关键. 17.±4 【分析】利用完全平方公式的结构特征判断即可确定出m的值. 【详解】解:∵x2+mx+4是一个完全平方式, ∴m=±4, 故答案为:±4. 【点睛】本题考查了完全平方式,熟练掌握完全平 解析:±4 【分析】利用完全平方公式的结构特征判断即可确定出m的值. 【详解】解:∵x2+mx+4是一个完全平方式, ∴m=±4, 故答案为:±4. 【点睛】本题考查了完全平方式,熟练掌握完全平方公式是解本题的关键. 18.【分析】利用相似多边形的对应角相等以及四边形内角和定理求得答案即可. 【详解】解:四边形∽四边形,,,, ,, . 故答案为:. 【点睛】此题考查了相似多边形的性质,解题的关键是掌握相 解析: 【分析】利用相似多边形的对应角相等以及四边形内角和定理求得答案即可. 【详解】解:四边形∽四边形,,,, ,, . 故答案为:. 【点睛】此题考查了相似多边形的性质,解题的关键是掌握相似多边形的对应角相等.也考查了四边形内角和定理. 19.75或3 【分析】根据等腰三角形的性质得出∠B=∠C,根据全等三角形的判定得出两种情况:①BE=CP,BP=CQ,②BE=CQ,BP=PC,设运动时间为t秒,列出方程,再求出答案即可. 【详解】 解析:75或3 【分析】根据等腰三角形的性质得出∠B=∠C,根据全等三角形的判定得出两种情况:①BE=CP,BP=CQ,②BE=CQ,BP=PC,设运动时间为t秒,列出方程,再求出答案即可. 【详解】解:设运动时间为t秒, ∵AB=10厘米,点E为AB的中点, ∴BE=AB=5(cm), ∵AB=AC, ∴∠B=∠C, ∴要使,△BPE能够与△CQP全等,有两种情况: ①BE=CP,BP=CQ, 8﹣3t=5, 解得:t=1, ∴CQ=BP=3×1=3, ∴点Q的运动速度为3÷1=3(厘米/秒); ②BE=CQ,BP=PC, ∵BC=8厘米, ∴BP=CP=BC=5(厘米), 即3t=4, 解得:t=, ∴CQ=BE=5厘米, ∴点Q的运动速度为5÷=3.75(厘米/秒), 故答案为:3或3.75. 【点睛】本题考查了全等三角形的判定和等腰三角形的性质,能求出符合的所有情况是解此题的关键,用了分类讨论思想. 三、解答题 20.(1) (2) 【分析】(1)先提公因式,再根据完全平方公式分解因式即可; (2)根据平方差公式和完全平方公式分解因式即可. (1) 原式 (2) 原式 【点睛】本题考查 解析:(1) (2) 【分析】(1)先提公因式,再根据完全平方公式分解因式即可; (2)根据平方差公式和完全平方公式分解因式即可. (1) 原式 (2) 原式 【点睛】本题考查了因式分解,涉及提公因式法和公式法,熟练掌握分解因式的步骤是解题的关键. 21.﹣6﹣2x,﹣16. 【分析】括号内通分并结合平方差公式化简,再进行乘法计算约分即可. 【详解】解: 当x=5时,原式. 【点睛】本题考查分式的化简求值.掌握分式的混合 解析:﹣6﹣2x,﹣16. 【分析】括号内通分并结合平方差公式化简,再进行乘法计算约分即可. 【详解】解: 当x=5时,原式. 【点睛】本题考查分式的化简求值.掌握分式的混合运算法则是解题关键. 22.证明见解析. 【分析】先根据角平分线的定义可得,再根据三角形全等的判定定理证出,然后全等三角形的性质即可得证. 【详解】证明:平分, , 在和中,, , . 【点睛】本题考查了角平分线 解析:证明见解析. 【分析】先根据角平分线的定义可得,再根据三角形全等的判定定理证出,然后全等三角形的性质即可得证. 【详解】证明:平分, , 在和中,, , . 【点睛】本题考查了角平分线的定义、三角形全等的判定定理与性质,熟练掌握三角形全等的判定方法是解题关键. 23.(1)130 (2) (3) (4) (5)或 【分析】(1)如图1所示,连接CP,证明∠1+∠2=∠ACB+∠DPE即可得到答案; (2)只需要证明即可得到答案; (3)利用三角形外 解析:(1)130 (2) (3) (4) (5)或 【分析】(1)如图1所示,连接CP,证明∠1+∠2=∠ACB+∠DPE即可得到答案; (2)只需要证明即可得到答案; (3)利用三角形外角的性质求解即可; (4)利用三角形外角的性质求解即可; (5)根据题意画出图形,利用三角形外角的性质求解即可. (1) 解:如图1所示,连接CP, ∵∠1=∠DCP+∠CPD,∠2=∠CPE+∠ECP, ∴∠1+∠2=∠DCP+∠CPD+∠CPE+∠ECP=∠ACB+∠DPE, ∵,, ∴∠1+∠2=130°, 故答案为:130; (2) 解:∵∠1+∠CDP=180°,∠2+∠CEP=180°, ∴∠1+∠2+∠CDP+∠CEP=360°, ∵∠C=70°,,∠CDP+∠CEP+∠C+∠DPE=360°, ∴ 故答案为:; (3) 解:设DP与BC交于F, ∵,, ∴, 故答案为:; (4) 解:如图所示,连接CP, ∵∠1=∠DCP+∠CPD,∠2=∠CPE+∠ECP, ∴∠1+∠2=∠DCP+∠DPC+∠ECP+∠COD=∠ACB+360°-∠DPE, ∴; (5) 解:如图5-1所示,∵∠1=∠C+∠COD,∠2=∠P+∠POE,∠COD=∠POE, ∴ 如图5-2所示,∵∠1=∠P+∠POD,∠2=∠C+∠COE,∠POD=∠COE, ∴ 【点睛】本题主要考查了三角形外角的性质,对顶角相等等,熟知三角形外角的性质是解题的关键. 24.(1)国泰公司有200人,振华公司有240人. (2)有2种购买方案,方案1:购10箱A种防疫物资,12箱B种防疫物资;方案2:购买5箱A种防疫物资,18箱B种防疫物资. 【分析】(1)设国泰公 解析:(1)国泰公司有200人,振华公司有240人. (2)有2种购买方案,方案1:购10箱A种防疫物资,12箱B种防疫物资;方案2:购买5箱A种防疫物资,18箱B种防疫物资. 【分析】(1)设国泰公司有x人,则振华公司有(x+40)人,根据振华公司的人均捐款数是国泰公司的倍,列出分式方程,解之经检验后即可得出结论; (2)设购买A种防疫物资m箱,购买B种防疫物资n箱,根据总价=单价×数量,列出二元一次方程组,再结合n≥10且m,n均为正整数,即可得出各购买方案. (1) 解:设国泰公司有x人,则振华公司有(x+40)人, 依题意,得:, 解得:x=200, 经检验,x=200是原方程的解,且符合题意, ∴x+40=240. 答:国泰公司有200人,振华公司有240人. (2) 设购买A种防疫物资m箱,购买B种防疫物资n箱, 依题意,得:12000m+10000n=100000+140000, ∴m=20n. 又∵n≥10,且m,n均为正整数, 当n=12时,m=20n=10, 当n=18时,m=20n=5, 当n=24时,m=20n=0,不符合题意,故舍去, ∴或, ∴有2种购买方案,方案1:购10箱A种防疫物资,12箱B种防疫物资;方案2:购买5箱A种防疫物资,18箱B种防疫物资. 【点睛】本题考查了分式方程的应用以及二元一次方程的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)找准等量关系,正确列出二元一次方程. 25.(1)(a+b)²=(a-b)²+4ab (2)±5 (3)c²=2ab+(a-b)² (4)见解析 【分析】(1)可以把图2看作一个大正方形组成,也可以看作是由4个长方形和1个小正方形组成 解析:(1)(a+b)²=(a-b)²+4ab (2)±5 (3)c²=2ab+(a-b)² (4)见解析 【分析】(1)可以把图2看作一个大正方形组成,也可以看作是由4个长方形和1个小正方形组成,分别表示出面积可得等式; (2)根据(1)中所得等式,代入计算即可; (3)可以把图3看作一个大正方形,也可以看作是由4个全等的直角三角形和1个小正方形组成,分别表示出面积可得等式; (4)分别求出a²,b²,c²,然后进行计算即可. (1) 解:把图2看作一个大正方形组成,面积为(a+b)²,把图2看作是由4个长方形和1个小正方形组成,面积为:(a-b)²+4ab, 故发现的等式是:(a+b)²=(a-b)²+4ab; (2) 解:由(1)得(a+b)²=(a-b)²+4ab, ∴(x+y)²=(x-y)²+4xy, ∵x+y=7,xy=6, ∴7²=(x-y)²+24, ∴x-y=±5; (3) 解:把图3看作一个大正方形,面积为c²,把图3看作是由4个全等的直角三角形和1个小正方形组成,面积为:+(a-b)²=2ab+(a-b)², 故发现的等式是:c²=2ab+(a-b)²; (4) 解:∵a=n2-1,b=2n,c=n2+1, ∴a²=(n²-1)²=n⁴+1-2n²,b²=(2n)²=4n²,c²=(n²+1)²=n⁴+1+2n², ∴a²+b²=n⁴+2n²+1=c², ∴a²+b²=c², ∴(a+b)²-2ab=c², ∴c²=(a-b)²+2ab. 【点睛】本题主要考查了完全平方公式的几何背景,解题时注意数形结合思想的运用. 26.(1)﹣i,1,;(2)﹣i﹣6;(3)的最小值为25. 【分析】(1)根据题目所给条件可得i3=i2•i,i4=i2•i2计算即可得出答案; (2)根据多项式乘法法则进行计算,及题目所给已知条 解析:(1)﹣i,1,;(2)﹣i﹣6;(3)的最小值为25. 【分析】(1)根据题目所给条件可得i3=i2•i,i4=i2•i2计算即可得出答案; (2)根据多项式乘法法则进行计算,及题目所给已知条件即可得出答案; (3)根据题目已知条件,a+bi=4+3i,求出a、b,即可得出答案. 【详解】(1)i3=i2•i=﹣1×i=﹣i, i4=i2•i2=﹣1×(﹣1)=1, 设S=i+i2+i3+…+i2021, iS=i2+i3+…+i2021+i2022, ∴(1﹣i)S=i﹣i2022, ∴S=, 故答案为﹣i,1,; (2)(1+i)×(3﹣4i)﹣(﹣2+3i)(﹣2﹣3i) =3﹣4i+3i﹣4i2﹣(4﹣9i2) =3﹣i+4﹣4﹣9 =﹣i﹣6; (3)a+bi====4+3i, ∴a=4,b=3, ∴=, ∴的最小值可以看作点(x,0)到点A(0,4),B(24,3)的最小距离, ∵点A(0,4)关于x轴对称的点为A'(0,﹣4),连接A'B即为最短距离, ∴A'B==25, ∴的最小值为25. 【点睛】此题考查了实数的运算,以及规律型:数字的变化类,弄清题中的新定义是解本题的关键. 27.(1)见解析;(2)见解析;(3)见解析 【分析】(1)根据即可证明; (2)过点作轴,交于点,得出,由平行线的性质得,由轴得,由得,故可得,从而得出,推出,根据证明,得出即可得证; (3)延 解析:(1)见解析;(2)见解析;(3)见解析 【分析】(1)根据即可证明; (2)过点作轴,交于点,得出,由平行线的性质得,由轴得,由得,故可得,从而得出,推出,根据证明,得出即可得证; (3)延长到,使,连接,,延长交于点,根据证明,得出,,故,由平行线的性质得出,进而推出,根据证明,故,,即可证明. 【详解】(1)轴于点,轴于点, , ,, ,, ; (2) 如图2,过点作轴,交于点, , , 轴, , , , ,,, , 在与中, , , ,即点为中点; (3) 如图3,延长到,使,连接,,延长交于点, ,,, , ,, , , , , , ,, , , , , ,, , ,即. 【点睛】本题考查全等三角形的判定与性质,利用做辅助线作全等三角形是解决本题的关键.- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 人教版 初二 学期 期末 强化 数学 质量 检测 试题答案
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【a199****6536】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【a199****6536】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【a199****6536】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【a199****6536】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文