2022年人教版七7年级下册数学期末质量监测(及解析).doc
《2022年人教版七7年级下册数学期末质量监测(及解析).doc》由会员分享,可在线阅读,更多相关《2022年人教版七7年级下册数学期末质量监测(及解析).doc(26页珍藏版)》请在咨信网上搜索。
2022年人教版七7年级下册数学期末质量监测(及解析) 一、选择题 1.9的算术平方根是() A. B. C.3 D.-3 2.下列四幅图案中,通过平移能得到图案E的是( ) A.A B.B C.C D.D 3.在平面直角坐标系中,下列点中位于第四象限的是( ) A. B. C. D. 4.下列命题中是假命题的是( ) A.对顶角相等 B.8的立方根是±2 C.实数和数轴上的点是一一对应的 D.平行于同一直线的两条直线平行 5.如果,直线,,则等于( ) A. B. C. D. 6.下列命题正确的是( ) A.若a>b,b<c,则a>c B.若a∥b,b∥c,则a∥c C.49的平方根是7 D.负数没有立方根 7.如图,直线AB∥CD,BE平分∠ABD,若∠DBE=20°,∠DEB=80°,求∠CDE的度数是( ) A.50° B.60° C.70° D.80° 8.如图,已知A1(1,0),A2(1,1),A3(﹣1,1),A4(﹣1,﹣1),A5(2,﹣1)……则点A2021的坐标为( ) A.(505,﹣504) B.(506,﹣505) C.(505,﹣505) D.(﹣506,506) 九、填空题 9.若=0,则=________ . 十、填空题 10.若与关于轴对称,则______. 十一、填空题 11.已知,射线在同一平面内绕点O旋转,射线分别是和的角平分线.则的度数为______________. 十二、填空题 12.如图:已知AB∥CD,CE∥BF,∠AEC=45°,则∠BFD=_____. 十三、填空题 13.在“妙折生平——折纸与平行”的拓展课上,小潘老师布置了一个任务:如图,有一张三角形纸片ABC,,,点D是AB边上的固定点(),请在BC上找一点E,将纸片沿DE折叠(DE为折痕),点B落在点F处,使EF与三角形ABC的一边平行,则为________度. 十四、填空题 14.若,,…,是从0,1,2,这三个数中取值的一列数,,,则在,,…,中,取值为2的个数为___________. 十五、填空题 15.如图,已知,,第四象限的点到轴的距离为3,若,满足,则与轴的交点坐标为__________. 十六、填空题 16.育红中学八五班的数学社团在做如下的探究活动:在平面直角坐标系中,一个智能机器人接到如下指令:从原点O出发,按向上、向右、向下、向右的方向依次移动,每次移动1个单位长度,其移动路线如图所示,第1次移动到点A1,第2次移动到点A2…第n次移动到点An,则△OA2A2021的面积是 __________________. 十七、解答题 17.计算: (1)|﹣2|+(﹣3)2﹣; (2); (3). 十八、解答题 18.求下列各式中x的值 (1)81x2 =16 (2) 十九、解答题 19.如图,点,分别是、上的点,,. (1)对说明理由,将下列解题过程补充完整. 解:(已知) ________(________________________) (已知) ___________(________________________) (______________________________) (2)若比大,求的度数. 二十、解答题 20.如图①,在平面直角坐标系中,点、在轴上,,,. (1)写出点、、的坐标. (2)如图②,过点作交轴于点,求的大小. (3)如图③,在图②中,作、分别平分、,求的度数. 二十一、解答题 21.数学活动课上,张老师说:“是无理数,无理数就是无限不循环小数,同学们,你能把的小数部分全部写出来吗?”大家议论纷纷,晶晶同学说:“要把它的小数部分全部写出来是非常难的,但我们可以用表示它的小数部分”张老师说:“晶晶同学的说法是正确的,因为的整数部分是,将这个数减去其整数部分,差就是小数部分,”请你解答:已知,其中是一个整数,且,请你求出的值. 二十二、解答题 22.如图所示的正方形纸板是由两张大小相同的长方形纸板拼接而成的,已知一个长方形纸板的面积为162平方厘米,求正方形纸板的边长. 二十三、解答题 23.综合与实践课上,同学们以“一个直角三角形和两条平行线”为背景开展数学活动,如图,已知两直线,且是直角三角形,,操作发现: (1)如图1.若,求的度数; (2)如图2,若的度数不确定,同学们把直线向上平移,并把的位置改变,发现,请说明理由. (3)如图3,若∠A=30°,平分,此时发现与又存在新的数量关系,请写出与的数量关系并说明理由. 二十四、解答题 24.已知:直线∥,A为直线上的一个定点,过点A的直线交 于点B,点C在线段BA的延长线上.D,E为直线上的两个动点,点D在点E的左侧,连接AD,AE,满足∠AED=∠DAE.点M在上,且在点B的左侧. (1)如图1,若∠BAD=25°,∠AED=50°,直接写出ÐABM的度数 ; (2)射线AF为∠CAD的角平分线. ① 如图2,当点D在点B右侧时,用等式表示∠EAF与∠ABD之间的数量关系,并证明; ② 当点D与点B不重合,且∠ABM+∠EAF=150°时,直接写出∠EAF的度数 . 二十五、解答题 25.已知,如图1,直线l2⊥l1,垂足为A,点B在A点下方,点C在射线AM上,点B、C不与点A重合,点D在直线11上,点A的右侧,过D作l3⊥l1,点E在直线l3上,点D的下方. (1)l2与l3的位置关系是 ; (2)如图1,若CE平分∠BCD,且∠BCD=70°,则∠CED= °,∠ADC= °; (3)如图2,若CD⊥BD于D,作∠BCD的角平分线,交BD于F,交AD于G.试说明:∠DGF=∠DFG; (4)如图3,若∠DBE=∠DEB,点C在射线AM上运动,∠BDC的角平分线交EB的延长线于点N,在点C的运动过程中,探索∠N:∠BCD的值是否变化,若变化,请说明理由;若不变化,请直接写出比值. 【参考答案】 一、选择题 1.C 解析:C 【分析】 根据一个非负数的正的平方根,即为这个数的算术平方根解答即可. 【详解】 解:9的算术平方根是3, 故选C. 【点睛】 本题考查的是算术平方根的性质,掌握一个非负数的正的平方根,即为这个数的算术平方根是解题的关键. 2.B 【分析】 根据平移的特征分析各图特点,只要符合“图形的形状、大小和方向都不改变”即为答案. 【详解】 根据平移不改变图形的形状、大小和方向,将题图所示的图案通过平移后可以得到的图案是E,满足条件 解析:B 【分析】 根据平移的特征分析各图特点,只要符合“图形的形状、大小和方向都不改变”即为答案. 【详解】 根据平移不改变图形的形状、大小和方向,将题图所示的图案通过平移后可以得到的图案是E,满足条件的原图是B; A,D选项改变了方向,故错误, C选项中,三角形和四边形位置不对,故C错误 故选:B 【点睛】 在平面内,把一个图形整体沿某一个方向移动,这种图形的平行移动,叫做平移变换,简称平移.平移是指图形的平行移动,平移时图形中所有点移动的方向一致,并且移动的距离相等.确定一个图形平移的方向和距离,只需确定其中一个点平移的方向和距离. 3.C 【分析】 根据各象限内点的坐标特征对各选项分析判断后利用排除法求解. 【详解】 解:A、在y轴上,故本选项不符合题意; B、在第二象限,故本选项不符合题意; C、在第四象限,故本选项符合题意; D、在第三象限,故本选项不符合题意. 故选:C. 【点睛】 本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解题的关键,四个象限的符号特点分别是:第一象限;第二象限;第三象限;第四象限. 4.B 【分析】 根据平行线的判定、对顶角、立方根和实数与数轴关系进行判断即可. 【详解】 解:A、对顶角相等,是真命题; B、8的立方根是2,原命题是假命题; C、实数和数轴上的点是一一对应的,是真命题; D、平行于同一直线的两条直线平行,是真命题; 故选:B. 【点睛】 本题考查了命题与定理的知识,解题的关键是了解平行线的判定、对顶角、立方根和实数与数轴,属于基础题,难度不大. 5.B 【分析】 先求∠DFE的度数,再利用平角的定义计算求解即可. 【详解】 ∵AB∥CD, ∴∠DFE=∠A=65°, ∴∠EFC=180°-∠DFE =115°, 故选B. 【点睛】 本题考查了平行线的性质,平角的定义,熟练掌握平行线的性质是解题的关键. 6.B 【解析】 【分析】 根据不等式的性质、平行线的判定、平方根和立方根依次判定各项后即可解答. 【详解】 选项A,由a>b,b>c,则a>c,可得选项A错误; 选项B, 若a∥b,b∥c,则a∥c,正确; 选项C,由49的平方根是±7,可得选项C错误; 选项D,由负数有立方根,可得选项D错误; 故选B. 【点睛】 本题考查了命题的知识,关键是根据不等式的性质、平行线的判定、平方根和立方根解答. 7.B 【分析】 延长,交于点,根据角平分线的定义以及已知条件可得,由三角形的外角性质可求,最后由平行线的性质即可求解. 【详解】 延长,交于点, BE平分∠ABD,, , ,∠DEB=80°, , , , 故选B. 【点睛】 本题考查了角平分线的定义,平行线的性质,三角形的外角性质,掌握以上知识是解题的关键. 8.B 【分析】 求在平面直角坐标系中的位置,经观察分析所有点,除外,其他所有点按一定的规律分布在四个象限,且每个象限的点满足:角标÷4=循环次数+余数,余数0,1,2,3确定相应的象限,由此确定点在第 解析:B 【分析】 求在平面直角坐标系中的位置,经观察分析所有点,除外,其他所有点按一定的规律分布在四个象限,且每个象限的点满足:角标÷4=循环次数+余数,余数0,1,2,3确定相应的象限,由此确定点在第四象限,根据推导可得出结论; 【详解】 由题可知, 第一象限的点:,…角标除以4余数为2; 第二象限的点:,,…角标除以4余数为3; 第三象限的点:,,…角标除以4余数为0; 第四象限的点:,,…角标除以4余数为1; 由上规律可知:, ∴点在第四象限, 又∵,, 即横坐标为正数,数字为角标除以4的商加1;纵坐标为负数,数字为角标除以4的商, ∴. 故选:B. 【点睛】 本题主要考查了点的坐标规律,准确理解是解题的关键. 九、填空题 9.9 【解析】 试题分析:根据非负数之和为零则每个非负数都为零可得:m+3=0,n-2=0,解得:m=-3,n=2,则==9. 考点:非负数的性质. 解析:9 【解析】 试题分析:根据非负数之和为零则每个非负数都为零可得:m+3=0,n-2=0,解得:m=-3,n=2,则==9. 考点:非负数的性质. 十、填空题 10.【分析】 根据关于y轴对称的点的坐标特征,即可求出m的值. 【详解】 解:∵A(m,-3)与B(4,-3)关于y轴对称, ∴m=-4, 故答案为:-4. 【点睛】 本题主要考查了关于y轴对称点的坐 解析: 【分析】 根据关于y轴对称的点的坐标特征,即可求出m的值. 【详解】 解:∵A(m,-3)与B(4,-3)关于y轴对称, ∴m=-4, 故答案为:-4. 【点睛】 本题主要考查了关于y轴对称点的坐标,解题的关键在于能够熟练掌握,如果两点关于y轴对称,那么这两个点的横坐标互为相反数,纵坐标相等. 十一、填空题 11.50° 【分析】 分射线OC在∠AOB的内部和射线OC在∠AOB的外部,分别画出图形,结合根据角平分线定义求解. 【详解】 解:若射线OC在∠AOB的内部, ∵OE,OF分别是∠AOC和∠COB的 解析:50° 【分析】 分射线OC在∠AOB的内部和射线OC在∠AOB的外部,分别画出图形,结合根据角平分线定义求解. 【详解】 解:若射线OC在∠AOB的内部, ∵OE,OF分别是∠AOC和∠COB的角平分线, ∴∠EOC=∠AOC,∠FOC=∠BOC, ∴∠EOF=∠EOC+∠FOC=∠AOC+∠BOC=50°; 若射线OC在∠AOB的外部, ①射线OE,OF只有1个在∠AOB外面,如图, ∠EOF=∠FOC-∠COE=∠BOC-∠AOC=(∠BOC-∠AOC)=∠AOB=50°; ②射线OE,OF都在∠AOB外面,如图, ∠EOF=∠EOC+∠COF=∠AOC+∠BOC=(∠AOC+∠BOC)=(360°-∠AOB)=130°; 综上:∠EOF的度数为50°或130°, 故答案为:50°或130°. 【点睛】 本题考查的是角的计算,角平分线的定义,熟知从一个角的顶点出发,把这个角分成相等的两个角的射线叫做这个角的平分线是解答此题的关键.注意分类思想的运用. 十二、填空题 12.45° 【分析】 根据平行线的性质可得∠ECD=∠AEC,∠BFD=∠ECD,等量代换即可求出∠BFD. 【详解】 解:∵AB∥CD, ∴∠ECD=∠AEC, ∵CE∥BF, ∴∠BFD=∠ECD, 解析:45° 【分析】 根据平行线的性质可得∠ECD=∠AEC,∠BFD=∠ECD,等量代换即可求出∠BFD. 【详解】 解:∵AB∥CD, ∴∠ECD=∠AEC, ∵CE∥BF, ∴∠BFD=∠ECD, ∴∠BFD=∠AEC, ∵∠AEC=45°, ∴∠BFD=45°. 故答案为:45°. 【点睛】 本题考查了平行线的性质,熟练掌握平行线的性质是解题关键. 十三、填空题 13.35°或75°或125° 【分析】 由于EF不与BC平行,则分EF∥AB和EF∥AC,画出图形,结合折叠和平行线的性质求出∠BDE的度数. 【详解】 解:当EF∥AB时, ∠BDE=∠DEF, 由折 解析:35°或75°或125° 【分析】 由于EF不与BC平行,则分EF∥AB和EF∥AC,画出图形,结合折叠和平行线的性质求出∠BDE的度数. 【详解】 解:当EF∥AB时, ∠BDE=∠DEF, 由折叠可知:∠DEF=∠DEB, ∴∠BDE=∠DEB,又∠B=30°, ∴∠BDE=(180°-30°)=75°; 当EF∥AC时, 如图,∠C=∠BEF=50°, 由折叠可知:∠BED=∠FED=25°, ∴∠BDE=180°-∠B=∠BED=125°; 如图,EF∥AC, 则∠C=∠CEF=50°, 由折叠可知:∠BED=∠FED,又∠BED+∠CED=180°, 则∠CED+50°=180°-∠CED, 解得:∠CED=65°, ∴∠BDE=∠CED-∠B=65°-30°=35°; 综上:∠BDE的度数为35°或75°或125°. 【点睛】 本题考查了平行线的性质,三角形内角和,折叠问题,解题的关键是注意分类讨论,画图图形推理求解. 十四、填空题 14.508 【分析】 通过,,…,是从0,1,2,这三个数中取值的一列数,,从而得到1的个数,再由得到2的个数. 【详解】 解:∵, 又∵,,…,是从0,1,2,这三个数中取值的一列数, ∴,,…,中为 解析:508 【分析】 通过,,…,是从0,1,2,这三个数中取值的一列数,,从而得到1的个数,再由得到2的个数. 【详解】 解:∵, 又∵,,…,是从0,1,2,这三个数中取值的一列数, ∴,,…,中为1的个数是2019−1510=509, ∵, ∴2的个数为(1525−509)÷2=508个. 故答案为:508. 【点睛】 此题考查完全平方的性质,找出,,…,中为1的个数是解决问题的关键. 十五、填空题 15.【分析】 根据二次根式的非负性、绝对值的非负性求出a,b,再求出直线BC的解析式即可得解; 【详解】 ∵、都有意义, ∴, ∴, ∴, ∴, ∵第四象限的点到轴的距离为3, ∴C点的坐标为, 设直 解析: 【分析】 根据二次根式的非负性、绝对值的非负性求出a,b,再求出直线BC的解析式即可得解; 【详解】 ∵、都有意义, ∴, ∴, ∴, ∴, ∵第四象限的点到轴的距离为3, ∴C点的坐标为, 设直线BC的解析式为, 把,代入得: , 解得:, 故BC的解析式为, 当时,, 故与轴的交点坐标为; 故答案是. 【点睛】 本题主要考查了用待定系数法求一次函数解析式、绝对值的非负性、、坐标与图形的性质,准确计算是解题的关键. 十六、填空题 16.【分析】 由题意知OA4n=2n,图形运动4次一个循环,横坐标对应一个循环增加2,计算出A2A2021,由此即可解决问题. 【详解】 解:由题意知OA4n=2n(n为正整数),图形运动4次一个循环 解析: 【分析】 由题意知OA4n=2n,图形运动4次一个循环,横坐标对应一个循环增加2,计算出A2A2021,由此即可解决问题. 【详解】 解:由题意知OA4n=2n(n为正整数),图形运动4次一个循环,横坐标对应一个循环增加2 ∵2021÷4=505…1, ∴A2021与A1是对应点,A2020与A0是对应点 ∴OA2020=505×2=1010,A1A2021=1010 ∴A2A2021=1010-1=1009 则△OA2A2019的面积是×1×1009=, 故答案为:. 【点睛】 本题主要考查点的坐标的变化规律,解题的关键是根据图形得出下标为4的倍数时对应长度即为下标的一半,据此可得. 十七、解答题 17.(1)9;(2)-;(3)-3. 【解析】 【分析】 根据运算法则和运算顺序,依次计算即可. 【详解】 解:(1)原式=2+9﹣2=9, (2)原式=(1+3﹣5) =﹣ , (3)原式=3﹣3﹣4 解析:(1)9;(2)-;(3)-3. 【解析】 【分析】 根据运算法则和运算顺序,依次计算即可. 【详解】 解:(1)原式=2+9﹣2=9, (2)原式=(1+3﹣5) =﹣ , (3)原式=3﹣3﹣4+1=﹣3. 【点睛】 本题考查了实数的运算,熟练掌握相关运算法则是解题关键. 十八、解答题 18.(1);(2) 【分析】 (1)方程变形后,利用平方根定义开方即可求出解; (2)方程利用立方根的定义开立方即可求出解. 【详解】 解:(1)方程变形得:, 解得:; (2)开立方得:, 解得:. 解析:(1);(2) 【分析】 (1)方程变形后,利用平方根定义开方即可求出解; (2)方程利用立方根的定义开立方即可求出解. 【详解】 解:(1)方程变形得:, 解得:; (2)开立方得:, 解得:. 【点睛】 本题考查了立方根,以及平方根,解题的关键是熟练掌握各自的求解方法. 十九、解答题 19.(1)∠BFD;两直线平行,同位角相等;∠BFD;等量代换;内错角相等,两直线平行;(2)70° 【分析】 (1)根据平行线的性质得出∠A=∠BFD,求出∠BFD=∠FDE,根据平行线的判定得出即可 解析:(1)∠BFD;两直线平行,同位角相等;∠BFD;等量代换;内错角相等,两直线平行;(2)70° 【分析】 (1)根据平行线的性质得出∠A=∠BFD,求出∠BFD=∠FDE,根据平行线的判定得出即可; (2)根据平行线的性质得出∠A+∠AED=180°,∠A=∠BFD,再求出∠AED﹣∠A=40°,即可求出答案. 【详解】 (1)证明:∵DFAC(已知), ∴∠A=∠BFD(两直线平行,同位角相等), ∵∠A=∠FDE(已知), ∴∠FDE=∠BFD(等量代换), ∴DEAB(内错角相等,两直线平行); 故答案为:∠BFD;两直线平行,同位角相等;∠BFD;等量代换;内错角相等,两直线平行; (2)解:∵DFAC, ∴∠A=∠BFD, ∵∠AED比∠BFD大40°, ∴∠AED﹣∠BFD=40°, ∴∠AED﹣∠A=40°, ∴∠AED=40°+∠A, ∵DEAB, ∴∠A+∠AED=180°, ∴∠A+40°+∠A=180°, ∴∠A=70°, ∴∠BFD=70°. 【点睛】 本题考查了平行线的性质和判定,能熟练地运用定理进行推理是解此题的关键,注意:平行线的性质有:①两直线平行,同位角相等,②两直线平行,内错角相等,③两直线平行,同旁内角互补,反之亦然. 二十、解答题 20.(1),,;(2)90°;(3)45° 【分析】 (1)根据图形和平面直角坐标系,可直接得出答案; (2)根据两直线平行,内错角相等可得,则∠; (3)根据角平分线的定义可得,过点作,然后根据平行 解析:(1),,;(2)90°;(3)45° 【分析】 (1)根据图形和平面直角坐标系,可直接得出答案; (2)根据两直线平行,内错角相等可得,则∠; (3)根据角平分线的定义可得,过点作,然后根据平行线的性质得出, . 【详解】 解:(1)依题意得:,,; (2)∵, ∴, ∴; (3)∵, ∴, ∵,分别平分,, ∴ , 过点作, 则,, ∴. 【点睛】 本题考查了坐标与图形的性质,平行线的性质,熟记以上性质,并求出A,B,C的坐标是解题的关键,(3)作出平行线是解题的关键. 二十一、解答题 21.26 【分析】 先估算出的范围,再求出x,y的值,即可解答. 【详解】 解:∵, ∴的整数部分是1,小数部分是 ∴的整数部分是9,小数部分是, ∴x=9,y=, ∴=3×9+(-)2019=27+( 解析:26 【分析】 先估算出的范围,再求出x,y的值,即可解答. 【详解】 解:∵, ∴的整数部分是1,小数部分是 ∴的整数部分是9,小数部分是, ∴x=9,y=, ∴=3×9+(-)2019=27+(-1)2019=27-1=26. 【点睛】 本题考查了估算无理数的大小,解决本题的关键是估算出的范围. 二十二、解答题 22.正方形纸板的边长是18厘米 【分析】 根据正方形的面积公式进行解答. 【详解】 解:设小长方形的宽为x厘米,则小长方形的长为厘米,即得正方形纸板的边长是厘米,根据题意得: , ∴, 取正值,可得, 解析:正方形纸板的边长是18厘米 【分析】 根据正方形的面积公式进行解答. 【详解】 解:设小长方形的宽为x厘米,则小长方形的长为厘米,即得正方形纸板的边长是厘米,根据题意得: , ∴, 取正值,可得, ∴答:正方形纸板的边长是18厘米. 【点评】 本题考查了算术平方根的实际应用,解题的关键是熟悉正方形的面积公式. 二十三、解答题 23.(1)42°;(2)见解析;(3)∠1=∠2,理由见解析 【分析】 (1)由平角定义求出∠3=42°,再由平行线的性质即可得出答案; (2)过点B作BD∥a.由平行线的性质得∠2+∠ABD=180° 解析:(1)42°;(2)见解析;(3)∠1=∠2,理由见解析 【分析】 (1)由平角定义求出∠3=42°,再由平行线的性质即可得出答案; (2)过点B作BD∥a.由平行线的性质得∠2+∠ABD=180°,∠1=∠DBC,则∠ABD=∠ABC-∠DBC=60°-∠1,进而得出结论; (3)过点C 作CP∥a,由角平分线定义得∠CAM=∠BAC=30°,∠BAM=2∠BAC=60°,由平行线的性质得∠1=∠BAM=60°,∠PCA=∠CAM=30°,∠2=∠BCP=60°,即可得出结论. 【详解】 解:(1)∵∠1=48°,∠BCA=90°, ∴∠3=180°-∠BCA-∠1=180°-90°-48°=42°, ∵a∥b, ∴∠2=∠3=42°; (2)理由如下: 过点B作BD∥a.如图2所示: 则∠2+∠ABD=180°, ∵a∥b, ∴b∥BD, ∴∠1=∠DBC, ∴∠ABD=∠ABC-∠DBC=60°-∠1, ∴∠2+60°-∠1=180°, ∴∠2-∠1=120°; (3)∠1=∠2,理由如下: 过点C 作CP∥a,如图3所示: ∵AC平分∠BAM ∴∠CAM=∠BAC=30°,∠BAM=2∠BAC=60°, 又∵a∥b, ∴CP∥b,∠1=∠BAM=60°, ∴∠PCA=∠CAM=30°, ∴∠BCP=∠BCA-∠PCA=90°-30°=60°, 又∵CP∥a, ∴∠2=∠BCP=60°, ∴∠1=∠2. 【点睛】 本题是三角形综合题目,考查了平移的性质、直角三角形的性质、平行线的判定与性质、角平分线定义、平角的定义等知识;本题综合性强,熟练掌握平移的性质和平行线的性质是解题的关键. 二十四、解答题 24.(1);(2)①,见解析;②或 【分析】 (1)由平行线的性质可得到:,,再利用角的等量代换换算即可; (2)①设,,利用角平分线的定义和角的等量代换表示出对比即可;②分类讨论点在的左右两侧的情况, 解析:(1);(2)①,见解析;②或 【分析】 (1)由平行线的性质可得到:,,再利用角的等量代换换算即可; (2)①设,,利用角平分线的定义和角的等量代换表示出对比即可;②分类讨论点在的左右两侧的情况,运用角的等量代换换算即可. 【详解】 . 解:(1)设在上有一点N在点A的右侧,如图所示: ∵ ∴, ∴ ∴ (2)①. 证明:设,. ∴. ∵为的角平分线, ∴. ∵, ∴. ∴. ∴. ②当点在点右侧时,如图: 由①得: 又∵ ∴ ∵ ∴ 当点在点左侧,在右侧时,如图: ∵为的角平分线 ∴ ∵ ∴, ∵ ∴ ∴ ∵ ∴ 又∵ ∴ ∴ 当点和在点左侧时,设在上有一点在点的右侧如图: 此时仍有, ∴ ∴ 综合所述:或 【点睛】 本题主要考查了平行线的性质,角平分线的定义,角的等量代换等,灵活运用平行线的性质和角平分线定义等量代换出角的关系是解题的关键. 二十五、解答题 25.(1)互相平行;(2)35,20;(3)见解析;(4)不变, 【分析】 (1)根据平行线的判定定理即可得到结论; (2)根据角平分线的定义和平行线的性质即可得到结论; (3)根据角平分线的定义和平行 解析:(1)互相平行;(2)35,20;(3)见解析;(4)不变, 【分析】 (1)根据平行线的判定定理即可得到结论; (2)根据角平分线的定义和平行线的性质即可得到结论; (3)根据角平分线的定义和平行线的性质即可得到结论; (4)根据角平分线的定义,平行线的性质,三角形外角的性质即可得到结论. 【详解】 解:(1)直线l2⊥l1,l3⊥l1, ∴l2∥l3, 即l2与l3的位置关系是互相平行, 故答案为:互相平行; (2)∵CE平分∠BCD, ∴∠BCE=∠DCE=BCD, ∵∠BCD=70°, ∴∠DCE=35°, ∵l2∥l3, ∴∠CED=∠DCE=35°, ∵l2⊥l1, ∴∠CAD=90°, ∴∠ADC=90°﹣70°=20°; 故答案为:35,20; (3)∵CF平分∠BCD, ∴∠BCF=∠DCF, ∵l2⊥l1, ∴∠CAD=90°, ∴∠BCF+∠AGC=90°, ∵CD⊥BD, ∴∠DCF+∠CFD=90°, ∴∠AGC=∠CFD, ∵∠AGC=∠DGF, ∴∠DGF=∠DFG; (4)∠N:∠BCD的值不会变化,等于;理由如下: ∵l2∥l3, ∴∠BED=∠EBH, ∵∠DBE=∠DEB, ∴∠DBE=∠EBH, ∴∠DBH=2∠DBE, ∵∠BCD+∠BDC=∠DBH, ∴∠BCD+∠BDC=2∠DBE, ∵∠N+∠BDN=∠DBE, ∴∠BCD+∠BDC=2∠N+2∠BDN, ∵DN平分∠BDC, ∴∠BDC=2∠BDN, ∴∠BCD=2∠N, ∴∠N:∠BCD=. 【点睛】 本题考查了三角形的综合题,三角形的内角和定理,三角形外角的性质,平行线的判定和性质,角平分线的定义,正确的识别图形进行推理是解题的关键.- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022 年人教版七 年级 下册 数学 期末 质量 监测 解析
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【w****g】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【w****g】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【w****g】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【w****g】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文