初二数学上册期末试卷带解析(一).doc
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 初二 数学 上册 期末试卷 解析
- 资源描述:
-
初二数学上册期末试卷带解析(一) 一、选择题 1.在下列给出的几何图形中,是轴对称图形的个数有( ) A.1个 B.2个 C.3个 D.4个 2.进入寒冷的腊月,云南多地下起了小雪,据测定,某雪花的直径约为0.0000015米,将数据0.0000015用科学记数法表示为( ) A. B. C. D. 3.下列运算正确的是( ) A.a•a3=a3 B.a6÷a2=a3 C.2a+3a=5a2 D.(ab2)3=a3b6 4.函数中,自变量的取值范围是( ) A. B. C.且 D.且 5.下列因式分解错误的是( ) A. B. C. D. 6.下列等式成立的是( ) A. B. C. D. 7.如图,A、B、C、D在同一直线上,,AE=DF,添加一个条件,不能判定△AEC≌△DFB的是( ) A. B.EC=BF C.AB=CD D.∠E=∠F 8.若关于的分式方程的解是正数,则的取值范围是( ) A.或 B. C.且 D.且 9.如图,BD平分∠ABC交AC于点D.若,则∠ADB=( ) A.100° B.105° C.110° D.120° 10.已知的周长相等,现有两个判断:①若,则;②若,,则,对于上述的两个判断,下列说法正确的是( ) A.①,②都正确 B.①,②都错误 C.①错误,②正确 D.①正确,②错误 二、填空题 11.若分式的值为0,则x=________. 12.点P(-2,4)关于x轴对称的点的坐标为________. 13.已知a+b=5,ab=3,=_____. 14.已知am=2,an=6,则a2m﹣n的值是 _____. 15.如图,是内一定点,点,分别在边,上运动,若,,则的周长的最小值为___________. 16.若是一个完全平方式,那么_________. 17.对于有理数a,b,定义::当时,;当时,.若,则的值为__________. 18.如图,在矩形ABCD中,AB=8cm,AD=12cm,点P从点B出发,以2cm/s的速度沿BC边向点C运动,到达点C停止,同时,点Q从点C出发,以vcm/s的速度沿CD边向点D运动,到达点D停止,规定其中一个动点停止运动时,另一个动点也随之停止运动.当v为______时,△ABP与△PCQ全等. 三、解答题 19.因式分解:(1) (2) 20.解分式方程: (1); (2). 21.已知:如图,∠B=∠C=90°, AF=DE,BE=CF.求证:AB=DC. 22.某校八年级数学兴趣小组对“三角形内角或外角平分线的夹角与第三个内角的数量关系”进行了探究. (1)如图1,在△ABC中,∠ABC与∠ACB的平分线交于点P,若∠A=66°,则∠BPC= °; (2)如图2,△ABC的内角∠ACB的平分线与△ABC的外角∠ABD的平分线交于点E.其中∠A=α,则∠BEC= (用α表示∠BEC); (3)如图3,BQ平分外角∠CBM,CQ平分外角∠BCN.试确定∠BQC与∠A的数量关系,并说明理由. 23.商家销售甲款式帽子的单价比乙款式帽子的单价多2元,用80元购买甲款式帽子的数量与用64元购买乙款式帽子的数量相同. (1)甲、乙两种款式帽子的单价各是多少元? (2)公司准备从商家购买甲、乙两种款式的帽子共100顶,要求甲款式帽子的数量不能少于乙款式帽子,且不能多于乙款式帽子的. ①公司有几种购买方案; ②购买时商家将甲款式帽子的单价降低m元(),乙款式帽子的单价不变,若公司购买的总费用不超过821元,求m的取值范围. 24.阅读材料:若,求的值. 解:∵,∴, ,∴,,∴. 根据你的观察,探究下面的问题: (1)已知,求的值; (2)已知△ABC的三边长,且满足,求c的取值范围; (3)已知,,比较的大小. 25.阅读下列材料,完成相应任务. 数学活动课上,老师提出了如下问题: 如图1,已知中,是边上的中线. 求证:. 智慧小组的证法如下: 证明:如图2,延长至,使, ∵是边上的中线∴ 在和中 ∴(依据一)∴ 在中,(依据二) ∴. 任务一:上述证明过程中的“依据1”和“依据2”分别是指: 依据1:______________________________________________; 依据2:______________________________________________. 归纳总结:上述方法是通过延长中线,使,构造了一对全等三角形,将,,转化到一个三角形中,进而解决问题,这种方法叫做“倍长中线法”.“倍长中线法”多用于构造全等三角形和证明边之间的关系. 任务二:如图3,,,则的取值范围是_____________; 任务三:如图4,在图3的基础上,分别以和为边作等腰直角三角形,在中,,;中,,.连接.试探究与的数量关系,并说明理由. 26.【阅读材料】小明同学发现这样一个规律:两个顶角相等的等腰三角形,如果具有公共的顶角的顶点,并把它们的底角顶点连接起来则形成一组全等的三角形,小明把具有这个规律的图形称为“手拉手”图形如图1,在“手拉手”图形中,小明发现若∠BAC=∠DAE,AB=AC,AD=AE,则ABD≌ACE. 【材料理解】(1)在图1中证明小明的发现. 【深入探究】(2)如图2,ABC和AED是等边三角形,连接BD,EC交于点O,连接AO,下列结论:①BD=EC;②∠BOC=60°;③∠AOE=60°,其中正确的有_____.(将所有正确的序号填在横线上) 【延伸应用】(3)如图3,在四边形ABCD中,BD=CD,AB=BE,∠ABE=∠BDC=60°,试探究∠A与∠BED的数量关系,并证明. 【参考答案】 一、选择题 2.D 解析:D 【分析】根据中心对称图形和轴对称图形的概念逐项分析即可,轴对称图形:平面内,一个图形沿一条直线折叠,直线两旁的部分能够完全重合的图形. 【详解】解:第1,2,3,5个图是轴对称图形,第4个不是轴对称图形, 故选D 【点睛】本题考查了轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,掌握轴对称图形的概念是解题的关键. 3.C 解析:C 【分析】结合题意,根据科学记数法和负整数指数幂的性质计算,即可得到答案. 【详解】数据0.0000015用科学记数法表示为: 故选:C. 【点睛】本题考查了科学记数法和负整数指数幂的知识;解题的关键是熟练掌握科学记数法定义:科学记数法是指把一个数表示成形式,其中n为整数,且a满足1≤|a|<10;对小于1的数,用科学记数法表示为的形式. 4.D 解析:D 【分析】根据同底数幂乘除法则,合并同类项法则和积的乘方法则逐项判断即可. 【详解】解:A、a•a3=a4,原式计算错误; B、a6÷a2=a4,原式计算错误; C、2a+3a=5a,原式计算错误; D、(ab2)3=a3b6,原式计算正确; 故选:D. 【点睛】本题考查了同底数幂的乘除法,合并同类项和积的乘方,熟练掌握运算法则是解题的关键. 5.D 解析:D 【分析】根据二次根式与分式有意义的条件列出不等式组即可求解. 【详解】解:由题意得: x+3≥0且2+x≠0, ∴x≥-3且x≠-2, 故选:D. 【点睛】本题考查了函数自变量的取值范围,熟练掌握二次根式与分式有意义的条件是解题的关键. 6.D 解析:D 【分析】根据公式特点判断,然后利用排除法求解. 【详解】解:A.是平方差公式,故A选项正确,不符合题意; B.是完全平方公式,故B选项正确,不符合题意; C.是提公因式法,故C选项正确,不符合题意; D.,故D选项错误,符合题意; 故选:D. 【点睛】本题主要考查了分解因式的方法,熟练掌握因式分解的方法是解题的关键. 7.C 解析:C 【分析】根据分式的基本性质进行计算逐一判断即可. 【详解】解:A、,故A不符合题意; B、,故B不符合题意; C、,故C符合题意; D、,故D不符合题意; 故选:C. 【点睛】本题考查了分式的基本性质,熟练掌握分式的基本性质是解题的关键. 8.B 解析:B 【分析】根据题目条件可得AE=DF,∠A=∠D,再根据四个选项结合全等三角形的判定定理即可作出判断. 【详解】解: A.∵AE∥DF, ∴∠A=∠D, ∵EC∥BF, ∴∠ACE=∠DBF, ∵AE=DF, ∴△AEC≌△DFB(AAS), 故此选项不合题意; B.添加条件EC=BF,不能证明△AEC≌△DFB,故此选项符合题意; C.∵AB=CD, ∴AC=BD, ∵AE∥DF, ∴∠A=∠D, ∵AE=DF, ∴△AEC≌△DFB(SAS), 故此选项不合题意; D.∵AE∥DF, ∴∠A=∠D, ∵AE=DF,∠E=∠F, ∴△AEC≌△DFB(ASA), 故此选项不合题意; 故选:B. 【点睛】此题主要考查了三角形全等的判定方法,熟练掌握判定三角形全等的方法是解题的关键. 9.A 解析:A 【分析】首先求得分式方程的解为x=4-m,再根据解为正数得4-m>0且4-m 1,从而求得m的取值范围即可. 【详解】解:, 去分母,得1-m-(x-1)=-2, 去括号,得1-m-x+1=-2, 移项,合并得x=4-m, ∵方程的解为正数, ∴4-m>0且4-m 1, 解得m<4且, 故选:A. 【点睛】本题考查分式方程的特殊解,难度适中,解题的关键是注意要排除分式方程无解情况. 10.A 解析:A 【分析】根据角平分线性质,可得,结合三角形内角和定理与外角定理即可. 【详解】解:∵BD平分∠ABC交AC于点D, ∴, ∵即, 又∵, ∴, ∵, 即, ∴, ∴, ∴. 故选:A. 【点睛】此题主要考查了三角形角平分线,解题关键是熟练运用三角形内角和定理与外角定理. 11.A 解析:A 【分析】根据即可推出△△,判断①正确;根据相似三角形的性质和判定和全等三角形的判定推出即可. 【详解】解:①△,△的周长相等,,, , △△, ①正确; ②如图,延长到,使,,延长到,使, ∴,, ∵的周长相等, ∴, 在△和△中 , ∴ △△(SAS) ∴, ∵, ∴,, 又∵,, ∴, 在△和△中 , △△(AAS), ②正确; 综上所述:①,②都正确. 故选:A. 【点睛】本题考查了全等三角形的判定、等腰三角形的性质,能构造全等三角形、综合运用定理进行推理是解此题的关键,注意:全等三角形的判定定理有,,,,而和不能判断两三角形全等. 二、填空题 12.5 【分析】求出分式的分子等于0且分母不为0时的的值即可. 【详解】解:由题意得:, 解得, 故答案为:5. 【点睛】本题考查了分式值为零的条件,解答此题的关键是要明确:分式值为零的条件是分子等于零且分母不等于零,注意:“分母不为零”这个条件不能少. 13. 【分析】根据关于轴对称的点的横坐标不变,纵坐标互为相反数即可求解. 【详解】解:点P(-2,4)关于x轴对称的点的坐标为, 故答案为:. 【点睛】本题考查了求关于轴对称的点的坐标,掌握关于坐标轴对称的点的坐标特征是解题的关键. 14.. 【分析】将a+b=5.ab=3代入原式=,计算可得. 【详解】当a+b=5.ab=3时, 原式= = = =. 故答案为. 【点睛】本题主要考查分式的加减法,解题的关键是熟练掌握分式的加减运算法则和完全平方公式. 15. 【详解】当am=2,an=6时, 原式=(am)2÷an =22÷6 =4÷6 =. 故答案为:. 【点睛】本题考查了幂的乘方和同底数幂的除法,掌握am÷an=am-n(a≠0)是解题的关键. 16.3 【分析】如图,作P关于OA,OB的对称点C,D.连接OC,OD.则当M,N是CD与OA,OB的交点时,△PMN的周长最短,最短的值是CD的长.根据对称的性质可以证得:△COD是等边三角形,据此 解析:3 【分析】如图,作P关于OA,OB的对称点C,D.连接OC,OD.则当M,N是CD与OA,OB的交点时,△PMN的周长最短,最短的值是CD的长.根据对称的性质可以证得:△COD是等边三角形,据此即可求解. 【详解】如图,作P关于OA,OB的对称点C,D.连接OC,OD.则当M,N是CD与OA,OB的交点时,△PMN的周长最短,最短的值是CD的长. ∵点P关于OA的对称点为C, ∴PM=CM,OP=OC,∠COA=∠POA; ∵点P关于OB的对称点为D, ∴PN=DN,OP=OD,∠DOB=∠POB, ∴OC=OD=OP=3,∠COD=∠COA+∠POA+∠POB+∠DOB=2∠POA+2∠POB=2∠AOB=60°, ∴△COD是等边三角形, ∴CD=OC=OD=3. ∴△PMN的周长的最小值=PM+MN+PN=CM+MN+DN≥CD=3. 【点睛】此题主要考查轴对称--最短路线问题,综合运用了等边三角形的知识.正确作出图形,理解△PMN周长最小的条件是解题的关键. 17.17或-15##-15或17 【分析】根据完全平方公式,即可解答. 【详解】解:∵x2+(m-1)x+64是一个完全平方式, ∴(m-1)x=±16x, ∴m-1=±16, ∴m=17或- 解析:17或-15##-15或17 【分析】根据完全平方公式,即可解答. 【详解】解:∵x2+(m-1)x+64是一个完全平方式, ∴(m-1)x=±16x, ∴m-1=±16, ∴m=17或-15, 故答案为:17或-15. 【点睛】本题是完全平方公式的应用,要熟记完全平方公式的结构特征:两数的平方和,再加上或减去它们乘积的2倍,为此应注意积的2倍有符号有正负两种,避免漏解 18.9 【分析】根据新定义可得:-6m+4n-m2-n2≥13,通过整理配方可得:(m+3)2+(n-2)2≤0,利用非负性的性质可判断出m+3=0,n-2=0,从而求值. 【详解】解:∵min{1 解析:9 【分析】根据新定义可得:-6m+4n-m2-n2≥13,通过整理配方可得:(m+3)2+(n-2)2≤0,利用非负性的性质可判断出m+3=0,n-2=0,从而求值. 【详解】解:∵min{13,-6m+4n-m2-n2}=13, ∴-6m+4n-m2-n2≥13, ∴(m+3)2+(n-2)2≤0, ∴m+3=0,n-2=0, ∴m=-3,n=2, ∴mn=(-3)2=9. 故答案为:9 【点睛】本题考查新定义,配方法应用,非负性性质,解题关键是将不等式进行配方. 19.2或 【详解】可分两种情况:①△ABP≌△PCQ得到BP=CQ,AB=PC,②△ABP≌△QCP得到BA=CQ,PB=PC,然后分别计算出t的值,进而得到v的值. 【解答】解:①当BP=CQ,A 解析:2或 【详解】可分两种情况:①△ABP≌△PCQ得到BP=CQ,AB=PC,②△ABP≌△QCP得到BA=CQ,PB=PC,然后分别计算出t的值,进而得到v的值. 【解答】解:①当BP=CQ,AB=PC时,△ABP≌△PCQ, ∵AB=8cm, ∴PC=8cm, ∴BP=12﹣8=4(cm), ∴2t=4,解得:t=2, ∴CQ=BP=4cm, ∴v×2=4, 解得:v=2; ②当BA=CQ,PB=PC时,△ABP≌△QCP, ∵PB=PC, ∴BP=PC=6cm, ∴2t=6,解得:t=3, ∵CQ=AB=8cm, ∴v×3=8, 解得:v=, 综上所述,当v=2或时,△ABP与△PQC全等, 故答案为:2或. 【点睛】此题考查了动点问题,全等三角形的性质的应用,解一元一次方程,正确理解全等三角形的性质得到相等的对应边求出t是解题的关键. 三、解答题 20.(1);(2). 【分析】(1)首先提公因式2,再利用平方差公式进行分解即可; (2)首先提公因式x,再利用完全平方公式进行分解即可. 【详解】(1)原式 . (2)原式 . 【点睛】 解析:(1);(2). 【分析】(1)首先提公因式2,再利用平方差公式进行分解即可; (2)首先提公因式x,再利用完全平方公式进行分解即可. 【详解】(1)原式 . (2)原式 . 【点睛】此题主要考查了提公因式法与公式法分解因式,要求灵活使用各种方法对多项式进行因式分解,一般来说,如果可以先提取公因式的要先提取公因式,再考虑运用公式法分解. 21.(1)x=1 (2)x=﹣4 【分析】两分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解. (1)解:去分母得:x+2=3x,解得:x=1,检验:把x=1代 解析:(1)x=1 (2)x=﹣4 【分析】两分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解. (1)解:去分母得:x+2=3x,解得:x=1,检验:把x=1代入得:x(x+2)≠0,∴分式方程的解为x=1; (2)解:去分母得:3+x(x+3)=x2﹣9,解得:x=﹣4,检验:把x=﹣4代入得:(x+3)(x﹣3)≠0,∴分式方程的解为x=﹣4. 【点睛】本题考查了解分式方程,利用了转化的思想,解分式方程注意要检验. 22.详见解析 【分析】运用定理证明直角三角形全等即可. 【详解】∵BE=CF,∴BF=CE 在与中: ∴ ∴AB =DC 【点睛】本题考查了直角三角形全等的判定与性质,熟练掌握定理是解 解析:详见解析 【分析】运用定理证明直角三角形全等即可. 【详解】∵BE=CF,∴BF=CE 在与中: ∴ ∴AB =DC 【点睛】本题考查了直角三角形全等的判定与性质,熟练掌握定理是解题关键. 23.(1)122 (2) (3)∠BQC=90°,理由见解析 【分析】(1)根据三角形的内角和角平分线的定义; (2)根据三角形的一个外角等于与它不相邻的两个内角的和,可得∠ABD=∠A+∠AC 解析:(1)122 (2) (3)∠BQC=90°,理由见解析 【分析】(1)根据三角形的内角和角平分线的定义; (2)根据三角形的一个外角等于与它不相邻的两个内角的和,可得∠ABD=∠A+∠ACB,再利用∠BEC=∠DBE﹣∠BCE,即可得到结论; (3)根据三角形的一个外角等于与它不相邻的两个内角的和以及角平分线的定义表示出∠EBC与∠ECB,然后再根据三角形的内角和定理列式整理即可得解. (1) 解:∵BP、CP分别平分∠ABC和∠ACB, ∴∠PBC∠ABC,∠PCB∠ACB, ∴∠BPC=180°﹣(∠PBC+∠PCB) =180°﹣(∠ABC∠ACB) =180°(∠ABC+∠ACB) =180°(180°﹣∠A) =180°﹣90°∠A =90°+32° =122° 故答案为:122; (2) 解:∵CE和BE分别是∠ACB和∠ABD的角平分线, ∴∠BCE∠ACB,∠DBE∠ABD, 又∵∠ABD是△ABC的一外角, ∴∠ABD=∠A+∠ACB, ∴∠DBE(∠A+∠ABC)∠A+∠BCE, ∵∠DBE是△BEC的一外角, ∴∠BEC=∠DBE﹣∠BCE∠A+∠BCE﹣∠BCE∠A; (3) 解:∠BQC=90°,理由如下: 根据题意得:∠CBM=∠A+∠ACB,∠BCN=∠A+∠ABC, ∵BQ平分外角∠CBM,CQ平分外角∠BCN. ∴∠QBC(∠A+∠ACB),∠QCB(∠A+∠ABC), ∴∠BQC=180°﹣∠QBC﹣∠QCB =180°(∠A+∠ACB)(∠A+∠ABC) =180°∠A(∠A+∠ABC+∠ACB) 即∠BQC=90°. 【点睛】本题主要考查了有关角平分线的计算,三角形外角的性质,三角形的内角和定理,熟练掌握三角形外角的性质,三角形的内角和定理是解题的关键. 24.(1)甲种款式帽子的单价是10元,乙种款式帽子的单价是8元; (2)①公司有9种购买方案;②m的取值范围是 【分析】(1)可设甲种款式帽子的单价是x元,则乙种款式帽子的单价是(x-2)元,根据等 解析:(1)甲种款式帽子的单价是10元,乙种款式帽子的单价是8元; (2)①公司有9种购买方案;②m的取值范围是 【分析】(1)可设甲种款式帽子的单价是x元,则乙种款式帽子的单价是(x-2)元,根据等量关系:用80元购买甲款式帽子的数量与用64元购买乙款式帽子的数量相同,列出方程求解即可; (2)①设公司准备从商家购买甲种款式的帽子y顶,则从商家购买甲种款式的帽子(100-y)顶,根据不等关系:甲款式帽子的数量不能少于乙款式帽子,且不能多于乙款式帽子的,列出不等式组求解即可; ②根据公司购买的总费用不超过821元,列出不等式可求m的取值范围. (1) 解:设甲种款式帽子的单价是x元,则乙种款式帽子的单价是(x-2)元, 依题意得: 解得:x=10, 经检验,x=10是原方程的解,且符合题意, 则x-2=10-2=8. 答:甲种款式帽子的单价是10元,乙种款式帽子的单价是8元; (2) ①设公司准备从商家购买甲种款式的帽子y顶,则从商家购买甲种款式的帽子(100-y)顶, 依题意得: 解得: ∵y为整数, ∴公司有9种购买方案; ②依题意有:(10-m)y+8(100-y)≤821, (2-m)y≤21, ∵y最小为34,m≤3, . 答:m的取值范围是. 【点睛】本题考查了分式方程的应用,一元一次不等式的应用,根据题意列出方程和不等式是解题的关键. 25.(1)xy的值是9;(2)1<c<11;(3)P>Q. 【分析】(1)根据x2-2xy+2y2+6y+9=0,先仿照例子得出(x-y)2+(y+3)2=0,求出x、y的值,从而得出结果; (2) 解析:(1)xy的值是9;(2)1<c<11;(3)P>Q. 【分析】(1)根据x2-2xy+2y2+6y+9=0,先仿照例子得出(x-y)2+(y+3)2=0,求出x、y的值,从而得出结果; (2)首先根据a2+b2-10a-12b+61=0,先得出(a-5)2+(b-6)2=0,求出a、b的值,然后根据三角形的三条关系,可求出c的取值范围; (3)利用作差法,得出P-Q=x2-6x+y2+4y+14=(x-3)2+(y+2)2+1>0,从而可得出结果. 【详解】解:(1)∵x2-2xy+2y2+6y+9=0, ∴(x2-2xy+y2)+(y2+6y+9)=0, ∴(x-y)2+(y+3)2=0, ∴x-y=0,y+3=0, ∴x=-3,y=-3, ∴xy=(-3)×(-3)=9, 即xy的值是9; (2)∵a2+b2-10a-12b+61=0, ∴(a2-10a+25)+(b2-12b+36)=0, ∴(a-5)2+(b-6)2=0, ∴a-5=0,b-6=0, ∴a=5,b=6, 根据三角形的三边关系可得,6-5<c<6+5, ∴1<c<11; (3)P-Q=x2-6x+y2+4y+14=(x-3)2+(y+2)2+1>0, ∴P>Q. 【点睛】此题主要考查了因式分解的运用,关键是利用完全平方公式将式子进行配方,然后利用非负数的性质求解,将式子变形时,根据已知条件,变形的可以是整个代数式,也可以是其中的一部分. 26.任务一:依据1:两边和它们的夹角分别相等的两个三角形全等(或“边角边”或“SAS”);依据2:三角形两边的和大于第三边;任务二:;任务三:EF=2AD,见解析 【分析】任务一:依据1:根据全等的判 解析:任务一:依据1:两边和它们的夹角分别相等的两个三角形全等(或“边角边”或“SAS”);依据2:三角形两边的和大于第三边;任务二:;任务三:EF=2AD,见解析 【分析】任务一:依据1:根据全等的判定方法判断即可; 依据2:根据三角形三边关系判断; 任务二:可根据任务一的方法直接证明即可; 任务三:根据任务一的方法,延长中线构造全等三角形证明线段关系即可. 【详解】解:任务一: 依据1:两边和它们的夹角分别相等的两个三角形全等(或“边角边”或“SAS”); 依据2:三角形两边的和大于第三边. 任务二: 任务三:EF=2AD.理由如下: 如图延长AD至G,使DG=AD, ∵AD是BC边上的中线 ∴BD=CD 在△ABD和△CGD中 ∴△ABD≌△CGD ∴AB=CG,∠ABD=∠GCD 又∵AB=AE ∴AE=CG 在△ABC中,∠ABC+∠BAC+∠ACB=180°, ∴∠GCD+∠BAC+∠ACB=180° 又∵∠BAE=90°,∠CAF=90° ∴∠EAF+∠BAC=360°-(∠BAE+∠CAF)=180° ∴∠EAF=∠GCD 在△EAF和△GCA中 ∴△EAF≌△GCA ∴EF=AG ∴EF=2AD. 【点睛】此题是三角形综合题,主要考查了全等三角形的判定和性质,倍长中线法,构造全等三角形是解本题的关键. 27.(1)见解析;(2)①②③;(3),证明见解析 【分析】(1)利用等式的性质得出∠BAD=∠CAE,即可得出结论; (2)同(1)的方法判断出△ABD≌△ACE,得出BD=CE,再利用对顶角和三 解析:(1)见解析;(2)①②③;(3),证明见解析 【分析】(1)利用等式的性质得出∠BAD=∠CAE,即可得出结论; (2)同(1)的方法判断出△ABD≌△ACE,得出BD=CE,再利用对顶角和三角形的内角和定理判断出∠BOC=60°,再判断出△BCF≌△ACO,得出∠AOC=120°,进而得出∠AOE=60°,再判断出BF<CF,进而判断出∠OBC>30°,即可得出结论; (3)先判断出△BDC是等边三角形,得出BD=BC,∠DBC=60°,进而判断出△ABD≌△EBC(SAS),由全等三角形的性质即可得出结论. 【详解】(1)证明:∵∠BAC=∠DAE, ∴∠BAC+∠CAD=∠DAE+∠CAD, ∴∠BAD=∠CAE, 在△ABD和△ACE中, , ∴△ABD≌△ACE(SAS); (2)解:如图2,∵△ABC和△ADE是等边三角形, ∴AB=AC,AD=AE,∠BAC=∠DAE=60°, ∴∠BAD=∠CAE, 在△ABD和△ACE中, , ∴△ABD≌△ACE(SAS), ∴BD=CE,①正确,∠ADB=∠AEC, 记AD与CE的交点为G, ∵∠AGE=∠DGO, ∴180°−∠ADB−∠DGO=180°−∠AEC−∠AGE, ∴∠DOE=∠DAE=60°, ∴∠BOC=60°,②正确, 在OB上取一点F,使OF=OC,连接CF, ∴△OCF是等边三角形, ∴CF=OC,∠OFC=∠OCF=60°=∠ACB, ∴∠BCF=∠ACO, ∵AB=AC, ∴△BCF≌△ACO(SAS), ∴∠AOC=∠BFC=180°−∠OFC=120°, ∴∠AOE=180°−∠AOC=60°,③正确, 连接AF,要使OC=OE,则有OC=CE, ∵BD=CE, ∴CF=OF=BD, ∴OF=BF+OD, ∴BF<CF, ∴∠OBC>∠BCF, ∵∠OBC+∠BCF=∠OFC=60°, ∴∠OBC>30°,而没办法判断∠OBC大于30度, 所以,④不一定正确, 即:正确的有①②③, 故答案为①②③; (3)∠A+∠BED=180°. 如图3, 证明:∵∠BDC=60°,BD=CD, ∴△BDC是等边三角形, ∴BD=BC,∠DBC=60°, ∵∠ABC=60°=∠DBC, ∴∠ABD=∠CBE, ∵AB=BE, ∴△ABD≌△EBC(SAS), ∴∠BEC=∠A, ∵∠BED+∠BEC=180°, ∴∠A+∠BED=180°. 【点睛】此题是三角形综合题,主要考查了等腰三角形的性质,等边三角形的性质,全等三角形的判定和性质,构造等边三角形是解本题的关键.展开阅读全文
咨信网温馨提示:1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:0574-28810668;投诉电话:18658249818。




初二数学上册期末试卷带解析(一).doc



实名认证













自信AI助手
















微信客服
客服QQ
发送邮件
意见反馈



链接地址:https://www.zixin.com.cn/doc/1886147.html