2022年人教版中学七7年级下册数学期末测试(及答案)(1).doc
《2022年人教版中学七7年级下册数学期末测试(及答案)(1).doc》由会员分享,可在线阅读,更多相关《2022年人教版中学七7年级下册数学期末测试(及答案)(1).doc(25页珍藏版)》请在咨信网上搜索。
2022年人教版中学七7年级下册数学期末测试(及答案)(1) 一、选择题 1.9的算术平方根是() A. B. C.3 D.-3 2.下列车标图案,可以看成由图形的平移得到的是( ) A. B. C. D. 3.下列各点中,在第四象限的是( ) A. B. C. D. 4.下列命题中假命题有( ) ①两条直线被第三条直线所截,同位角相等 ②如果两条直线都与第三条直线平行,那么这两条直线也互相平行 ③点到直线的垂线段叫做点到直线的距离 ④过一点有且只有一条直线与已知直线平行 ⑤若两条直线都与第三条直线垂直,则这两条直线互相平行. A.5个 B.4个 C.3个 D.2个 5.如图,点在延长线上,、交于,且,,比的余角小,为线段上一动点,为上一点,且满足,为的平分线.则下列结论:①;②平分;③;④的角度为定值.其中正确结论的个数有( ) A.1个 B.2个 C.3个 D.4个 6.下列计算正确的是( ) A. B. C. D. 7.如图,AB∥CD,直线EF分别交AB、CD于点E、F,FH平分∠EFD,若∠1=110°,则∠2的度数为( ) A.45° B.40° C.55° D.35° 8.如图,过点作直线:的垂线,垂足为点,过点作轴,垂足为点,过点作,垂足为点,…,这样依次作下去,得到一组线段:,,,…,则线段的长为( ) A. B. C. D. 九、填空题 9.的平方根是_________ 十、填空题 10.平面直角坐标系中,点关于轴的对称点是__________. 十一、填空题 11.如图,AD是△ABC的角平分线,DF⊥AB,垂足为F,DE=DG,△ADG和△AED的面积分别为50和38,则△EDF的面积为_____. 十二、填空题 12.如图,,点在上,点在上,则的度数等于______. 十三、填空题 13.如图,将一张长方形纸片沿EF折叠后,点A,B分别落在A′,B′的位置.如果∠1=59°,那么∠2的度数是_____. 十四、填空题 14.规定,,例如:,,通过观察,那么______. 十五、填空题 15.点到两坐标轴的距离相等,则________. 十六、填空题 16.在平面直角坐标系中,点经过某种变换后得到点,我们把点叫做点的终结点已知点的终结点为点的终结点为,点的终结点为,这样依次得到,若点的坐标为,则点的坐标为____ 十七、解答题 17.计算(1) (2) 十八、解答题 18.求下列各式中x的值 (1)81x2 =16 (2) 十九、解答题 19.补全下面的证明过程和理由: 如图,AB和CD相交于点O,EF∥AB,∠C=∠COA,∠D=∠BOD. 求证:∠A=∠F. 证明:∵∠C=∠COA,∠D=∠BOD,( ) 又∵∠COA=∠BOD,( ) ∴∠C= .( ) ∴AC∥DF( ). ∴∠A= ( ). ∵EF∥AB, ∴∠F= ( ). ∴∠A=∠F( ). 二十、解答题 20.如图,每个小正方形的边长为1,利用网格点画图和无刻度的直尺画图(保留画图痕迹): (I)在方格纸内将三角形经过一次平移后得到三角形,图中标出了点的对应点,画出三角形; (2)过点画线段使且; (3)图中与的关系是______; (4)点在线段上,,点是直线上一动点线段的最小值为______. 二十一、解答题 21.大家知道是无理数,而无理数是无限不循环小数,因此的小数部分我们不可能全部写出来,,于是可用来表示的小数部分.请解答下列问题: (1)的整数部分是________,小数部分是________. (2)如果的小数部分为,的整数部分为,求的值. (3)已知:,其中是整数,且,求的相反数. 二十二、解答题 22.小丽想用一块面积为的正方形纸片,如图所示,沿着边的方向裁出一块面积为的长方形纸片,使它的长是宽的2倍.她不知能否裁得出来,正在发愁.小明见了说:“别发愁,一定能用一块面积大的纸片裁出一块面积小的纸片.”你同意小明的说法吗?你认为小丽能用这块纸片裁出符合要求的纸片吗?为什么? 二十三、解答题 23.如图1,已AB∥CD,∠C=∠A. (1)求证:AD∥BC; (2)如图2,若点E是在平行线AB,CD内,AD右侧的任意一点,探究∠BAE,∠CDE,∠E之间的数量关系,并证明. (3)如图3,若∠C=90°,且点E在线段BC上,DF平分∠EDC,射线DF在∠EDC的内部,且交BC于点M,交AE延长线于点F,∠AED+∠AEC=180°, ①直接写出∠AED与∠FDC的数量关系: . ②点P在射线DA上,且满足∠DEP=2∠F,∠DEA﹣∠PEA=∠DEB,补全图形后,求∠EPD的度数 二十四、解答题 24.(1)学习了平行线以后,香橙同学想出了过一点画一条直线的平行线的新方法,她是通过折纸做的,过程如(图1). ①请你仿照以上过程,在图2中画出一条直线b,使直线b经过点P,且,要求保留折纸痕迹,画出所用到的直线,指明结果.无需写画法: ②在(1)中的步骤(b)中,折纸实际上是在寻找过点P的直线a的 线. (2)已知,如图3,,BE平分,CF平分.求证:(写出每步的依据). 二十五、解答题 25.如图①所示,在三角形纸片中,,,将纸片的一角折叠,使点落在内的点处. (1)若,________. (2)如图①,若各个角度不确定,试猜想,,之间的数量关系,直接写出结论. ②当点落在四边形外部时(如图②),(1)中的猜想是否仍然成立?若成立,请说明理由,若不成立,,,之间又存在什么关系?请说明. (3)应用:如图③:把一个三角形的三个角向内折叠之后,且三个顶点不重合,那么图中的和是________. 【参考答案】 一、选择题 1.C 解析:C 【分析】 根据一个非负数的正的平方根,即为这个数的算术平方根解答即可. 【详解】 解:9的算术平方根是3, 故选C. 【点睛】 本题考查的是算术平方根的性质,掌握一个非负数的正的平方根,即为这个数的算术平方根是解题的关键. 2.A 【分析】 根据旋转变换,平移变换,轴对称变换对各选项分析判断后利用排除法求解. 【详解】 解:A、可以由一个“基本图案”平移得到,故本选项符合题意; B、不是由一个“基本图案”平移得到,故本选项 解析:A 【分析】 根据旋转变换,平移变换,轴对称变换对各选项分析判断后利用排除法求解. 【详解】 解:A、可以由一个“基本图案”平移得到,故本选项符合题意; B、不是由一个“基本图案”平移得到,故本选项不符合题意; C、可以由一个“基本图案”旋转得到,故本选项不符合题意; D、可以由一个“基本图案”旋转得到,故本选项不符合题意. 故选:A. 【点睛】 本题主要考查了图形的平移和旋转,准确分析判断是解题的关键. 3.B 【分析】 根据第四象限的点的横坐标是正数,纵坐标是负数解答. 【详解】 解:A、(3,0)在x轴上,不合题意; B、(2,-5)在第四象限,符合题意; C、(-5,-2)在第三象限,不合题意; D、(-2,3),在第二象限,不合题意. 故选:B. 【点睛】 本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-). 4.B 【分析】 根据平行线的性质和判定,点到直线距离定义一一判断即可. 【详解】 解:①两条直线被第三条直线所截,同位角相等,错误,缺少平行的条件; ②如果两条直线都与第三条直线平行,那么这两条直线也互相平行,正确; ③点到直线的垂线段叫做点到直线的距离,错误,应该是垂线段的长度; ④过一点有且只有一条直线与已知直线平行,错误,应该是过直线外一点; ⑤若两条直线都与第三条直线垂直,则这两条直线互相平行,错误,条件是同一平面内. 故选B. 【点睛】 本题主要考查命题与定理,解决本题的关键是要熟练掌握平行线的性质和判定,点到直线距离定义. 5.D 【分析】 ①由可得AE∥BD,进而得到,结合即可得到结论;②由得出,结合即可得解;③由平行线的性质和内角和定理判断即可;④根据角平分线的性质求解即可; 【详解】 ∵, ∴AE∥BD, ∴, ∵, ∴, ∴,结论①正确; ∵, ∴, ∵, ∴, ∴平分,结论②正确; ∵, ∴, ∵比的余角小, ∴, ∵,, ∴,结论③正确; ∵为的平分线, ∴, ∵, ∴, ∴,结论④正确; 故正确的结论是①②③④; 故答案选D. 【点睛】 本题主要考查了平行线的判定与性质、余角和补角的性质,准确分析计算是解题的关键. 6.D 【分析】 分别根据算术平方根的定义以及立方根的定义逐一判断即可. 【详解】 解:A、,故本选项不合题意; B、,故本选项不合题意; C、,故本选项不合题意; D、,故本选项符合题意; 故选:D. 【点睛】 本题主要考查算术平方根及立方根,熟练掌握求一个数的算术平方根及立方根是解题的关键. 7.D 【分析】 根据对顶角相等求出∠3,再根据两直线平行,同旁内角互补求出∠DFE,然后根据角平分线的定义求出∠DFH,再根据两直线平行,内错角相等解答. 【详解】 解:∵∠1=110°, ∴∠3=∠1=110°, ∵AB∥CD, ∴∠DFE=180°-∠3=180°-110°=70°, ∵HF平分∠EFD, ∴∠DFH=∠DFE=×70°=35°, ∵AB∥CD, ∴∠2=∠DFH=35°. 故选:D. 【点睛】 本题考查了平行线的性质,角平分线的定义,对顶角相等的性质,是基础题,熟记各性质并准确识图是解题的关键. 8.B 【分析】 由,可得,然后根据形的性质結合图形即可得到规律,然后按规律解答即可. 【详解】 解:由,可得 ∵点A0坐标为(2,0) ∴OA0=2, ∴ ∴ ∴ ∴A2020A2021= 故答案为: 解析:B 【分析】 由,可得,然后根据形的性质結合图形即可得到规律,然后按规律解答即可. 【详解】 解:由,可得 ∵点A0坐标为(2,0) ∴OA0=2, ∴ ∴ ∴ ∴A2020A2021= 故答案为:B 【点睛】 本题考查了规律型中点的坐标以及含30°角的直角三角形,利用“在直角三角形中,30°角所对的直角边等于斜边的一半”,结合图形找出变化规律是解题的关键. 九、填空题 9.. 【详解】 【分析】先确定,再根据平方根定义可得的平方根是±. 【详解】因为,6的平方根是±,所以的平方根是±. 故正确答案为±. 【点睛】此题考核算术平方根和平方根定义.此题关键要看清符号所表示 解析:. 【详解】 【分析】先确定,再根据平方根定义可得的平方根是±. 【详解】因为,6的平方根是±,所以的平方根是±. 故正确答案为±. 【点睛】此题考核算术平方根和平方根定义.此题关键要看清符号所表示的意义. 十、填空题 10.【分析】 根据平面直角坐标系中,关于坐标轴对称的点的坐标特征,即可完成解答. 【详解】 解:点关于轴的对称点的坐标是(3,2). 【点睛】 本题考查了根据平面直角坐标系中关于坐标轴对称的点的坐标特 解析: 【分析】 根据平面直角坐标系中,关于坐标轴对称的点的坐标特征,即可完成解答. 【详解】 解:点关于轴的对称点的坐标是(3,2). 【点睛】 本题考查了根据平面直角坐标系中关于坐标轴对称的点的坐标特征,即关于x轴对称的点的坐标横坐标不变,纵坐标变为相反数;关于y轴对称的点的坐标纵坐标不变,横 坐标变为相反数; 十一、填空题 11.6 【详解】 如图,过点D作DH⊥AC于点H, 又∵AD是△ABC的角平分线,DF⊥AB,垂足为F, ∴DF=DH,∠AFD=∠ADH=∠DHG=90°, 又∵AD=AD,DE=DG, ∴△ADF≌ 解析:6 【详解】 如图,过点D作DH⊥AC于点H, 又∵AD是△ABC的角平分线,DF⊥AB,垂足为F, ∴DF=DH,∠AFD=∠ADH=∠DHG=90°, 又∵AD=AD,DE=DG, ∴△ADF≌△ADH,△DEF≌△DGH, 设S△DEF=,则S△AED+=S△ADG-,即38+=50-,解得:=6. ∴△EDF的面积为6. 十二、填空题 12.180° 【分析】 根据平行线的性质可得∠1=∠AFD,从而得到∠EFC=180°-∠EFD,∠ECF=180°-∠3,再根据∠2+∠ECF+∠EFC=180°,即可得到答案 【详解】 解:∵AB∥ 解析:180° 【分析】 根据平行线的性质可得∠1=∠AFD,从而得到∠EFC=180°-∠EFD,∠ECF=180°-∠3,再根据∠2+∠ECF+∠EFC=180°,即可得到答案 【详解】 解:∵AB∥CD, ∴∠1=∠AFD, ∵∠EFC=180°-∠EFD,∠ECF=180°-∠3,∠2+∠ECF+∠EFC=180°, ∴∠2+360°-∠1-∠3=180°, ∴∠1+∠3-∠2=180°, 故答案为:180° 【点睛】 本题主要考查了三角形内角和定理,平行线的性质,补角的定义,解题的关键在于能够熟练掌握相关知识进行求解 十三、填空题 13.62° 【分析】 根据折叠的性质求出∠EFB′=∠1=59°,∠B′FC=180°−∠1−∠EFB′=62°,根据平行线的性质:①两直线平行,同位角相等,②两直线平行,内错角相等,③两直线平行,同旁 解析:62° 【分析】 根据折叠的性质求出∠EFB′=∠1=59°,∠B′FC=180°−∠1−∠EFB′=62°,根据平行线的性质:①两直线平行,同位角相等,②两直线平行,内错角相等,③两直线平行,同旁内角互补.:求出即可. 【详解】 解:∵将一张长方形纸片沿EF折叠后, 点A、B分别落在A′、B′的位置,∠1=59°, ∴∠EFB′=∠1=59°, ∴∠B′FC=180°−∠1−∠EFB′=62°, ∵四边形ABCD是矩形, ∴AD∥BC, ∴∠2=∠B′FC=62°, 故答案为:62°. 【点睛】 本题考查了对平行线的性质和折叠的性质的应用,解此题的关键是求出∠B′FC的度数,注意:①两直线平行,同位角相等,②两直线平行,内错角相等,③两直线平行,同旁内角互补. 十四、填空题 14.【分析】 由题干得到,将原式进行整理化简即可求解. 【详解】 ∵, ∴, ∴ . 【点睛】 本题考查了归纳概括,找到互为倒数的两个数之和为1是解题关键. 解析: 【分析】 由题干得到,将原式进行整理化简即可求解. 【详解】 ∵, ∴, ∴ . 【点睛】 本题考查了归纳概括,找到互为倒数的两个数之和为1是解题关键. 十五、填空题 15.或. 【分析】 根据到两坐标轴的距离相等,可知横纵坐标的绝对值相等,列方程即可. 【详解】 解:∵点到两坐标轴的距离相等, ∴, 或, 解得,或, 故答案为:或. 【点睛】 本题考查了点到坐标轴的距 解析:或. 【分析】 根据到两坐标轴的距离相等,可知横纵坐标的绝对值相等,列方程即可. 【详解】 解:∵点到两坐标轴的距离相等, ∴, 或, 解得,或, 故答案为:或. 【点睛】 本题考查了点到坐标轴的距离,解题关键是明确到坐标轴的距离是坐标的绝对值. 十六、填空题 16.【分析】 利用点P(x,y)的终结点的定义分别写出点P2的坐标为(1,4),点P3的坐标为(−3,3),点P4的坐标为(−2,−1),点P5的坐标为(2,0),…,从而得到每4次变换一个循环,然后 解析: 【分析】 利用点P(x,y)的终结点的定义分别写出点P2的坐标为(1,4),点P3的坐标为(−3,3),点P4的坐标为(−2,−1),点P5的坐标为(2,0),…,从而得到每4次变换一个循环,然后利用2021=4×505+1可判断点P2021的坐标与点P1的坐标相同. 【详解】 解:根据题意得点P1的坐标为(2,0),则点P2的坐标为(1,4),点P3的坐标为(−3,3),点P4的坐标为(−2,-1),点P5的坐标为(2,0),…, 而2021=4×505+1, 所以点P2021的坐标与点P1的坐标相同,为(2,0), 故答案为:. 【点睛】 本题考查了坐标的变化规律探索,找出前5个点的坐标,找出变化规律,是解题的关键. 十七、解答题 17.(1);(2) 【分析】 (1)依次利用平方根以及立方根定义对原式计算,然后再依次计算,即可得到结果. (2)首先计算绝对值,然后从左向右依次计算,求出算式的值即可. 【详解】 (1), , . ( 解析:(1);(2) 【分析】 (1)依次利用平方根以及立方根定义对原式计算,然后再依次计算,即可得到结果. (2)首先计算绝对值,然后从左向右依次计算,求出算式的值即可. 【详解】 (1), , . (2), , . 【点睛】 本题主要考查了实数的运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,要从高级到低级,即先乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外有理数的运算律在实数范围内仍然适用. 十八、解答题 18.(1);(2) 【分析】 (1)方程变形后,利用平方根定义开方即可求出解; (2)方程利用立方根的定义开立方即可求出解. 【详解】 解:(1)方程变形得:, 解得:; (2)开立方得:, 解得:. 解析:(1);(2) 【分析】 (1)方程变形后,利用平方根定义开方即可求出解; (2)方程利用立方根的定义开立方即可求出解. 【详解】 解:(1)方程变形得:, 解得:; (2)开立方得:, 解得:. 【点睛】 本题考查了立方根,以及平方根,解题的关键是熟练掌握各自的求解方法. 十九、解答题 19.见解析 【分析】 根据对顶角相等结合已知得出∠C=∠D,从而得出AC∥DF,由平行线的性质得出∠A=∠ABD,∠F=∠ABD,即可得出结论. 【详解】 解:∵∠C=∠COA,∠D=∠BOD(已知), 解析:见解析 【分析】 根据对顶角相等结合已知得出∠C=∠D,从而得出AC∥DF,由平行线的性质得出∠A=∠ABD,∠F=∠ABD,即可得出结论. 【详解】 解:∵∠C=∠COA,∠D=∠BOD(已知), 又∵∠COA=∠BOD(对顶角相等), ∴∠C=∠D(等量代换). ∴AC∥DF(内错角相等,两直线平行). ∴∠A=∠ABD(两直线平行,内错角相等). ∵EF∥AB, ∴∠F=∠ABD(两直线平行,内错角相等). ∴∠A=∠F(等量代换). 故答案为:已知,对顶角相等;∠D,等量代换;内错角相等,两直线平行;∠ABD,两直线平行,内错角相等;∠ABD,两直线平行,同位角相等,等量代换. 【点睛】 本题考查了平行线的判定与性质;熟练掌握平行线的判定与性质是解题的关键. 二十、解答题 20.(1)见解析;(2)见解析;(3),AD∥;(4) 【分析】 (1)根据平移的性质,按要求作图即可; (2)根据过点A画线段AD∥BC,AD=BC,即可; (3)由平移的性质可得,∥BC,,从而可以 解析:(1)见解析;(2)见解析;(3),AD∥;(4) 【分析】 (1)根据平移的性质,按要求作图即可; (2)根据过点A画线段AD∥BC,AD=BC,即可; (3)由平移的性质可得,∥BC,,从而可以得到,AD∥; (4)根据点到直线的距离垂线段最短,可知当BH⊥CE时BH最短,由此利用三角形面积公式求解即可. 【详解】 解:(1)如图所示,即为所求: (2)如图所示,即为所求: (3)平移的性质可得 ,∥BC,由AD=BC,AD∥BC,从而可以得到,AD∥; 故答案为:,AD∥; (4)根据点到直线的距离垂线段最短,可知当BH⊥CE时BH最短, 如图所示:∵AD∥BC, ∴ , ∴, ∴, ∴点H是直线CE上一动点线段BH的最小值为. 故答案为:. 【点睛】 本题主要考查了平移作图,点到直线的距离垂线段最短,三角形面积,解题的关键在于能够熟练掌握相关知识进行求解. 二十一、解答题 21.(1)4, −4;(2)1;(3)−12+; 【解析】 【分析】 (1)先估算出的范围,即可得出答案; (2)先估算出、 的范围,求出a、b的值,再代入求解即可; (3)先估算出的范围,求出x、y的 解析:(1)4, −4;(2)1;(3)−12+; 【解析】 【分析】 (1)先估算出的范围,即可得出答案; (2)先估算出、 的范围,求出a、b的值,再代入求解即可; (3)先估算出的范围,求出x、y的值,再代入求解即可. 【详解】 (1)∵4<<5, ∴的整数部分是4,小数部分是 −4, 故答案为:4, −4; (2)∵2<<3, ∴a=−2, ∵3<<4, ∴b=3, ∴a+b−=−2+3−=1; (3)∵1<3<4, ∴1<<2, ∴11<10+<12, ∵10+=x+y,其中x是整数,且0<y<1, ∴x=11,y=10+−11=−1, ∴x−y=11−(−1)=12−, ∴x−y的相反数是−12+; 【点睛】 此题考查估算无理数的大小,解题关键在于掌握估算方法. 二十二、解答题 22.不同意,理由见解析 【分析】 先求得正方形的边长,然后设设长方形宽为,长为,然后依据矩形的面积为20列方程求得的值,从而得到矩形的边长,从而可作出判断. 【详解】 解:不同意, 因为正方形的面积为, 解析:不同意,理由见解析 【分析】 先求得正方形的边长,然后设设长方形宽为,长为,然后依据矩形的面积为20列方程求得的值,从而得到矩形的边长,从而可作出判断. 【详解】 解:不同意, 因为正方形的面积为,故边长为 设长方形宽为,则长为 长方形面积 ∴, 解得(负值舍去) 长为 即长方形的长大于正方形的边长, 所以不能裁出符合要求的长方形纸片 【点睛】 本题主要考查的是算术平方根的性质,熟练掌握算术平方根的性质是解题的关键. 二十三、解答题 23.(1)见解析;(2)∠BAE+∠CDE=∠AED,证明见解析;(3)①∠AED-∠FDC=45°,理由见解析;②50° 【分析】 (1)根据平行线的性质及判定可得结论; (2)过点E作EF∥AB,根 解析:(1)见解析;(2)∠BAE+∠CDE=∠AED,证明见解析;(3)①∠AED-∠FDC=45°,理由见解析;②50° 【分析】 (1)根据平行线的性质及判定可得结论; (2)过点E作EF∥AB,根据平行线的性质得AB∥CD∥EF,然后由两直线平行内错角相等可得结论; (3)①根据∠AED+∠AEC=180°,∠AED+∠DEC+∠AEB=180°,DF平分∠EDC,可得出2∠AED+(90°-2∠FDC)=180°,即可导出角的关系; ②先根据∠AED=∠F+∠FDE,∠AED-∠FDC=45°得出∠DEP=2∠F=90°,再根据∠DEA-∠PEA=∠DEB,求出∠AED=50°,即可得出∠EPD的度数. 【详解】 解:(1)证明:AB∥CD, ∴∠A+∠D=180°, ∵∠C=∠A, ∴∠C+∠D=180°, ∴AD∥BC; (2)∠BAE+∠CDE=∠AED,理由如下: 如图2,过点E作EF∥AB, ∵AB∥CD ∴AB∥CD∥EF ∴∠BAE=∠AEF,∠CDE=∠DEF 即∠FEA+∠FED=∠CDE+∠BAE ∴∠BAE+∠CDE=∠AED; (3)①∠AED-∠FDC=45°; ∵∠AED+∠AEC=180°,∠AED+∠DEC+∠AEB=180°, ∴∠AEC=∠DEC+∠AEB, ∴∠AED=∠AEB, ∵DF平分∠EDC ∠DEC=2∠FDC ∴∠DEC=90°-2∠FDC, ∴2∠AED+(90°-2∠FDC)=180°, ∴∠AED-∠FDC=45°, 故答案为:∠AED-∠FDC=45°; ②如图3, ∵∠AED=∠F+∠FDE,∠AED-∠FDC=45°, ∴∠F=45°, ∴∠DEP=2∠F=90°, ∵∠DEA-∠PEA=∠DEB=∠DEA, ∴∠PEA=∠AED, ∴∠DEP=∠PEA+∠AED=∠AED=90°, ∴∠AED=70°, ∵∠AED+∠AEC=180°, ∴∠DEC+2∠AED=180°, ∴∠DEC=40°, ∵AD∥BC, ∴∠ADE=∠DEC=40°, 在△PDE中,∠EPD=180°-∠DEP-∠AED=50°, 即∠EPD=50°. 【点睛】 本题主要考查平行线的判定和性质,熟练掌握平行线的判定和性质,角平分线的性质等知识点是解题的关键. 二十四、解答题 24.(1)①见解析;②垂;(2)见解析 【分析】 (1)①过点折纸,使痕迹垂直直线,然后过点折纸使痕迹与前面的痕迹垂直,从而得到直线; ②步骤(b)中,折纸实际上是在寻找过点的直线的垂线. (2)先根据 解析:(1)①见解析;②垂;(2)见解析 【分析】 (1)①过点折纸,使痕迹垂直直线,然后过点折纸使痕迹与前面的痕迹垂直,从而得到直线; ②步骤(b)中,折纸实际上是在寻找过点的直线的垂线. (2)先根据平行线的性质得到,再利用角平分线的定义得到,然后根据平行线的判定得到结论. 【详解】 (1)解:①如图2所示: ②在(1)中的步骤(b)中,折纸实际上是在寻找过点的直线的垂线. 故答案为垂; (2)证明:平分,平分(已知), ,(角平分线的定义), (已知), (两直线平行,内错角相等), (等量代换), (等式性质), (内错角相等,两直线平行). 【点睛】 本题考查了作图复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.也考查了平行线的性质与判定. 二十五、解答题 25.(1)50°;(2)①见解析;②见解析;(3)360°. 【分析】 (1)根据题意,已知,,可结合三角形内角和定理和折叠变换的性质求解; (2)①先根据折叠得:∠ADE=∠A′DE,∠AED=∠A′ 解析:(1)50°;(2)①见解析;②见解析;(3)360°. 【分析】 (1)根据题意,已知,,可结合三角形内角和定理和折叠变换的性质求解; (2)①先根据折叠得:∠ADE=∠A′DE,∠AED=∠A′ED,由两个平角∠AEB和∠ADC得:∠1+∠2等于360°与四个折叠角的差,化简得结果; ②利用两次外角定理得出结论; (3)由折叠可知∠1+∠2+∠3+∠4+∠5+∠6等于六边形的内角和减去(∠B'GF+∠B'FG)以及(∠C'DE+∠C'ED)和(∠A'HL+∠A'LH),再利用三角形的内角和定理即可求解. 【详解】 解:(1)∵,, ∴∠A′=∠A=180°-(65°+70°)=45°, ∴∠A′ED+∠A′DE =180°-∠A′=135°, ∴∠2=360°-(∠C+∠B+∠1+∠A′ED+∠A′DE)=360°-310°=50°; (2)①,理由如下 由折叠得:∠ADE=∠A′DE,∠AED=∠A′ED, ∵∠AEB+∠ADC=360°, ∴∠1+∠2=360°-∠ADE-∠A′DE-∠AED-∠A′ED=360°-2∠ADE-2∠AED, ∴∠1+∠2=2(180°-∠ADE-∠AED)=2∠A; ②,理由如下: ∵是的一个外角 ∴. ∵是的一个外角 ∴ 又∵ ∴ (3)如图 由题意知, ∠1+∠2+∠3+∠4+∠5+∠6=720°-(∠B'GF+∠B'FG)-(∠C'DE+∠C'ED)-(∠A'HL+∠A'LH)=720°-(180°-∠B')-(180°-C')-(180°-A')=180°+(∠B'+∠C'+∠A') 又∵∠B=∠B',∠C=∠C',∠A=∠A', ∠A+∠B+∠C=180°, ∴∠1+∠2+∠3+∠4+∠5+∠6=360°. 【点睛】 题主要考查了折叠变换、三角形、四边形内角和定理.注意折叠前后图形全等;三角形内角和为180°;四边形内角和等于360度.- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022 年人教版 中学 年级 下册 数学 期末 测试 答案
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【a199****6536】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【a199****6536】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【a199****6536】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【a199****6536】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文