人教版八年级数学下册期末试卷同步检测(Word版含答案).doc
《人教版八年级数学下册期末试卷同步检测(Word版含答案).doc》由会员分享,可在线阅读,更多相关《人教版八年级数学下册期末试卷同步检测(Word版含答案).doc(31页珍藏版)》请在咨信网上搜索。
人教版八年级数学下册期末试卷同步检测(Word版含答案) 一、选择题 1.要使等式=0成立的x的值为( ) A.3 B.﹣1 C.3或﹣1 D.以上都不对 2.下列满足条件的三角形中,不是直角三角形的是( ) A.三内角之比为1∶2∶3 B.三边长的平方之比为1∶2∶3 C.三边长之比为3∶4∶5 D.三内角之比为3∶4∶5 3.下列命题中,为假命题是( ) A.两组对边分别平行的四边形是平行四边形 B.两组对边分别相等的四边形是早行四边形 C.两组对角分别相等的四边形是平行四边形 D.对角线相等的四边形是平行四边形 4.甲、乙两人在相同条件下各射击10次,两人的平均环数是8,方差分别是,,则成绩较为稳定的是( ) A.甲 B.乙 C.甲乙一样稳定 D.难以确定 5.如图,正方形ABCD的边长为4,点M在AB上,且AM=1,N是BD上一动点,则AN+MN的最小值为( ) A.4 B. C.5 D.4 6.如图,四边形ABCD是菱形,点E、F分别在边BC、CD上,且BE=DF,AB=AE,若∠EAF=75°,则∠C的度数为( ) A.85° B.90° C.95° D.105° 7.如图,在中,,分别是,的中点,,是上一点,连接,,.若,则的长度为( ) A.24 B.28 C.20 D.12 8.已知:如图1,点G是BC的中点,点H在AF上,动点P以每秒2cm的速度沿图1的边线运动,运动路径为:G→C→D→E→F→H,相应的△ABP的面积y(cm2)关于运动时间t(s)的函数图象如图2,若AB=6cm,则下列四个结论中正确的个数有( ) ①图1中的BC长是8cm, ②图2中的M点表示第4秒时y的值为24cm2, ③图1中的CD长是4cm, ④图2中的N点表示第12秒时y的值为18cm2. A.1个 B.2个 C.3个 D.4个 二、填空题 9.若二次根式有意义,则x的取值范围是________. 10.如图,菱形ABCD的周长为,对角线AC和BD相交于点O,AC∶BD=1∶2,则AO∶BO=____,菱形ABCD的面积S=____. 11.在 中,∠A=90°,AB=AC=2,则 BC=________. 12.如阳,在矩形中,对角线、相交于点,点、分别是、的中点,若 cm,cm,则______ cm. 13.一次函数的图象过点(2,1),则的值为________. 14.如图,请你添加一个适当的条件___,使平行四边形ABCD成为菱形. 15.如图,在平面直角坐标系中,函数和的图象分别为直线,,过点作轴的垂线交于点,过点作轴的垂线交于点,过点作轴的垂线交于点,过点作轴的垂线交于点,…依次进行下去,则点的坐标为______. 16.如图,在三角形纸片ABC中,∠ACB=90°,BC=6,AB=10,如果在AC边上取一点E,以BE为折痕,使AB的一部分与BC重合,A与BC延长线上的点D重合,那么CE的长为________. 三、解答题 17.计算: (1) (2) 18.一架云梯长25m,如图那样斜靠在一面墙上,云梯顶端离地面24m. (1)这架云梯的底端距墙角有多远? (2)如果云梯的顶端下滑了4m,那么它的底部在水平方向滑动了多少m? 19.在△ABC中,AB,BC,AC三边的长分别为,求这个三角形的面积,小辉同学在解答这道题时,先建立一个正方形网格(每个小正方形的边长为1),再在网格中画出格点△ABC(即三个顶点都在小正方形的顶点处,如图1所示,这样不需要求△ABC的高,而借用网格就能计算出它的面积.) (1)请将△ABC的面积直接填写在横线上 . (2)我们把上述求△ABC面积的方法叫做构图法,若△ABC三边的长分别为,2(a>0),请在图②中给出的正方形网格内(每个小正方形的边长为a)画出相应的△ABC(其中一条边已经画好),并求出它的面积. 20.在矩形中,,,对角线、交于点,一直线过点分别交、于点、,且,求证:四边形为菱形. 21.阅读下列材料,然后回答问题: 在进行二次根式的化简与运算时,有时会碰上如,这样的式子其实我们还可以进一步化简.例如:,这种化简的步骤叫做分母有理化. (1)请参照上述方法化简: (2)猜想: (用含n的式子表示) (3)化简: 22.某学校欲购置一批标价为4800元的某种型号电脑,需求数量在6至15台之间.经与两个专卖店商谈,优惠方法如下: 甲店:购买电脑打八折; 乙店:先赠一台电脑,其余电脑打九折优惠. 设学校欲购置x台电脑,甲店购买费用为y甲(元),乙店购买费用为y乙(元). (1)分别写出购买费用y甲、y乙与所购电脑x(台)之间的函数关系式; (2)对x的取值情况进行分析,说明这所学校购买哪家电脑更合算? 23.将两张宽度相等的纸片叠放在一起,得到如图的四边形. (1)求证:四边形是菱形; (2)如图,联结,过点A、D分别作的垂线、,垂足分别为点F、E. ①设M为中点,联结、,求证:; ②如果,P是线段上一点(不与点A、C重合),当为等腰三角形时,求的值. 24.直线:交x轴于A,交y轴于B. (1)求的长; (2)如图1,直线关于y轴对称的直线交x轴于点C,直线:经过点C,点D、T分别在直线、上.若以A、B、D、T为顶点的四边形是平行四边形,求点D的坐标; (3)如图2,平行y轴的直线交x轴于点E,将直线向上平移5个单位长度后交x轴于M,交y轴于N,交直线于点P.点在四边形内部,直线交于G,直线交于H,求的值. 25.如图,已知平面直角坐标系中,、,现将线段绕点顺时针旋转得到点,连接. (1)求出直线的解析式; (2)若动点从点出发,沿线段以每分钟个单位的速度运动,过作交轴于,连接.设运动时间为分钟,当四边形为平行四边形时,求的值. (3)为直线上一点,在坐标平面内是否存在一点,使得以、、、为顶点的四边形为菱形,若存在,求出此时的坐标;若不存在,请说明理由. 26.在正方形ABCD中,AB=4,点E是边AD上一动点,以CE为边,在CE的右侧作正方形CEFG,连结BF. (1)如图1,当点E与点A重合时,则BF的长为 . (2)如图2,当AE=1时,求点F到AD的距离和BF的长. (3)当BF最短时,请直接写出此时AE的长. 【参考答案】 一、选择题 1.A 解析:A 【分析】 根据二次根式有意义的条件求解即可. 【详解】 且 解得 或 或(舍) 故选A 【点睛】 本题考查了二次根式有意义的条件,以及与0相乘的数等于0,掌握二次根式有意义的条件是解题的关键. 2.D 解析:D 【分析】 根据三角形内角和定理和勾股定理的逆定理判定是否为直角三角形. 【详解】 A、设三个内角的度数为,,根据三角形内角和公式,求得,所以各角分别为30°,60°,90°,故此三角形是直角三角形; B、三边符合勾股定理的逆定理,所以是直角三角形; C、设三条边为,,,则有,符合勾股定理的逆定理,所以是直角三角形; D、设三个内角的度数为,,,根据三角形内角和公式,求得,所以各角分别为45°,60°,75°,所以此三角形不是直角三角形; 故选D. 【点睛】 本题考查了三角形内角和定理和勾股定理的逆定理的应用.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可. 3.D 解析:D 【解析】 【分析】 根据平行四边形的判定判断即可. 【详解】 解:、两组对边分别平行的四边形是平行四边形,是真命题,不符合题意; 、两组对边分别相等的四边形是平行四边形,是真命题,不符合题意; 、两组对角分别相等的四边形是平行四边形,是真命题,不符合题意; 、对角线互相平分的四边形是平行四边形,原命题是假命题,符合题意; 故选:D. 【点睛】 本题考查的是平行四边形的判定定理,解题关键是熟练运用平行四边形的判定定理. 4.B 解析:B 【解析】 【分析】 在平均数相同的情况下,方差越小,则数据的波动程度越小,成绩更稳定,据此可作出判断. 【详解】 两人的平均数相同,但乙的方差小于甲的方差,则乙的成绩较为稳定. 故选:B. 【点睛】 本题考查了反映数据波动程度的统计量-方差,方差越小,数据的波动程度越小,掌握方差这一特点是解题的关键. 5.C 解析:C 【分析】 连接AC,则直线AC即为BD的垂直平分线,点A与点C关于直线BD对称,连CM交BD于点N,则此时AN+MN的值最小,连接AN,根据垂直平分线的性质 可得AN=CN,从而得出AN+MN=CN+MN=CM,再根据勾股定理得出CM的长即可解决问题. 【详解】 解:在正方形ABCD中连接AC,则点A与点C是关于直线BD为对称轴的对称点, ∴连接MC交BD于点N,则此时AN+MN的值最小, 连接AN, ∵直线AC即为BD的垂直平分线, ∴AN=NC ∴AN+MN=CN+MN=CM, ∵四边形ABCD为正方形,AM=1 ∴BC=4,BM=4-1=3,∠CBM=90°, ∴, ∴AN+MN的最小值是5. 故选:C. 【点睛】 本题考查了轴对称-最短路线问题,正方形的性质,勾股定理等知识点,此题的难点在于利用轴对称的方法确定满足条件的点N的位置. 6.C 解析:C 【解析】 【分析】 由菱形的性质可得AB=AD,∠B=∠D,∠C=∠BAD,由“SAS”可证△ABE≌△ADF,可得∠DAF=∠BAE,由等腰三角形的性质和三角形内角和定理可求∠BAE=10°,即可求解. 【详解】 解:∵四边形ABCD是菱形, ∴AB=AD,∠B=∠D,∠C=∠BAD, 在△ABE和△ADF中, ∵, ∴△ABE≌△ADF(SAS), ∴∠DAF=∠BAE, 设∠BAE=∠DAF=x, ∴∠DAE=75°+x, ∵AD∥BC, ∴∠AEB=75°+x, ∵AB=AE, ∴∠B=∠AEB=75°+x, ∵∠BAE+∠ABE+∠AEB=180°, ∴x+75°+x+75°+x=180°, ∴x=10°, ∴∠BAD=95°, ∴∠C=95°, 故选:C. 【点睛】 本题考查了菱形的性质,等腰三角形的性质,全等三角形的判定和性质,证明△ABE≌△ADF是解题的关键. 7.B 解析:B 【解析】 【分析】 如图,首先证明EF=10,继而得到DE=14;再证明DE为△ABC的中位线,即可解决问题. 【详解】 解:∵∠AFC=90°,AE=CE,AC=20, ∴EF=AC=10, 又DF=4, ∴DE=4+10=14; ∵D,E分别是AB,AC的中点, ∴DE为△ABC的中位线, ∴BC=2DE=28, 故选:B. 【点睛】 本题主要考查了三角形的中位线定理、直角三角形的性质等几何知识点及其应用问题;牢固掌握三角形的中位线定理、直角三角形的性质等几何知识点是解题的基础和关键. 8.D 解析:D 【分析】 ①根据题意得:动点P在GC上运动的时间是2秒,又由动点的速度,可得GC和BC的长; ②由(1)可得BC的长,又由AB=6cm,可以计算出△ABP的面积,计算可得y的值; ③动点P在DC上运动的时间是2秒,又由动点的速度,可得CD的长; ④根据图2中的N点表示第12秒时,表示点P到达H点,即可得出△ABP的面积; 【详解】 解:①根据函数图象可以知:从0到2,y随x的增大而增大,经过了2秒,P运动了4cm,因而CG=4cm,BC=8cm; ②第4秒时P到达D点.P在CD段时,底边AB不变,高不变,因而面积不变,面积y=×6×8=24cm2; ③第4秒时P到达D点.由图象可知CD=22=4cm ④图2中的N点表示第12秒时,表示点P到达H点.AF=BC+DE=8+23=14,所以AH=AF-FH=14-24=6.△ABP的面积=66=18cm2. 则四个结论正确; 故选D 【点睛】 此题考查了动点问题的函数图象,要能根据函数图象的性质和图象上的数据分析得出函数的类型和所需要的条件,结合实际意义得到正确的结论. 二、填空题 9. 【解析】 【分析】 根据二次根式被开放数为非负数,分式的分母不为零求解即可. 【详解】 解:∵二次根式有意义, ∴2-x>0,解得:x<2. 故答案为:x<2. 【点睛】 本题考查了二次根式有意义的条件,熟练掌握二次根式被开放数为非负数是解题的关键. 10.A 解析: 1:2 4 【解析】 【分析】 根据菱形性质得出AC⊥BD,AB=BC=CD=AD=,AC=2AO=2CO,BD=2BO=2DO,即可求出AO:BO,根据勾股定理得出方程,求出x的值,求出AC、BD,根据菱形面积公式求出即可. 【详解】 解:∵四边形ABCD是菱形, ∴AC⊥BD,AB=BC=CD=AD=,AC=2AO=2CO,BD=2BO=2DO, ∵AC:BD=1:2, ∴AO:BO=AC:(BD)=AC:BD=1:2; 设AO=x,则BO=2x, 在Rt△AOB中,由勾股定理得:x2+(2x)2=()2, 解得:x=1(负数舍去), 即AO=1,BO=2, ∴AC=2,BD=4, ∴菱形ABCD的面积是S=×AC×BD=×2×4=4, 故答案为:1:2,4. 【点睛】 本题考查了菱形的性质的应用,主要考查学生运用性质进行推理和计算的能力,注意:菱形的对角线互相垂直平分,菱形的四条边相等和菱形的面积为两对角线乘积的一半. 11. 【解析】 【分析】 直接利用勾股定理即可得. 【详解】 在 中,, 故答案为:. 【点睛】 本题考查了勾股定理,熟记勾股定理是解题关键. 12.B 解析:5 【分析】 先由勾股定理求出BD,再得出OD,证明EF是△AOD的中位线,即可得出结果. 【详解】 ∵四边形ABCD是矩形, ∴∠BAD=90°,OD=BD,AD=BC=8, ∴, ∴OD=5cm, ∵点E、F分别是AO、AD的中点, ∴EF是△AOD的中位线, ∴EF=OD=2.5cm; 故答案为2.5. 【点睛】 本题考查了矩形的性质、勾股定理以及三角形中位线定理;熟练掌握菱形的性质,证明三角形中位线是解决问题的关键. 13.-1 【分析】 一次函数y=kx+3的图象经过点(2,1),将其代入即可得到k的值. 【详解】 解:一次函数y=kx+3的图象经过点(2,1), 即当x=2时,y=1,可得:1=2k+3, 解得:k=﹣1. 故答案为:﹣1. 【点睛】 本题考查一次函数图像上点的坐标特征,要注意利用一次函数的特点以及已知条件列出方程,求出未知数. 14. 【分析】 根据对角线互相垂直的平行四边形是菱形解题. 【详解】 解:由对角线互相垂直的平行四边形是菱形得,应添加条件: 故答案为:. 【点睛】 本题考查菱形的判定,是重要考点,掌握相关知识是解题关键. 15.【分析】 写出部分An点的坐标,根据坐标的变化找出变化规律(n为自然数),依此规律即可得出结论. 【详解】 在直线上,当x=1时,y=2, ∴点A1的坐标为 , ∴在直线上,当y=2时,x=-2, 解析: 【分析】 写出部分An点的坐标,根据坐标的变化找出变化规律(n为自然数),依此规律即可得出结论. 【详解】 在直线上,当x=1时,y=2, ∴点A1的坐标为 , ∴在直线上,当y=2时,x=-2, ∴点A2的坐标为, 同理可得: , , , , , , ∴(n为自然数), ∵ , ∴的坐标为, 故答案为:. 【点睛】 本题考查了一次函数图象上点的坐标特征以及规律型中坐标的变化,解题的关键是找出变化规律(n为自然数),解决该题型题目时,写出部分An点的坐标,根据坐标的变化找出变化规律是关键. 16.3 【分析】 利用勾股定理可求出AC=8,根据折叠的性质可得BD=AB,DE=AE,根据线段的和差关系可得CD的长,设CE=x,则DE=8-x,利用勾股定理列方程求出x的值即可得答案. 【详解】 ∵ 解析:3 【分析】 利用勾股定理可求出AC=8,根据折叠的性质可得BD=AB,DE=AE,根据线段的和差关系可得CD的长,设CE=x,则DE=8-x,利用勾股定理列方程求出x的值即可得答案. 【详解】 ∵∠ACB=90°,BC=6,AB=10, ∴AC===8, ∵BE为折痕,使AB的一部分与BC重合,A与BC延长线上的点D重合, ∴BD=AB=10,DE=AE,∠DCE=90°, ∴CD=BD-BC=10-6=4, 设CE=x,则DE=AE=AC-CE=8-x, ∴在Rt△DCE中,DE2=CE2+CD2,即(8-x)2=x2+42, 解得:x=3, ∴CE=3, 故答案为:3 【点睛】 本题考查了翻折变换的性质及勾股定理的应用,根据翻折前后的两个图形能够重合得到相等的线段并转化到一个直角三角形中,利用勾股定理列出方程是解此类题目的关键. 三、解答题 17.(1);(2)0 【分析】 (1)先化简二次根式和去绝对值,然后利用二次根式的混合运算法则求解即可; (2)利用二次根式的四则运算法则求解即可. 【详解】 (1)原式, , ; (2)原式, , . 解析:(1);(2)0 【分析】 (1)先化简二次根式和去绝对值,然后利用二次根式的混合运算法则求解即可; (2)利用二次根式的四则运算法则求解即可. 【详解】 (1)原式, , ; (2)原式, , . 【点睛】 本题主要考查了二次根式的混合计算,解题的关键在于能够熟练掌握相关运算法则进行求解. 18.(1);(2) 【分析】 根据题意,画出图形, (1)在 中,直接根据勾股定理,即可求解; (2)设它的底部在水平方向滑动了 ,即 ,则 ,在 中,由勾股定理,即可求解. 【详解】 解:根据题意,画 解析:(1);(2) 【分析】 根据题意,画出图形, (1)在 中,直接根据勾股定理,即可求解; (2)设它的底部在水平方向滑动了 ,即 ,则 ,在 中,由勾股定理,即可求解. 【详解】 解:根据题意,画出图形,如下图: (1)根据题意得: , , 在 中,由勾股定理得: , 即这架云梯的底端距墙角 ; (2)设它的底部在水平方向滑动了 ,即 ,则 , 根据题意得: , ,则 , 在 中,由勾股定理得: , 即 , 解得: , 即它的底部在水平方向滑动了. 【点睛】 本题主要考查了勾股定理的应用,熟练掌握直角三角形两直角边的平方和等于斜边的平方是解题的关键. 19.(1);(2)画图见解析,3a2 【解析】 【分析】 (1)利用割补法求值; (2)已知边长AB=,再确定另两条边分别是以2a和2a为直角三角形的两直角边的斜边长及以a和2a为直角边的斜边长,即,连 解析:(1);(2)画图见解析,3a2 【解析】 【分析】 (1)利用割补法求值; (2)已知边长AB=,再确定另两条边分别是以2a和2a为直角三角形的两直角边的斜边长及以a和2a为直角边的斜边长,即,连接得到三角形求出面积即可. 【详解】 解:(1), 故答案为:; (2)如图, . 【点睛】 此题考查利用割补法求网格中图形的面积,网格中作图,正确掌握利用勾股定理求无理数长度的线段并画图是解题的关键. 20.见解析 【分析】 根据矩形的性质,可证得,从而得到四边形为平行四边形,再由勾股定理,可得到,即可求证. 【详解】 证明:∵矩形, ∴,, ∴, 在和中, , ∴, ∴, 又∵, ∴四边形为平行四边形 解析:见解析 【分析】 根据矩形的性质,可证得,从而得到四边形为平行四边形,再由勾股定理,可得到,即可求证. 【详解】 证明:∵矩形, ∴,, ∴, 在和中, , ∴, ∴, 又∵, ∴四边形为平行四边形, ∵矩形, ∴,, 又∵,,, ∴, , ∴, ∴四边形为菱形. 【点睛】 本题主要考查了矩形的性质,菱形的判定,勾股定理,熟练掌握矩形的性质定理,菱形的判定定理是解题的关键. 21.(1);(2);(3) 【解析】 【分析】 (1)根据材料运用方法进行分母有理化即可; (2)根据题意总结规律即可; (3)先分母有理化,再根据式子的规律即可求解. 【详解】 解:(1) = =; 解析:(1);(2);(3) 【解析】 【分析】 (1)根据材料运用方法进行分母有理化即可; (2)根据题意总结规律即可; (3)先分母有理化,再根据式子的规律即可求解. 【详解】 解:(1) = =; (2) = = 故答案为:; (3) = = = 【点睛】 本题主要考查了分母有理化,解题的关键是根据材料能正确的进行分母有理化. 22.(1),y甲=3840x(6≤x≤15);y乙=4320x﹣4320(6≤x≤15);(2)当购买9台电脑时,到两家商店购买费用相同;当10≤x≤15时,到甲商店更合算;当6≤x≤8时,到乙商店更合 解析:(1),y甲=3840x(6≤x≤15);y乙=4320x﹣4320(6≤x≤15);(2)当购买9台电脑时,到两家商店购买费用相同;当10≤x≤15时,到甲商店更合算;当6≤x≤8时,到乙商店更合算 【分析】 (1)根据两家电脑商的优惠方法可得y甲(元),乙店购买费用为y乙(元); (2)根据(1)的结论列方程或不等式解答即可. 【详解】 解:(1)由题意可得:y甲=4800×0.8x=3840x(6≤x≤15); y乙=4800×0.9(x﹣1)=4320x﹣4320(6≤x≤15); (2)当3840x=4320x﹣4320时, 解得x=9, 即当购买9台电脑时,到两家商店购买费用相同; 当3840x<4320x﹣4320时, 解得x>9, 即当10≤x≤15时,到甲商店更合算; 当3840x>4320x﹣4320时, 解得x<9, 即当6≤x≤8时,到乙商店更合算. 【点睛】 本题考查了一次函数的应用,读懂题目信息,理解两家电脑商的优惠方法并表示出y甲、y乙与所购电脑x(台)之间的函数关系式是解题的关键. 23.(1)见解析;(2)①见解析;②或 【分析】 (1)首先可判断重叠部分为平行四边形,且两条纸条宽度相同;再由平行四边形的面积可得邻边相等,则重叠部分为菱形. (2)①过点作于,连接,由,可得,再证明 解析:(1)见解析;(2)①见解析;②或 【分析】 (1)首先可判断重叠部分为平行四边形,且两条纸条宽度相同;再由平行四边形的面积可得邻边相等,则重叠部分为菱形. (2)①过点作于,连接,由,可得,再证明,利用三角形内角和定理即可得出答案; ②设,则,设,则,根据勾股定理可得,即,从而得出,即可得到,根据是线段上一点(不与点、重合),不存在,可得出当为等腰三角形时,仅有两种情形:或,分类讨论即可求得答案. 【详解】 解:(1)如图1,过点作于,于, 两条纸条宽度相同, . ,, 四边形是平行四边形. . , 四边形是菱形; (2)①如图2,过点作于,连接, 则, 四边形是菱形, 与互相垂直平分, 经过点, , ,, , , , , , 在和中, , , , , ,,, , , , , , , , , , , ; ②, 设,则, 设,则, , , , , , , , , 即, , , 是线段上一点(不与点、重合), 不存在, 当为等腰三角形时,仅有两种情形:或, Ⅰ.当时,则,如图3, ,, , , , , ; Ⅱ.当时,如图4,过点作于点, 在中,, , , , ; 综上所述,当为等腰三角形时,的值为或. 【点睛】 本题是四边形综合题,考查了平行四边形的判定与性质,菱形的判定与性质,全等三角形判定和性质,三角形面积公式,菱形面积,等腰三角形性质,勾股定理等,运用分类讨论思想和方程思想思考解决问题是解题关键. 24.(1);(2)点D的坐标为或或;(3). 【解析】 【分析】 (1)根据直线的解析式求出其与x轴的交点A和与y轴的交点B的坐标,进而求出OA与OB的长度,再使用勾股定理即可求出AB的长度; (2)根 解析:(1);(2)点D的坐标为或或;(3). 【解析】 【分析】 (1)根据直线的解析式求出其与x轴的交点A和与y轴的交点B的坐标,进而求出OA与OB的长度,再使用勾股定理即可求出AB的长度; (2)根据直线和直线关于y轴对称求出直线的解析式,再求出直线的解析式,根据点D在直线上,可设点,然后分类讨论点D是在线段BC上,还是在线段BC的延长线上,或者在线段CB的延长线上,在每一种情况下结合平行四边形的性质和平移的性质,可用含有m的式子表示点T的坐标,再根据点T在直线上求出m的值,即可求出点D的坐标; (3)根据平移的性质求出直线MN的解析式,再结合直线x=2求出点,点和点,进而求出ME的长度,然后再结合点求出直线和直线,进而求出点和,即可得到GE与HE的长度,最后再代入计算即可. 【详解】 解:(1)∵直线交x轴于A,交y轴于B, ∴,. ∴,. ∴,. ∴,. ∴,. ∵, ∴. (2)∵直线关于y轴对称的直线交x轴于点C,直线交x轴与点, ∴点A与点C关于y轴对称. ∴. ∵点在y轴上, ∴直线经过点B. ∴设直线. ∵直线经过点, ∴. 解得:. ∴直线. ∵直线经过点, ∴. 解得:. ∴直线. ∵点D在直线上, ∴设点. ①如下图所示,当点D在线段上时. ∵四边形ABDT是平行四边形, ∴. ∴BD经过平移之后到达AT. ∴. ∵点T在直线上, ∴,解得. ∴; ②如下图所示,当点D在线段的延长线上时. ∵四边形ABTD是平行四边形, ∴. ∴AD经过平移之后到达BT. ∴. ∵点T在直线上, ∴,解得. ∴; ③如下图所示,当点D在线段的延长线上时. ∵四边形ADBT是平行四边形, ∴. ∴BD经过平移之后到达TA. ∴. ∵点T在直线上, ∴,解得. ∴. 综上所述,点D的坐标为或或. (3)直线向上平移5个单位长度得到的直线解析式为. ∵直线x=2与x轴交于点E,与直线MN交于点P,直线MN交x轴于点M, ∴,,. ∴,. ∴,. ∴,. ∴, 设直线的解析式为, ∵直线PF经过点与, ∴解得 ∴直线的解析式为. ∵直线PF与x轴交于点G, ∴. ∴. 解得:. ∴. ∴. 设直线OF的解析式为y=cx, ∵直线OF经过点, ∴. 解得:. ∴直线的解析式为. ∵直线OF与直线交于点H. ∴. ∴. ∴. ∴. ∴. 【点睛】 本题考查了一次函数的综合应用,涉及坐标与长度的关系,勾股定理,轴对称和平移的性质,平行四边形的性质和判定定理,代数式求值,应用一次函数的性质正确求出点的坐标是解题关键. 25.(1);(2)t=s时,四边形ABMN是平行四边形;(3)存在,点Q坐标为:或或或. 【分析】 (1)如图1中,作BH⊥x轴于H.证明△COA≌△AHB(AAS),可得BH=OA=1,AH=OC=2 解析:(1);(2)t=s时,四边形ABMN是平行四边形;(3)存在,点Q坐标为:或或或. 【分析】 (1)如图1中,作BH⊥x轴于H.证明△COA≌△AHB(AAS),可得BH=OA=1,AH=OC=2,求出点B坐标,再利用待定系数法即可解决问题. (2)利用平行四边形的性质求出点N的坐标,再求出AN,BM,CM即可解决问题. (3)如图3中,当OB为菱形的边时,可得菱形OBQP,菱形OBP1Q1.菱形OBP3Q3,当OB为菱形的对角线时,可得菱形OP2BQ2,点Q2在线段OB的垂直平分线上,分别求解即可解决问题. 【详解】 (1)如图1中,作BH⊥x轴于H. ∵A(1,0)、C(0,2), ∴OA=1,OC=2, ∵∠COA=∠CAB=∠AHB=90°, ∴∠ACO+∠OAC=90°,∠CAO+∠BAH=90°, ∴∠ACO=∠BAH, ∵AC=AB, ∴△COA≌△AHB(AAS), ∴BH=OA=1,AH=OC=2, ∴OH=3, ∴B(3,1), 设直线BC的解析式为y=kx+b,则有, 解得:, ∴; (2)如图2中, ∵四边形ABMN是平行四边形, ∴AN∥BM, ∴直线AN的解析式为:, ∴, ∴, ∵B(3,1),C(0,2), ∴BC=, ∴, ∴, ∴t=s时,四边形ABMN是平行四边形; (3)如图3中, 如图3中,当OB为菱形的边时,可得菱形OBQP,菱形OBP1Q1.菱形OBP3Q3, 连接OQ交BC于E, ∵OE⊥BC, ∴直线OE的解析式为y=3x, 由,解得:, ∴E(,), ∵OE=OQ, ∴Q(,), ∵OQ1∥BC, ∴直线OQ1的解析式为y=-x, ∵OQ1=OB=,设Q1(m,-), ∴m2+m2=10, ∴m=±3, 可得Q1(3,-1),Q3(-3,1), 当OB为菱形的对角线时,可得菱形OP2BQ2,点Q2在线段OB的垂直平分线上, 易知线段OB的垂直平分线的解析式为y=-3x+5, 由,解得:, ∴Q2(,). 综上所述,满足条件的点Q坐标为:或或或. 【点睛】 本题属于一次函数综合题,考查了平行四边形的判定和性质,菱形的判定和性质,一次函数的性质等知识,解题的关键是灵活运用所学知识解决问题,学会用分类讨论的思想思考问题,属于中考压轴题. 26.(1);(2)点F到AD的距离为3,BF=;(3)2 【分析】 (1)连接DF,证明△ADF≌△CDA,得出CDF共线,然后用勾股定理即可; (2)过点F作FH⊥AD交AD的延长线于点H,FH⊥BC 解析:(1);(2)点F到AD的距离为3,BF=;(3)2 【分析】 (1)连接DF,证明△ADF≌△CDA,得出CDF共线,然后用勾股定理即可; (2)过点F作FH⊥AD交AD的延长线于点H,FH⊥BC交BC的延长线于K,证明△EHF≌△CDE,再用勾股定理即可; (3)当B,D,F共线时,此时BF取最小值,求出此时AE的值即可. 【详解】 解:(1)如图,连接DF, ∵∠CAF=90°,∠CAD=45°, ∴∠DAF=45°, 在△CAD和△FAD中, , ∴△CAD≌△FAD(SAS), ∴DF=CD, ∴∠ADC=∠ADF=90°, ∴C,D,F共线, ∴BF2=BC2+CF2=42+82=80, ∴BF=, 故答案为:; (2)如图,过点F作FH⊥AD交AD的延长线于点H,FH⊥BC交BC的延长线于K, ∵四边形CEFG是正方形,∴EC=EF,∠FEC=90°, ∴∠DEC+∠FEH=90°, 又∵四边形ABCD是正方形, ∴∠ADC=90°, ∴∠DEC+∠ECD=90°, ∴∠ECD=∠FEH, 又∵∠EDC=∠FHE=90°, 在△ECD和△FEH中, , ∴△ECD≌△FEH(AAS), ∴FH=ED, ∵AD=4,AE=1, ∴ED=AD-AE=4-1=3, ∴FH=3,即点F到AD的距离为3, ∴∠DHK=∠HDC=∠DCK=90°, ∴四边形CDHK为矩形, ∴HK=CD=4, ∴FK=FH+HK=3+4=7, ∵△ECD≌△FEH, ∴EH=CD=AD=4, ∴AE=DH=CK=1, ∴BK=BC+CK=4+1=5, 在Rt△BFK中,BF=; (3)∵当A,D,F三点共线时,BF的最短, ∴∠CBF=45°, ∴FH=DH, 由(2)知FH=DE,EH=CD=4, ∴ED=DH=4÷2=2, ∴AE=2. 【点睛】 本题主要考查正方形的性质和全等三角形的判定,关键是要作辅助线构造全等的三角形,在正方形和三角形中辅助线一般是垂线段,要牢记正方形的两个性质,即四边相等,四个内角都是90°.- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 人教版 八年 级数 下册 期末试卷 同步 检测 Word 答案
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【精***】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【精***】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【精***】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【精***】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文