初二数学上学期压轴题检测试题附解析(一).doc
《初二数学上学期压轴题检测试题附解析(一).doc》由会员分享,可在线阅读,更多相关《初二数学上学期压轴题检测试题附解析(一).doc(22页珍藏版)》请在咨信网上搜索。
初二数学上学期压轴题检测试题附解析(一) 1.已知:AD为△ABC的中线,分别以AB和AC为一边在△ABC的外部作等腰三角形ABE和等腰三角形ACF,且AE=AB,AF=AC,连接EF,∠EAF+∠BAC=180°. (1)如图1,若∠ABE=65°,∠ACF=75°,求∠BAC的度数. (2)如图1,求证:EF=2AD. (3)如图2,设EF交AB于点G,交AC于点R,FC与EB交于点M,若点G为EF中点,且∠BAE=60°,请探究∠GAF和∠CAF的数量关系,并证明你的结论. 2.如图1,在平面直角坐标系中,直线AB分别交y轴、x轴于点A(0,a),点B(b,0),且a、b满足a2-4a+4+=0. (1)求a,b的值; (2)以AB为边作Rt△ABC,点C在直线AB的右侧,且∠ACB=45°,求点C的坐标; (3)若(2)的点C在第四象限(如图2),AC与 x轴交于点D,BC与y轴交于点E,连接 DE,过点C作CF⊥BC交x轴于点F. ①求证:CF=BC; ②直接写出点C到DE的距离. 3.(1)如图1,已知:在ABC中,∠BAC=90°,AB=AC,直线m经过点A,BD⊥直线m,CE⊥直线m,垂足分别为点D、E. 证明:DE=BD+CE.(提示:由于DE=AD+AE,证明AD=CE,AE=BD即可) (2)如图2,将(1)中的条件改为:在ABC中,AB=AC,D、A、E三点都在直线m上,并且有∠BDA=∠AEC=∠BAC=,其中为任意钝角,请问结论DE=BD+CE是否成立?如成立,请你给出证明;若不成立,请说明理由. (3)如图3,D、E是D、A、E三点所在直线m上的两动点(D、A、E三点互不重合),点F为∠BAC平分线上的一点,且ABF和ACF均为等边三角形,连接BD、CE,若∠BDA=∠AEC=∠BAC,试证明DEF是等边三角形. 4.如图,是等边三角形,点在上,点在的延长线上,且. (1)如图甲,若点是的中点,求证: (2)如图乙,若点不的中点,是否成立?证明你的结论. (3)如图丙,若点在线段的延长线上,试判断与的大小关系,并说明理由. 5.在平面直角坐标系中,直线AB分别交x轴,y轴于A(a,0),B(0,b),且满足a2+b2+4a﹣8b+20=0. (1)求a,b的值; (2)点P在直线AB的右侧;且∠APB=45°, ①若点P在x轴上(图1),则点P的坐标为 ; ②若△ABP为直角三角形,求P点的坐标. 6.等腰Rt△ABC中,∠BAC=90°,AB=AC,点A、点B分别是y轴、x轴上两个动点,直角边AC交x轴于点D,斜边BC交y轴于点E. (1)如图(1),已知C点的横坐标为-1,直接写出点A的坐标; (2)如图(2),当等腰Rt△ABC运动到使点D恰为AC中点时,连接DE.求证:∠ADB=∠CDE; (3)如图(3),若点A在x轴上,且A(-4,0),点B在y轴的正半轴上运动时,分别以OB、AB为直角边在第一、二象限作等腰直角△BOD和等腰直角△ABC,连结CD交,轴于点P,问当点B在y轴的正半轴上运动时,BP的长度是否变化?若变化请说明理由,若不变化,请求出BP的长度. 7.如图1已知点A,B分别在坐标轴上,点C(3,﹣3),CA⊥BA于点A,且BA=CA,CA,CB分别交坐标轴于D,E. (1)填空:点B的坐标是 ; (2)如图2,连接DE,过点C作CH⊥CA于C,交x轴于点H,求证:∠ADB=∠CDE; (3)如图3,点F(6,0),点P在第一象限,连PF,过P作PM⊥PF交y轴于点M,在PM上截取PN=PF,连PO,过P作∠OPG=45°交BN于G.求证:点G是BN中点. 8.如图1,在平面直角坐标系中,点在x轴负半轴上,点B在y轴正半轴上,设,且. (1)直接写出的度数. (2)如图2,点D为AB的中点,点P为y轴负半轴上一点,以AP为边作等边三角形APQ,连接DQ并延长交x轴于点M,若,求点M的坐标. (3)如图3,点C与点A关于y轴对称,点E为OC的中点,连接BE,过点B作,且,连接AF交BC于点P,求的值. 【参考答案】 2.(1)∠BAC=50° (2)见解析 (3)∠GAF﹣∠CAF=60°,理由见解析 【分析】(1)利用三角形的内角和定理求出∠EAB,∠CAF,再根据∠EAF+∠BAC=180°构建方程即可解 解析:(1)∠BAC=50° (2)见解析 (3)∠GAF﹣∠CAF=60°,理由见解析 【分析】(1)利用三角形的内角和定理求出∠EAB,∠CAF,再根据∠EAF+∠BAC=180°构建方程即可解决问题; (2)延长AD至H,使DH=AD,连接BH,想办法证明△ABH≌△EAF即可解决问题; (3)结论:∠GAF﹣∠CAF=60°.想办法证明△ACD≌△FAG,推出∠ACD=∠FAG,再证明∠BCF=150°即可. (1) 解:∵AE=AB, ∴∠AEB=∠ABE=65°, ∴∠EAB=50°, ∵AC=AF, ∴∠ACF=∠AFC=75°, ∴∠CAF=30°, ∵∠EAF+∠BAC=180°, ∴∠EAB+2∠ABC+∠FAC=180°, ∴50°+2∠BAC+30°=180°, ∴∠BAC=50°. (2) 证明:证明:如图,延长AD至点H,使DH=AD,连接BH ∵AD是△ABC的中线, ∴BD=DC, 又∵DH=AD,∠BDH=∠ADC ∴△ADC≌△HDB(SAS), ∴BH=AC,∠BHD=∠DAC, ∴BH=AF, ∵∠BHD=∠DAC, ∴BH∥AC, ∴∠BAC+∠ABH=180°, 又∵∠EAF+∠BAC=180°, ∴∠ABH=∠EAF, 又∵AB=AE,BH=AF, ∴△AEF≌△BAH(SAS), ∴EF=AH=2AD, ∴EF=2AD; (3) 结论:∠GAF﹣∠CAF=60°. 理由:由(2)得,AD=EF,又点G为EF中点, ∴EG=AD, 由(2)△AEF≌△BAH, ∴∠AEG=∠BAD, 在△EAG和△ABD中, , ∴△EAG≌△ABD, ∴∠EAG=∠ABC=60°,AG=BD, ∴△AEB是等边三角形,AG=CD, ∴∠ABE=60°, ∴∠CBM=60°, 在△ACD和△FAG中, , ∴△ACD≌△FAG, ∴∠ACD=∠FAG, ∵AC=AF, ∴∠ACF=∠AFC, 在四边形ABCF中,∠ABC+∠BCF+∠CFA+∠BAF=360°, ∴60°+2∠BCF=360°, ∴∠BCF=150°, ∴∠BCA+∠ACF=150°, ∴∠GAF+(180°﹣∠CAF)=150°, ∴∠GAF﹣∠CAF=60°. 【点睛】本题考查三角形综合题、全等三角形的判定和性质、等腰三角形的性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考压轴题. 3.(1)a=2,b=-1;(2)满足条件的点C(2,1)或(1,-1);(3)①证明见解析;②1. 【分析】(1)可得(a−2)2+=0,由非负数的性质可得出答案; (2)分两种情况:∠BAC=9 解析:(1)a=2,b=-1;(2)满足条件的点C(2,1)或(1,-1);(3)①证明见解析;②1. 【分析】(1)可得(a−2)2+=0,由非负数的性质可得出答案; (2)分两种情况:∠BAC=90°或∠ABC=90°,根据等腰直角三角形的性质及全等三角形的性质可求出点C的坐标; (3)①如图3,过点C作CL⊥y轴于点L,则CL=1=BO,根据AAS可证明△BOE≌△CLE,得出BE=CE,根据ASA可证明△ABE≌△BCF,得出BE=CF,则结论得证; ②如图4,过点C作CK⊥ED于点K,过点C作CH⊥DF于点H,根据SAS可证明△CDE≌△CDF,可得∠BAE=∠CBF,由角平分线的性质可得CK=CH=1. 【详解】(1)∵a2−4a+4+=0, ∴(a−2)2+=0, ∵(a-2)2≥0,≥0, ∴a-2=0,2b+2=0, ∴a=2,b=-1; (2)由(1)知a=2,b=-1, ∴A(0,2),B(-1,0), ∴OA=2,OB=1, ∵△ABC是直角三角形,且∠ACB=45°, ∴只有∠BAC=90°或∠ABC=90°, Ⅰ、当∠BAC=90°时,如图1, ∵∠ACB=∠ABC=45°, ∴AB=CB, 过点C作CG⊥OA于G, ∴∠CAG+∠ACG=90°, ∵∠BAO+∠CAG=90°, ∴∠BAO=∠ACG, 在△AOB和△BCP中, , ∴△AOB≌△CGA(AAS), ∴CG=OA=2,AG=OB=1, ∴OG=OA-AG=1, ∴C(2,1), Ⅱ、当∠ABC=90°时,如图2, 同Ⅰ的方法得,C(1,-1); 即:满足条件的点C(2,1)或(1,-1) (3)①如图3,由(2)知点C(1,-1), 过点C作CL⊥y轴于点L,则CL=1=BO, 在△BOE和△CLE中, , ∴△BOE≌△CLE(AAS), ∴BE=CE, ∵∠ABC=90°, ∴∠BAO+∠BEA=90°, ∵∠BOE=90°, ∴∠CBF+∠BEA=90°, ∴∠BAE=∠CBF, 在△ABE和△BCF中, , ∴△ABE≌△BCF(ASA), ∴BE=CF, ∴CF=BC; ②点C到DE的距离为1. 如图4,过点C作CK⊥ED于点K,过点C作CH⊥DF于点H, 由①知BE=CF, ∵BE=BC, ∴CE=CF, ∵∠ACB=45°,∠BCF=90°, ∴∠ECD=∠DCF, ∵DC=DC, ∴△CDE≌△CDF(SAS), ∴∠BAE=∠CBF, ∴CK=CH=1. 【点睛】此题考查三角形综合题,非负数的性质,等腰直角三角形的判定和性质,全等三角形的判定和性质,坐标与图形的性质,等腰三角形的性质,点到直线的距离,角平分线的性质,解题的关键是学会添加常用辅助线,构造全等三角形解决问题. 4.(1)见解析;(2)成立,见解析;(3)见解析 【分析】(1)运用AAS证明△ADB≌△CEA即可; (2)运用AAS证明△ADB≌△CEA即可; (3)运用SAS证明△DBF≌△EAF,后运 解析:(1)见解析;(2)成立,见解析;(3)见解析 【分析】(1)运用AAS证明△ADB≌△CEA即可; (2)运用AAS证明△ADB≌△CEA即可; (3)运用SAS证明△DBF≌△EAF,后运用有一个角是60°的等腰三角形是等边三角形证明即可. 【详解】(1)如图1,∵BD⊥直线m,CE⊥直线m, ∴∠BDA=∠CEA=90°, ∵∠BAC=90°, ∴∠BAD+∠CAE=90° ∵∠BAD+∠ABD=90°, ∴∠CAE=∠ABD, 在△ADB和△CEA中,, ∴△ADB≌△CEA(AAS), ∴AE=BD,AD=CE, ∴DE=AE+AD=BD+CE; (2)如图2, ∵∠BDA=∠BAC=α, ∴∠DBA+∠BAD=∠BAD+∠CAE=, ∴∠DBA=∠CAE, 在△ADB和△CEA中,, ∴△ADB≌△CEA(AAS), ∴AE=BD,AD=CE, ∴DE=AE+AD=BD+CE; (3)如图3, 由(2)可知,△ADB≌△CEA, ∴BD=AE,∠DBA=∠CAE, ∵△ABF和△ACF均为等边三角形, ∴∠ABF=∠CAF=60°,BF=AF, ∴∠DBA+∠ABF=∠CAE+∠CAF, ∴∠DBF=∠FAE, ∵在△DBF和△EAF中, , ∴△DBF≌△EAF(SAS), ∴DF=EF,∠BFD=∠AFE, ∴∠DFE=∠DFA+∠AFE=∠DFA+∠BFD=60°, ∴△DEF为等边三角形. 【点睛】本题考查了三角形全等的判定和性质,等边三角形的判定,熟练掌握三角形全等的判定是解题的关键. 5.(1)详见解析;(2)成立,理由详见解析;(3),证明详见解析. 【分析】(1)根据等边三角形三线合一的性质即可求得∠DBC的度数,根据BD=DE即可解题; (2)过D作DF∥BC,交AB于F, 解析:(1)详见解析;(2)成立,理由详见解析;(3),证明详见解析. 【分析】(1)根据等边三角形三线合一的性质即可求得∠DBC的度数,根据BD=DE即可解题; (2)过D作DF∥BC,交AB于F,证△BFD≌△DCE,推出DF=CE,证△ADF是等边三角形,推出AD=DF,即可得出答案. (3)如图3,过点D作DP∥BC,交AB的延长线于点P,证明△BPD≌△DCE,得到PD=CE,即可得到AD=CE. 【详解】证明:是等边三角形, 为中点, ,, ; (2)成立, 如图乙,过作,交于, 则是等边三角形, , , ,, 在和中 , 即 如图3,过点作,交的延长线于点, 是等边三角形,也是等边三角形, , , 在和中, 【点睛】本题考查了全等三角形的判定与性质,利用了等边三角形的判定与性质,全等三角形的判定与性质,解决本题的关键是作出辅助线,构建全等三角形. 6.(1)a=﹣2,b=4;(2)①(4,0);②P点坐标为(4,2),(2,﹣2). 【分析】(1)利用非负数的性质解决问题即可. (2)①根据等腰直角三角形的性质即可解决问题. ②分两种情形: 解析:(1)a=﹣2,b=4;(2)①(4,0);②P点坐标为(4,2),(2,﹣2). 【分析】(1)利用非负数的性质解决问题即可. (2)①根据等腰直角三角形的性质即可解决问题. ②分两种情形:如图2中,若∠ABP=90°,过点P作PC⊥OB,垂足为C.如图3中,若∠BAP=90°,过点P作PD⊥OA,垂足为D.分别利用全等三角形的性质解决问题即可. 【详解】(1)∵a2+4a+4+b2﹣8b+16=0 ∴(a+2)2+(b﹣4)2=0 ∴a=﹣2,b=4. (2)①如图1中, ∵∠APB=45°,∠POB=90°, ∴OP=OB=4, ∴P(4,0). 故答案为(4,0). ②∵a=﹣2,b=4 ∴OA=2OB=4 又∵△ABP为直角三角形,∠APB=45° ∴只有两种情况,∠ABP=90°或∠BAP=90° ①如图2中,若∠ABP=90°,过点P作PC⊥OB,垂足为C. ∴∠PCB=∠BOA=90°, 又∵∠APB=45°, ∴∠BAP=∠APB=45°, ∴BA=BP, 又∵∠ABO+∠OBP=∠OBP+∠BPC=90°, ∴∠ABO=∠BPC, ∴△ABO≌△BPC(AAS), ∴PC=OB=4,BC=OA=2, ∴OC=OB﹣BC=4﹣2=2, ∴P(4,2). ②如图3中,若∠BAP=90°,过点P作PD⊥OA,垂足为D. ∴∠PDA=∠AOB=90°, 又∵∠APB=45°, ∴∠ABP=∠APB=45°, ∴AP=AB, 又∵∠BAD+∠DAP=90°, ∠DPA+∠DAP=90°, ∴∠BAD=∠DPA, ∴△BAO≌△APP(AAS), ∴PD=OA=2,AD=OB=4, ∴OD=AD﹣0A=4﹣2=2, ∴P(2,﹣2). 综上述,P点坐标为(4,2),(2,﹣2). 【点睛】本题属于三角形综合题,考查了等腰直角三角形的判定和性质,全等三角形的判定和性质等知识,解题的关键是学会用分类讨论的思想思考问题,学会添加常用辅助线,构造全等三角形解决问题. 7.(1)A(0,1); (2)见解析; (3)不变,BP= 2. 【分析】(1)如图(1),过点C作CF⊥y轴于点F,构建全等三角形:△ACF≌△ABO(AAS),结合该全等三角形的对应边相等易 解析:(1)A(0,1); (2)见解析; (3)不变,BP= 2. 【分析】(1)如图(1),过点C作CF⊥y轴于点F,构建全等三角形:△ACF≌△ABO(AAS),结合该全等三角形的对应边相等易得OA的长度,由点A是y轴上一点可以推知点A的坐标; (2)过点C作CG⊥AC交y轴于点G,则△ACG≌△ABD(ASA),即得CG=AD=CD,∠ADB=∠G,由∠DCE=∠GCE=45°,可证△DCE≌△GCE(SAS)得∠CDE=∠G,从而得到结论; (3)BP的长度不变,理由如下:如图(3),过点C作CE⊥y轴于点E,构建全等三角形:△CBE≌△BAO(AAS),结合全等三角形的对应边相等推知:CE=BO,BE=AO=4.再结合已知条件和全等三角形的判定定理AAS得到:△CPE≌△DPB,故BP=EP=2. (1)如图(1),过点C作CF⊥y轴于点F,∵CF⊥y轴于点F,∴∠CFA=90°,∠ACF+∠CAF=90°,∵∠CAB=90°,∴∠CAF+∠BAO=90°,∴∠ACF=∠BAO,在△ACF和△ABO中,,∴△ACF≌△ABO(AAS),∴CF=OA=1,∴A(0,1); (2)如图2,过点C作CG⊥AC交y轴于点G,∵CG⊥AC,∴∠ACG=90°,∠CAG+∠AGC=90°,∵∠AOD=90°,∴∠ADO+∠DAO=90°,∴∠AGC=∠ADO,在△ACG和△ABD中,,∴△ACG≌△ABD(AAS),∴CG=AD=CD,∠ADB=∠G,∵∠ACB=45°,∠ACG=90°,∴∠DCE=∠GCE=45°,在△DCE和△GCE中,,∴△DCE≌△GCE(SAS),∴∠CDE=∠G,∴∠ADB=∠CDE; (3)BP的长度不变,理由如下:如图(3),过点C作CE⊥y轴于点E.∵∠ABC=90°,∴∠CBE+∠ABO=90°.∵∠BAO+∠ABO=90°,∴∠CBE=∠BAO.∵∠CEB=∠AOB=90°,AB=AC,∴△CBE≌△BAO(AAS),∴CE=BO,BE=AO=4.∵BD=BO,∴CE=BD.∵∠CEP=∠DBP=90°,∠CPE=∠DPB,∴△CPE≌△DPB(AAS),∴BP=EP=2. 【点睛】本题考查了三角形综合题.主要利用了全等三角形的性质定理与判定定理,解决本题的关键是作出辅助线,构建全等三角形. 8.(1)(0,6) (2)见解析 (3)见解析 【分析】(1)作CM⊥x轴于M,求出CM= CN= 2,证明△BAO≌△ACM,推出AO= CM= 2,OB=AM=4,即可得出答案; (2)在 解析:(1)(0,6) (2)见解析 (3)见解析 【分析】(1)作CM⊥x轴于M,求出CM= CN= 2,证明△BAO≌△ACM,推出AO= CM= 2,OB=AM=4,即可得出答案; (2)在BD上截取BF= AE,连AF,证△BAF≌△CAE,证△AFD≌△CED,即可得出答案; (3)作EO⊥OP交PG的延长线于E,连接EB、EN、PB,只要证明四边形ENPB是平行四边形就可以了. (1) 解:过点C作CG⊥x轴于G,如图所示: ∵C(3,﹣3), ∴CG=3,OG=3, ∵∠BOA=∠CGA=90°, ∴∠ABO+∠BAO=∠BAO+∠CAG=90°, ∴∠ABO=∠CAG, 又∵AB=AC, ∴△ABO≌△CAG(AAS), ∴AO=CG=3,OB=AG=AO+OG=6, ∴点B的坐标是(0,6). (2) 证明:如图,过点C作CG⊥x轴于G,CF⊥y轴于F,则CF∥AO. 同(1)得:△ABO≌△CAG(AAS), ∴AO=CG=3, ∵CF=3, ∴AO=CF, ∵CF∥AO ∴∠DAO=∠DCF,∠AOD=∠CFD, ∴△AOD≌△CFD(ASA), ∴AD=CD, ∵CA⊥BA,CH⊥CA, ∴∠BAD=∠ACH=90°, 又∵∠ABO=∠CAG,AB=AC, ∴△BAD≌△ACH(ASA), ∴AD=CH,∠ADB=∠AHC ∴CD=CH, ∵BA=CA, ∴△ABC是等腰直角三角形, ∴∠ACB=45°, ∴∠HCE=90°﹣∠ACB=45°, ∴∠DCE=∠HCE=45°, 又∵CE=CE, ∴△DCE≌△HCE(SAS), ∴∠CDE=∠CHE, ∴∠ADB=∠CDE. (3) 证明:过点O作OK⊥OP交PG延长线于K,连接BK、NF,过点P作PL⊥NF于L. 则△OPK是等腰直角三角形, ∴∠OKP=∠OPK=45°,OK=OP, ∵PN=PF, ∴△PNF是等腰直角三角形, ∴∠PFN=∠PNF=45°, ∵PL⊥NF, ∴∠FPL=45°, 则∠OPF=∠OPL+45°,∠GPN=∠OPL=45°﹣∠MPO, ∵∠KOB+∠BOP=∠FOP+∠BOP=90°, ∴∠KOB=∠FOP, 又∵OB=OF=6, ∴△OKB≌△OPF(SAS), ∴KB=PF=PN,∠OKB=45°+∠GKB=∠OPF=∠OPL+45°, ∴∠GKB=∠OPL=∠GPN, 又∵∠KGB=∠PGN, ∴△KBG≌△PNG(SAS), ∴BG=NG, 即点G为BN的中点. 【点睛】本题是三角形综合题目,考查了全等三角形的判定和性质、坐标与图形性质、等腰直角三角形的判定与性质、平行线的判定与性质、直角三角形的性质等知识,本题综合性强,有一定难度,证明三角形全等是解题的关键,属于中考常考题型. 9.(1);(2);(3). 【分析】(1)根据坐标系写出的坐标,进而根据,因式分解可得,进而可得,在x轴的正半轴上取点C,使,连接BC,证明是等边三角形,进而即可求得; (2)连接BM,,进而证明 解析:(1);(2);(3). 【分析】(1)根据坐标系写出的坐标,进而根据,因式分解可得,进而可得,在x轴的正半轴上取点C,使,连接BC,证明是等边三角形,进而即可求得; (2)连接BM,,进而证明为等边三角形,根据含30度角的直角三角形的性质即可求得 (3)过点F作轴交CB的延长线于点N,证明,,设,则等边三角形ABC的边长是4a,,进而计算可得,,即可求得的值. 【详解】(1)∵点在x轴负半轴上, ∴,, ∵,, ∴, ∵, ∴, ∴, 如答图1,在x轴的正半轴上取点C,使,连接BC, ∵, ∴, 又∵, ∴, ∴, ∴是等边三角形, ∴; (2)如答图2,连接BM, ∴是等边三角形, ∵,, ∵∠, ∴, ∴, ∵D为AB的中点, ∴, ∵, ∴, ∴,在和中, ∴, ∴,即, ∴, ∴为等边三角形, ∴,∴; (3)如答图3,过点F作轴交CB的延长线于点N, 则, ∵, ∴, 在和中, ∴, ∴,, ∵, ∴, 又∵E是OC的中点,设, ∴等边三角形ABC的边长是4a,, ∵, ∴, 在和中, ∴, ∴, 又∵, ∴, , ∴. 【点睛】本题考查了坐标与图形,三角形全等的性质与判定,等边三角形的性质与判定,因式分解的应用,掌握三角形全等的性质与判定并正确的添加辅助线是解题的关键.- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 初二 数学 上学 压轴 检测 试题 解析
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【精***】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【精***】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【精***】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【精***】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文