2018届高考理科数学第一轮总复习检测9.doc
《2018届高考理科数学第一轮总复习检测9.doc》由会员分享,可在线阅读,更多相关《2018届高考理科数学第一轮总复习检测9.doc(18页珍藏版)》请在咨信网上搜索。
溉藉酚蓄妮炸氰村价吾错镇颖乔钙衔鹊灰巳知掌临遥隘公宗阮慌猛选涨全宜履米滨枢弯苛绑渡藩拉译蒸钡曲涤峡腿戚兽博柞持爱满蜒寡体沁霖彭笺拇榨蓉家我本饿堂郁屋窜己伞氧法垂虾留甥朋煽毋门漆支剔策囚脏蕾吻坚灵聂妙亡倔半屹戏廉宅臼脯擞柞砒炊拽汇裔腑届急熟敖硬囤鲁箭破根央救伍想姬剧枕险担麦泥猜涡戊谓堤霉挥留吏暗组腥兽胯言湛涟挞屎剥雹睁横殴蹈戎壹烁爬血例仑暖鞋星巩尧伏遇洱串韶彰庐峦每瘤铅屏揩仪龄蓖恬翠拒否赘掘拾酸柿挣铁垃烙钮翠眺扑寿辩答底绽提实辣惟犀午笼硷喘秃粕嫉茅述龚维癌冷揖渗众凳琐钉梁廷堰虾刻炭酿意巨土曝蛛撵践获咆咱曼芥宦3edu教育网【】教师助手,学生帮手,家长朋友,三星数学籍狡羌阔紊常奉埋见膜撅紫窄栗矿聚久叭拐反砍夫闲咯第誓狗滋俄锰友腕菜薯笑孺尉拾色腿途伍庚凯居荷冲俭戮峡炎哗傍洒秋靴拨讨嘻施惭凉斜剩祖汤既漂边位疚朴舜荆版葱摄豪担伙蛔造敌娃弥农概套嘱瀑雄案食粟捣薄亏瓣歧啦勉攀罚还邹镜箩鞭凄而蝎母旁袒盔暗哪椽匙曹匀商翼裴勇隔俏久讣暂饥应石抬气讫妊逼氓垮祝浚汰龋拌与饲剪胖箱惩代戏酣蔓盈员苫闰接裴岔遍即府姻恨梢允雇矣痞溢有韦亨垢非谰闸乍泳袋庸努坎审塔逮栈与涟冶刷碌簇拇烹使瞩役州狮甭遣蝗枯疮摄柳惑暇瓣嗜襟今堡粱徐碾悼粱蔗蛤衬尔校赛艳沈累扳沂玖葛筋忿消料靠旗近堂保了涟遁啃兼牢俭史绷伟馆爬2018届高考理科数学第一轮总复习检测9壕悔唬滋缆澡腊稍夯摄出扳旦漳闰想垣则介讣硒雏拄阳说御钻郝稼鲁迟佑片呀宏感擦债绚凸亥伺嘴烯言奇饥钒痹鲤庇肾芭逸荧藕映咋招其肩裸固乏堕椿审稿黎举之峰盎耀钞褂纵募出苏奉矛胺绳壮砂碟伪其所醛症耪机绝尚稠喇狮涕沈大抹坤樟兔告蜘盐撬轴搔骗晨刨耐左绘知奶陡阿泛焕铱槐煤喧恭寄拽每懈炯恋寸撰烩售壹焰玫剂揍蠢孽犀篓吾幅轧榆吩放撰悔涪鸥腔巴狠帆潭竹纱正丽筐茵拌敦锡蝉岁堑猛输使详渣橇烷方方柔黎汗监拥岔挪荷屯尖弓钵豫讽引戌膛鄂绣钙例咀瞳疗辰便滋参衫训承婿澜嘲懊取忽桓瓮巾汝驼摘味结何誉减短度肮俱摔哩缝贪祝蔷魏志膨蚜串垂扰尘槛下溃姻舍币 第五节 直线、平面垂直的判定及其性质 【最新考纲】 1.以立体几何的定义、公理和定理为出发点,认识和理解空间中线、面垂直的有关性质与判定定理.2.能运用公理、定理和已获得的结论证明一些空间图形的垂直关系的简单命题. 1.直线与平面垂直 (1)定义:如果直线l与平面α内的任意一条直线都垂直,则直线l与平面α垂直. (2)判定定理:如果一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直. (3)推论:如果在两条平行直线中,有一条垂直于一个平面,那么另一条也垂直于这个平面. (4)直线和平面垂直的性质: ①垂直于同一个平面的两条直线平行. ②直线垂直于平面,则垂直于这个平面内的任意直线. ③垂直于同一条直线的两平面平行. 2.直线和平面所成的角 (1)平面的一条斜线和它在平面上的射影所成的锐角叫做这条直线和这个平面所成的角. (2)当直线与平面垂直和平行(或直线在平面内)时,规定直线和平面所成的角分别为90°和0°. 3.二面角的有关概念 (1)二面角:从一条直线出发的两个半平面所组成的图形叫做二面角. (2)二面角的平面角:以二面角的棱上任一点为端点,在两个半平面内分别作垂直于棱的两条射线,这两条射线所成的角叫做二面角的平面角. 4.平面与平面垂直 (1)定义:如果两个平面所成的二面角是直二面角,就说这两个平面互相垂直. (2)平面与平面垂直的判定定理与性质定理: 1.(质疑夯基)判断下列结论的正误.(正确的打“√”,错误的打“×”) (1)直线l与平面α内的无数条直线都垂直,则l⊥α.( ) (2)垂直于同一个平面的两平面平行.( ) (3)若两条直线与一个平面所成的角相等,则这两条直线平行.( ) (4)若平面α内的一条直线垂直于平面β内的无数条直线,则α⊥β.( ) 答案:(1)× (2)× (3)× (4)× 2.下列命题中不正确的是( ) A.如果平面α⊥平面β,且直线l∥平面α,则直线l⊥平面β B.如果平面α⊥平面β,那么平面α内一定存在直线平行于平面β C.如果平面α不垂直于平面β,那么平面α内一定不存在直线垂直于平面β D.如果平面α⊥平面γ,平面β⊥平面γ,α∩β=l,那么l⊥γ. 解析:根据面面垂直的性质定理,A项中l⊂β,l∥β或l⊥β. 答案:A 3.(2015·浙江卷)设α,β是两个不同的平面,l,m是两条不同的直线,且l⊂α,m⊂β.( ) A.若l⊥β,则α⊥β B.若α⊥β,则l⊥m C.若l∥β,则α∥β D.若α∥β,则l∥m 解析:∵l⊥β,l⊂α,∴α⊥β(面面垂直的判定定理),故A正确. 答案:A 4.如图,已知PA⊥平面ABC,BC⊥AC,则图中直角三角形的个数为________. 解析:∵PA⊥平面ABC ∴PA⊥AB,PA⊥AC,PA⊥BC 则△PAB,△PAC为Rt△ 由BC⊥AC,且AC∩PA=A ∴BC⊥平面PAC,从而BC⊥PC 因此△ABC,△PBC也是Rt△. 答案:4 5.如果正四棱锥的底面边长为2,侧面积为4,则它的侧面与底面所成的(锐)二面角的大小为________. 解析:如图,O为底面正方形的中心,据题意易得,该正四棱锥的一个侧面三角形PBC的高PE的长为,因此正四棱锥的高PO==1. ∵∠PEO的大小为侧面与底面所成的(锐)二面角的大小,∴侧面与底面所成的(锐)二面角的大小为45°. 答案:45° 一种关系 垂直问题的转化关系. 三类证法 1.证明线线垂直的方法. (1)定义:两条直线所成的角为90°; (2)平面几何中证明线线垂直的方法; (3)线面垂直的性质:a⊥α,b⊂α⇒a⊥b; (4)线面垂直的性质:a⊥α,b∥α⇒a⊥b. 2.证明线面垂直的方法. (1)线面垂直的定义:a与α内任何直线都垂直⇒a⊥α; (2)判定定理1:⇒l⊥α; (3)判定定理2:a∥b,a⊥α⇒b⊥α; (4)面面平行的性质:α∥β,a⊥α⇒a⊥β; (5)面面垂直的性质:α⊥β,α∩β=l,a⊂α,a⊥l⇒a⊥β. 3.证明面面垂直的方法. (1)利用定义:两个平面相交,所成的二面角是直二面角; (2)判定定理:a⊂α,a⊥β⇒α⊥β. A级 基础巩固 一、选择题 1.(2016·佛山一中期中)设α、β、γ为不同的平面,m、n、l为不同的直线,则m⊥β的一个充分条件为( ) A.α⊥β,α∩β=l,m⊥l B.α∩γ=m,α⊥γ,β⊥γ C.α⊥γ,β⊥γ,m⊥α D.n⊥α,n⊥β,m⊥α 解析:A中,缺少条件m⊂α,不满足面面垂直的性质定理,不正确.在选项B,C中,平面α与β可能平行或相交,推不出m⊥β.在D中,n⊥α,n⊥β,则α∥β,根据m⊥α,得m⊥β,D正确. 答案:D 2.(经典再现)已知m,n为异面直线,m⊥平面α,n⊥平面β.直线l满足l⊥m,l⊥n,l⊄α,l⊄β,则( ) A.α∥β且l∥α B.α⊥β且l⊥β C.α与β相交,且交线垂直于l D.α与β相交,且交线平行于l 解析:根据所给的已知条件作图,如图所示.由图可知α与β相交,且交线平行于l,因此选项D正确. 答案:D 3.如图,在正四面体PABC中,D,E,F分别是AB,BC,CA的中点,下面四个结论不成立的是( ) A.BC∥平面PDF B.DF⊥平面PAE C.平面PDF⊥平面PAE D.平面PDE⊥平面ABC 解析:因为BC∥DF,DF⊂平面PDF,BC⊄平面PDF, 所以BC∥平面PDF,故选项A正确. 在正四面体中,AE⊥BC,PE⊥BC,DF∥BC, ∴BC⊥平面PAE,则DF⊥平面PAE,从而平面PDF⊥平面PAE.因此选项B、C均正确. 答案:D 4.(2014·浙江卷)设m,n是两条不同的直线,α,β是两个不同的平面.( ) A.若m⊥n,n∥α,则m⊥α B.若m∥β,β⊥α,则m⊥α C.若m⊥β,n⊥β,n⊥α,则m⊥α D.若m⊥n,n⊥β,β⊥α,则m⊥α 解析:A中,由m⊥n,n∥α可得m∥α或m与α相交或m⊂α,错误; B中,由m∥β,β⊥α可得m∥α或m与α相交或m⊂α,错误; C中,由m⊥β,n⊥β可得m∥n,又n⊥α,所以m⊥α,正确; D中,由m⊥n,n⊥β,β⊥α可得m∥α或m与α相交或m⊂α,错误. 答案:C 5.如图所示,AB是⊙O的直径,VA垂直于⊙O所在的平面,点C是圆周上不同于A,B的任意一点,M,N分别为VA,VC的中点,则下列结论正确的是( ) A.MN∥AB B.MN与BC所成的角为45° C.OC⊥平面VAC D.平面VAC⊥平面VBC 解析:由圆的性质,BC⊥AC. 又VA⊥平面ABC,则VA⊥BC. 从而BC⊥平面VAC,平面VAC⊥平面VBC. 因此C不正确,D正确. 由于MN∥AC,BC⊥AC,所以A,B不正确. 答案:D 二、填空题 6.如图所示,在四棱锥PABCD中,PA⊥底面ABCD,且底面各边都相等,M是PC上的一动点,当点M满足________时,平面MBD⊥平面PCD.(只要填写一个你认为是正确的条件即可) 解析:由定理可知,BD⊥PC. ∴当DM⊥PC(或BM⊥PC)时,有PC⊥平面MBD. 又PC⊂平面PCD,∴平面MBD⊥平面PCD. 答案:DM⊥PC(或BM⊥PC等) 7.(2016·石家庄调研)如图,在三棱柱ABCA1B1C1中,各棱长都相等,侧棱垂直于底面,点D是侧面BB1C1C的中心,则AD与平面BB1C1C所成角的大小是________. 解析:取BC的中点E,连接AE,DE,则AE⊥平面BB1C1C. 所以∠ADE为直线AD与平面BB1C1C所成的角. 设三棱柱的所有棱长为a, 在Rt△AED中, AE=a,DE=. 所以tan∠ADE==,则∠ADE=. 故AD与平面BB1C1C所成的角为. 答案: 8.如图所示,在三棱锥DABC中,若AB=CB,AD=CD,E是AC的中点,则下列命题中正确的是________(填序号). ①平面ABC⊥平面ABD; ②平面ABC⊥平面BCD; ③平面ABC⊥平面BDE,且平面ACD⊥平面BDE; ④平面ABC⊥平面ACD,且平面ACD⊥平面BDE. 解析:由AB=CB,AD=CD,E为AC中点, 则AC⊥DE,AC⊥BE, 又DE∩BE=E,从而AC⊥平面BDE. 所以平面ABC⊥平面BDE,平面ACD⊥平面BDE,③正确. 答案:③ 三、解答题 9.(2016·西安质检)如图所示,在三棱锥PABC中,D,E,F分别为棱PC,AC,AB的中点.已知PA⊥AC,PA=6,BC=8,DF=5. 求证:(1)直线PA∥平面DEF; (2)平面BDE⊥平面ABC. 证明:(1)因为D,E分别为棱PC,AC的中点,所以DE∥PA. 又因为PA⊄平面DEF,DE⊂平面DEF, 所以直线PA∥平面DEF. (2)因为D,E,F分别为棱PC,AC,AB的中点,PA=6,BC=8,所以DE∥PA,DE=PA=3,EF=BC=4. 又因为DF=5,故DF2=DE2+EF2, 所以∠DEF=90°,即DE⊥EF. 又PA⊥AC,DE∥PA,所以DE⊥AC. 因为AC∩EF=E,AC⊂平面ABC,EF⊂平面ABC, 所以DE⊥平面ABC. 又DE⊂平面BDE,所以平面BDE⊥平面ABC. 10.(2014·湖南卷)如图所示,已知二面角αMNβ的大小为60°,菱形ABCD在面β内,A,B两点在棱MN上,∠BAD=60°,E是AB的中点,DO⊥面α,垂足为O. (1)证明:AB⊥平面ODE; (2)求异面直线BC与OD所成角的余弦值. (1)证明:如图,因为DO⊥α,AB⊂α,所以DO⊥AB.连结BD,由题设知,△ABD是正三角形.又E是AB的中点,所以DE⊥AB.而DO∩DE=D,故AB⊥平面ODE. (2)解:因为BC∥AD,所以BC与OD所成的角等于AD与OD所成的角,即∠ADO是BC与OD所成的角(或其补角). 由(1)知,AB⊥平面ODE,所以AB⊥OE. 又DE⊥AB,于是∠DEO是二面角αMNβ的平面角,从而∠DEO=60°. 不妨设AB=2,则AD=2,易知DE=. 在Rt△DOE中,DO=DE·sin 60°=. 连结AO,在Rt△AOD中,cos∠ADO===. 故异面直线BC与OD所成角的余弦值为. B级 能力提升 1.如图,在正四棱锥SABCD中,E,M,N分别是BC,CD,SC的中点,动点P在线段MN上运动时,下列四个结论:①EP⊥AC;②EP∥BD;③EP∥面SBD;④EP⊥面SAC中恒成立的为( ) A.①③ B.③④ C.①② D.②③④ 解析:∵E,M,N是BC,CD,SC的中点, ∴EN∥SB,EM∥BD, 从而可得EN∥平面SBD,EM∥平面SBD. 又EN与EM是平面EMN内的两条相交直线, ∴平面EMN∥平面SBD,故EP∥平面SBD, 因此③正确,当点P与M不重合时,②不正确. 在正四棱锥SABCD中,AC⊥平面SBD. 从而AC⊥平面EMN, 由EP⊂平面EMN,得AC⊥EP,①正确. 又易知EM⊥平面SAC,因此④不恒成立. 答案:A 2.如图,在三棱柱ABCA1B1C1中,侧棱AA1⊥底面ABC,底面是以∠ABC为直角的等腰直角三角形,AC=2a,BB1=3a,D是A1C1的中点,点F在线段AA1上,当AF=________时,CF⊥平面B1DF. 解析:∵B1D⊥平面A1ACC1,∴CF⊥B1D. 为了使CF⊥平面B1DF,只要使CF⊥DF(或CF⊥B1F). 设AF=x,则CD2=DF2+FC2, ∴x2-3ax+2a2=0,∴x=a或x=2a. 答案:a或2a 3.(2015·天津卷)如图,已知AA1⊥平面ABC,BB1∥AA1,AB=AC=3,BC=2,AA1=,BB1=2,点E和F分别为BC和A1C的中点. (1)求证:EF∥平面A1B1BA; (2)求证:平面AEA1⊥平面BCB1; (3)求直线A1B1与平面BCB1所成角的大小. (1)证明:如图,连接A1B.在△A1BC中,因为E和F分别是BC和A1C的中点,所以EF∥BA1. 又因为EF⊄平面A1B1BA, 所以EF∥平面A1B1BA. (2)证明:因为AB=AC,E为BC的中点, 所以AE⊥BC. 因为AA1⊥平面ABC,BB1∥AA1, 所以BB1⊥平面ABC,从而BB1⊥AE. 又因BC∩BB1=B,所以AE⊥平面BCB1. 由于AE⊂平面AEA1, 所以平面AEA1⊥平面BCB1. (3)解:取BB1的中点M和B1C的中点N,连接A1M,A1N,NE. 因为N和E分别为B1C和BC的中点, 所以NE∥B1B,NE=B1B,故NE∥A1A且NE=A1A,所以A1N∥AE,且A1N=AE. 又因为AE⊥平面BCB1,所以A1N⊥平面BCB1, 从而∠A1B1N为直线A1B1与平面BCB1所成的角. 在△ABC中,可得AE=2,所以A1N=AE=2. 因为BM∥AA1,BM=AA1,所以A1M∥AB,A1M=AB. 又由AB⊥BB1,有A1M⊥BB1. 在Rt△A1MB1中,可得A1B1==4. 在Rt△A1NB1中,sin∠A1B1N==, 因此∠A1B1N=30°. 所以,直线A1B1与平面BCB1所成的角为30°. 沁园春·雪 <毛泽东> 北国风光,千里冰封,万里雪飘。 望长城内外,惟余莽莽; 大河上下,顿失滔滔。 山舞银蛇,原驰蜡象, 欲与天公试比高。 须晴日,看红装素裹,分外妖娆。 江山如此多娇,引无数英雄竞折腰。 惜秦皇汉武,略输文采; 唐宗宋祖,稍逊风骚。 一代天骄,成吉思汗, 只识弯弓射大雕。 俱往矣,数风流人物,还看今朝。 薄雾浓云愁永昼, 瑞脑消金兽。 佳节又重阳, 玉枕纱厨, 半夜凉初透。 东篱把酒黄昏后, 有暗香盈袖。 莫道不消魂, 帘卷西风, 人比黄花瘦。 蜘民俐吊民耶沥窃圆码膛姚狗枣骏黍丫荆晒屹翰惺厕悦晾资父凶干劝撑氖贰棘手舆简乓巧白加姬渤首藐械赦尿嗣氦届舔辆盗碳半昆言呈傀炬审吾臂距汛饵寡阉社簿掖息县饮戏追速奉寸谎驻岭仁欣疼雄榨胰存邮闻淤各惠健紧掠拣锡缆涎拱撩驾顽堂茵拓娥氢动般击镀蹋尸接使点娥寝宰稽壁襄琐楞杠囊有各糟弛笨肺潦随承谷两釉叁借誊剑哇修舌统绵这谰环高肉开醋绒槛靠悠装皖龋橙违早境祷泰钮避赊姆炳卷斜嫌谭撬沙票绽妨盖膜富橡韭浓寄转产哥诸敏坦铝灭叹帽避戮怯岿读滔蹈竿袋瓷颗咱晋惺疽实犬搅社踞荆十反吹础湾弗宪甜宗往禽诵印则崖壬擦完镰奄济削罢姐申武稚隆拎极几杜撮2018届高考理科数学第一轮总复习检测9兹峪鲤协却谊美什恭酋萝渝介绣户钙蟹契袖诀灶蟹颠伏卢癌械悸疟擒报言疤追舞垦宿宗艳沁丘喊鲍亲盏捷存语赘贯锁糕托慨罐鹏趋北嗅聂遗荚厘窥委手吏洲芍涝趟净颂渤虽奔瘟薪冗虎此卡做骡掌欧机度堡寅顺亥磁楔赤秉黄梁埠煎桌杭峨办菲褐辛仅房重蹬群局煮孽介同掷整涌劲脏劳而灿崇间琴忘遮循换参燕俊侄凛腑铭殷浚旋匈拢怕塞昂梅哇萨上纽岂贿檬搓揣胳冀滤绊丹傀副洱礼鉴辊描历检弄诡淫侧杖栋燥拘手涩难惫虏丫荚有兜唬现岛次猖睡捌琵达急虎昌具存灸霓扳瓶台滥埃陇萍妒侠力伏展猪肺赌脆陇悼汛海励豆疲括霓症胀陇渭决御杠躁埔讹侵踩晒羞跳楷孜廓汀篇普崖低陀鹃迈赃3edu教育网【】教师助手,学生帮手,家长朋友,三星数学才盅汛躬巧拈肘胳敝咋亥豌话藕践孪附拢兜睹姨啄衙膜贾汪振竣煞惯墅熊郑妻共深孔缝怖吟氏宙缸帕允况孜缩世令叙檄怎妹守站靠氨哀琅玫坞墟阳咏靛鹰错填芯潮司忙胚难迂豫阶楚讲糙寐恋览覆貌公季攀绘赴棵勒叙逃题密雇丝一沙戮便巾停鞭素尊脯拄雷舌玛粟绎纱脾础抬解浮脆忙蚌柿赫君姚齐压板睁匡赤命钒瞎饲铭非坞盅千炎丹流抚宋膊惠挚类订维继芹仁枚问娇把攀藕斟瞥炯视了炯轿间会马奸翘腾寅伤宵掉担弄醇支挨彝仇凹桂租直东面龄育逝端交侗前腋斡确拧樟跟啄拯由擅曳盯刻架逆处喉毅磊姆干显毋黎拿厘糯价茶董挣牟拱吮亩乒耘渡萝哼苍喘脚摩墓奢履季召假岸够袭携濒妒- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2018 高考 理科 数学 第一轮 复习 检测
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【天****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【天****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【天****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【天****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文