人教版初二上册期末强化数学综合检测试题带答案[001].doc
《人教版初二上册期末强化数学综合检测试题带答案[001].doc》由会员分享,可在线阅读,更多相关《人教版初二上册期末强化数学综合检测试题带答案[001].doc(21页珍藏版)》请在咨信网上搜索。
人教版初二上册期末强化数学综合检测试题带答案 一、选择题 1.下面有4个图案,其中轴对称图形的个数是( ) A.1 B.2 C.3 D.4 2.为了让学生拓展视野,亲近自然,三亚某学校组织八年级学生进行研学旅行活动.活动中一个同学了解到某种花粉颗粒直径约为0.0000065米.将数据0.0000065用科学记数法表示为( ) A. B. C. D. 3.若,,则( ) A.5 B.6 C.7 D.12 4.函数=中自变量的取值范围为( ) A.>0 B.≥0 C.≠0 D.≥0且≠1 5.下列各式的变形中,属于因式分解的是( ) A. B. C. D. 6.若a≠b,则下列分式变形正确的是( ) A. B. C. D. 7.如图,∠A=∠D,要使△ABC≌△DCB,只篅再添加一个条件即可,正确的条件是( ) A.∠ABC=∠DCB B.AC=DB C.AB=DC D.BC=BC 8.若关于x的方程的解为,则a等于( ) A. B.4 C. D. 9.如图:∠DAE=∠ADE=15°,DEAB,DF⊥AB,若AE=8,则DF等于( ) A.10 B.7 C.5 D.4 10.如图,已知△ ABC中,AB=AC,∠ BAC=90°,直角∠ EPF的顶点P是BC中点,两边PE、PF分别交AB、AC于点E、F,给出以下四个结论:①AE=CF;②△ EPF是等腰直角三角形; ③2S四边形AEPF=S△ ABC; ④BE+CF=EF.当∠ EPF在△ ABC内绕顶点P旋转时(点E与A、B重合).上述结论中始终正确的有( ) A.1个 B.2个 C.3个 D.4个 二、填空题 11.若分式的值为零,则______. 12.蝴蝶标本可以近似地看作是轴对称图形,如图,将一只蝴蝶标本放在平面直角坐标系中,如果点B的坐标是,那么它关于y轴对称的点A的坐标是________. 13.如果如果mn=2,mn=-4,那么 的值为________ 14.若,,则___________. 15.如图,在△ABC中,AB=3,AC=4,BC=5,EF是BC的垂直平分线,P是直线EF上的一动点,则PA+PB的最小值是 ___. 16.x2+2kx+9是一个完全平方式,则k的值为______. 17.已知a+b=2,ab=﹣24,a2+b2的值为_______. 18.在学习完“探索三角形全等的条件”一节后,小丽总结出很多全等三角形的模型,她设计了以下问题给同桌解决:做一个“U”字形框架PABQ,其中AB=20 cm,AP,BQ足够长,PA⊥AB于点A,QB⊥AB于点B,点M从B出发向A运动,点N从B出发向Q运动,速度之比为2:3,运动到某一瞬间两点同时停止,在AP上取点C,使△ACM与△BMN全等,则AC的长度为 _______ cm. 三、解答题 19.分解因式: (1) (2) 20.(1)解方程: (2)先化简:,再从-1,0或1中选一个合适的x的值代入求值. 21.已知:如图,C为线段BE上一点,AB∥DC,AB=EC,BC=CD.求证:∠ACD=∠E. 22.某校八年级数学兴趣小组对“三角形内角或外角平分线的夹角与第三个内角的数量关系”进行了探究. (1)如图1,在△ABC中,∠ABC与∠ACB的平分线交于点P,若∠A=66°,则∠BPC= °; (2)如图2,△ABC的内角∠ACB的平分线与△ABC的外角∠ABD的平分线交于点E.其中∠A=α,则∠BEC= (用α表示∠BEC); (3)如图3,BQ平分外角∠CBM,CQ平分外角∠BCN.试确定∠BQC与∠A的数量关系,并说明理由. 23.某社区拟建,两类摊位以搞活“地摊经济”,每个类摊位的占地面积比每个类摊位的占地面积多2平方米.用60平方米建类摊位的个数恰好是用同样面积建类摊位个数的? (1)求每个,类摊位占地面积各为多少平方米; (2)该社区拟建,两类摊位共90个,且类摊位的数量不少于类摊位数量的3倍.求最多建多少个类摊位. 24.我们知道对于一个图形,通过不同的方法计算图形的面积时,可以得到一个数学等式.例如由图1可以得到.请回答下列问题: (1)写出图2中所表示的数学等式是 ; (2)如图3,用四块完全相同的长方形拼成正方形,用不同的方法,计算图中阴影部分的面积,你能发现什么?(用含有,的式子表示) ; (3)通过上述的等量关系,我们可知: 当两个正数的和一定时,它们的差的绝对值越小,则积越 (填“ 大”“或“小”);当两个正数的积一定时,它们的差的绝对值越小,则和越 (填“ 大”或“小”). 25.如图1已知点A,B分别在坐标轴上,点C(3,﹣3),CA⊥BA于点A,且BA=CA,CA,CB分别交坐标轴于D,E. (1)填空:点B的坐标是 ; (2)如图2,连接DE,过点C作CH⊥CA于C,交x轴于点H,求证:∠ADB=∠CDE; (3)如图3,点F(6,0),点P在第一象限,连PF,过P作PM⊥PF交y轴于点M,在PM上截取PN=PF,连PO,过P作∠OPG=45°交BN于G.求证:点G是BN中点. 26.【阅读材料】小明同学发现这样一个规律:两个顶角相等的等腰三角形,如果具有公共的顶角的顶点,并把它们的底角顶点连接起来则形成一组全等的三角形,小明把具有这个规律的图形称为“手拉手”图形如图1,在“手拉手”图形中,小明发现若∠BAC=∠DAE,AB=AC,AD=AE,则ABD≌ACE. 【材料理解】(1)在图1中证明小明的发现. 【深入探究】(2)如图2,ABC和AED是等边三角形,连接BD,EC交于点O,连接AO,下列结论:①BD=EC;②∠BOC=60°;③∠AOE=60°,其中正确的有_____.(将所有正确的序号填在横线上) 【延伸应用】(3)如图3,在四边形ABCD中,BD=CD,AB=BE,∠ABE=∠BDC=60°,试探究∠A与∠BED的数量关系,并证明. 【参考答案】 一、选择题 2.B 解析:B 【分析】根据如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析即可. 【详解】解:左起第二、四两个图形不能找到这样的一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以不是轴对称图形, 第一、三两个图形能找到这样的一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以是轴对称图形, 故选:B. 【点睛】此题主要考查了轴对称图形,关键是正确确定对称轴位置. 3.C 解析:C 【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10−n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定. 【详解】解:0.0000065=6.5×10−6, 故选:C. 【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10−n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定. 4.D 解析:D 【分析】逆用同底数幂的乘法和幂的乘方法则计算即可. 【详解】解:∵,, ∴, 故选:D. 【点睛】本题考查了同底数幂的乘法和幂的乘方的逆用,熟练掌握运算法则是解题的关键. 5.D 解析:D 【分析】根据分式及二次根式有意义的条件进行计算即可. 【详解】解:由题可知,且, ∴且. 故选:D. 【点睛】本题考查了函数自变量取值范围的求解,熟练掌握分式及二次根式有意义的条件是解题的关键. 6.B 解析:B 【分析】根据因式分解的定义:把一个多项式化为整式的积的形式,对选项进行判断. 【详解】解:A、从左到右的变形为整式乘法,故不符合题意. B、左边为多项式,右边为整式的积,故符合题意. C、左边为多项式,右边为整式的积,但等号不成立,故不符合题意. D、左边、右边均为多项式,故不符合题意. 故选B. 【点睛】本题考查因式分解的定义,解决本题的关键是充分理解因式分解的定义. 7.D 解析:D 【分析】根据分式的基本性质进行判断解答即可. 【详解】解:∵a≠b, ∴A.,此选项错误,不符合题意; B.,此选项错误,不符合题意; C.,此选项错误,不符合题意; D.,此选项正确,符合题意. 故选:D. 【点睛】本题考查分式的基本性质,熟知分式的基本性质:分式的分子和分母同时乘或除以同一个不为零的数或式子,分式的值不变,注意不是同时加或减去一个不为零的数. 8.A 解析:A 【分析】根据全等三角形的判定定理分析判断即可. 【详解】解:由题意得知∠A=∠D,BC=CB, 当∠ABC=∠DCB时,可根据SAS证明△ABC≌△DCB,故A选项符合题意; 当AC=DB时,根据SSA不能证明△ABC≌△DCB,故B选项不符合题意; 当AB=DC时,根据ASS不能证明△ABC≌△DCB,故C选项不符合题意; 当BC=BC时,只有两个条件,不能证明△ABC≌△DCB,故D选项不符合题意; 故选:A. 【点睛】此题考查了全等三角形的判定定理,熟记全等三角形的判定定理是解题的关键. 9.D 解析:D 【分析】根据方程的解的定义,把x=1代入原方程,原方程左右两边相等,从而原方程转化为含a的新方程,解此新方程可以求得a的值. 【详解】解:把x=1代入方程得:, 解得:a=. 故选:D. 【点睛】本题考查了分式方程的解,关键是要掌握方程的解的定义,由已知解代入原方程得到新方程,然后再解答. 10.D 解析:D 【分析】过点D作DG⊥AC于G,先根据等角对等边求出DE=AE=8,再由三角形外角的性质求出∠DEC=30°,即可推出DG=4,由平行线的性质得到∠BAC=30°,可推出∠BAD=∠DAC,再由角平分线的性质即可得到答案. 【详解】解:如图所示,过点D作DG⊥AC于G, ∵∠DAE=∠ADE=15°, ∴∠DEG=∠ADE+∠DAE=30°,AE=DE=8, ∴, ∵DEAB, ∴∠BAC=∠DEG=30°, ∴∠BAD=∠BAC-∠DAC=15°, ∴∠BAD=∠DAC, 又∵DF⊥AB,DG⊥AC, ∴DF=DG=4, 故选D. 【点睛】本题主要考查了平行线的性质,等角对等边,三角形外角的性质,含30度角的直角三角形的性质,角平分线的性质,正确作出辅助线是解题的关键. 11.C 解析:C 【分析】根据等腰直角三角形的性质可得AP⊥BC,AP=PC,∠EAP=∠C=45°,根据同角的余角相等求出∠APE=∠CPF,然后利用“角边角”证明△APE和△CPF全等,根据全等三角形的可得AE=CF,判定①正确,再根据等腰直角三角形的定义得到△EFP是等腰直角三角形,判定②正确;根据等腰直角三角形的斜边等于直角边的倍表示出EF,可知EF随着点E的变化而变化,判定④错误,根据全等三角形的面积相等可得△APE的面积等于△CPF的面积相等,然后求出四边形AEPF的面积等于△ABC的面积的一半,判定③正确 【详解】 如图,连接EF, ∵AB=AC,∠BAC=90°,点P是BC的中点, ∴AP⊥BC,AP=PC,∠EAP=∠C=45°, ∴∠APF+∠CPF=90°, ∵∠EPF是直角, ∴∠APF+∠APE=90°, ∴∠APE=∠CPF,; 在△APE和△CPF中, , ∴△APE≌△CPF(ASA), ∴AE=CF,故①正确; ∴△EFP是等腰直角三角形,故②正确; 根据等腰直角三角形的性质,EF=PE, 所以,EF随着点E的变化而变化,只有当点E为AB的中点时,EF=PE=AP,在其它位置EF≠AP,故④错误; ∵△APE≌△CPF, ∴S△APE=S△CPF, ∴S四边形AEPF=S△APF+S△APE=S△APF+S△CPF=S△APC=S△ABC, ∴2S四边形AEPF=S△ABC 故③正确, 综上所述,正确的结论有①②③共3个. 故选C. 【点睛】本题考查了全等三角形的判定与性质、等腰直角三角形的判定与性质,根据同角的余角相等求出∠APE=∠CPF,从而得到△APE≌△CPF是解题的关键,也是本题的突破点. 二、填空题 12.-5 【分析】根据分式为0时分子为0且分母不为0即可求解. 【详解】解:由题意可知:且, ∴, 故答案为:-5. 【点睛】本题考查了分式为0的条件:分子为0且分母不为0. 13. 【分析】根据关于y轴对称的点的特点为:横坐标互为相反数,纵坐标相等,直接求解即可. 【详解】解:关于y轴对称的点的特点为:横坐标互为相反数,纵坐标相等, ∴, 故答案为: . 【点睛】题目主要考查坐标系中对称点的特点,熟练掌握关于坐标轴对称的点的特点是解题关键. 14.-3 【分析】先化简分式,然后将m -n=2,mn=-4的值代入计算即可. 【详解】, ∵m -n=2,mn=-4, ∴原式=. 故答案为-3. 【点睛】本题考查了完全平方公式,对完全平方公式的灵活应用变形整理是解此题的关键. 15. 【分析】根据同底数幂除法逆运算及积的乘方逆运算解答. 【详解】∵,, ∴, 故答案为:. 【点睛】此题考查整式的运算公式:积的乘方计算及同底数幂除法计算,正确掌握计算公式并熟练应用是解题的关键. 16.4 【分析】根据题意知点B关于直线EF的对称点为点C,故当点P为EF和AC的交点时,AP+BP值最小为AC的长为4. 【详解】解:如图:连结BP,CP, ∵EF垂直平分BC, ∴B、C关 解析:4 【分析】根据题意知点B关于直线EF的对称点为点C,故当点P为EF和AC的交点时,AP+BP值最小为AC的长为4. 【详解】解:如图:连结BP,CP, ∵EF垂直平分BC, ∴B、C关于EF对称, ∴BP=CP, ∴AP+BP=AP+CP, 根据两点之间相等最短AP+PC≥AC, ∴当点P在AC与EF交点时,AP+BP最小=AC,最小值等于AC的长为4. 故答案为4. 【点睛】本题考查轴对称——最短路线问题的应用,解决此题的关键是能根据想到垂直平分线的性质和两点之间线段最短找出P点的位置. 17.±3 【分析】根据完全平方式的特点知,2k=±6,从而可得k的值. 【详解】根据完全平方式的特点,得2k=±6,即k=±3 故答案为:±3 【点睛】本题考查了完全平方式,掌握完全平方式的特点 解析:±3 【分析】根据完全平方式的特点知,2k=±6,从而可得k的值. 【详解】根据完全平方式的特点,得2k=±6,即k=±3 故答案为:±3 【点睛】本题考查了完全平方式,掌握完全平方式的特点:两数的平方和,加上或减去这两个数的乘积的2倍,是本题的关键.要注意的是部分同学往往漏掉了k为-3的情况. 18.52 【分析】根据完全平方公式变形即可求解. 【详解】解:∵a+b=2,ab=﹣24, ∴ 故答案为:52. 【点睛】本题考查了完全平方公式变形求值,掌握完全平方公式是解题的关键. 解析:52 【分析】根据完全平方公式变形即可求解. 【详解】解:∵a+b=2,ab=﹣24, ∴ 故答案为:52. 【点睛】本题考查了完全平方公式变形求值,掌握完全平方公式是解题的关键. 19.8或15##15或8 【分析】设,则,使△ACM与△BMN全等,由可知,分两种情况讨论:当BM=AC,BN=AM时,列方程解得t的值即可得到AC的长;当BM=AM,BN=AC时,列方程解得t的值, 解析:8或15##15或8 【分析】设,则,使△ACM与△BMN全等,由可知,分两种情况讨论:当BM=AC,BN=AM时,列方程解得t的值即可得到AC的长;当BM=AM,BN=AC时,列方程解得t的值,可解得AC的长. 【详解】解:设cm,则cm, ,要使得△ACM与△BMN全等,可分两种情况讨论: 当BM=AC,BN=AM时, 解得 cm; 当BM=AM,BN=AC时, 解得 cm 故答案为:8或15. 【点睛】本题考查全等三角形的性质,涉及分类讨论法、列一元一次方程、解一元一次方程等知识,是重要考点,掌握相关知识是解题关键. 三、解答题 20.(1)2x(x+2)(x-2); (2)(4-x+y)2 【分析】(1)利用提公因式法和平方差公式分解; (2)利用完全平分公式分解. (1) 解: =2x2(x-4) =2x(x+2 解析:(1)2x(x+2)(x-2); (2)(4-x+y)2 【分析】(1)利用提公因式法和平方差公式分解; (2)利用完全平分公式分解. (1) 解: =2x2(x-4) =2x(x+2)(x-2) (2) =(4-x+y)2 【点睛】此题考查了多项式的分解因式,正确掌握因式分解的定义及解法是解题的关键. 21.(1)x=1;(2),当x=0时,原式=1 【分析】(1)先在方程左右两边同乘以(x-2)去分母,化为整式方程再解方程即可. (2)先对括号内的分式进行通分,再合并,然后再乘以后面的倒数,再因式 解析:(1)x=1;(2),当x=0时,原式=1 【分析】(1)先在方程左右两边同乘以(x-2)去分母,化为整式方程再解方程即可. (2)先对括号内的分式进行通分,再合并,然后再乘以后面的倒数,再因式分解,再约分,最后代入使得分式有意义的x值可求出答案. 【详解】解:(1)方程两边乘(x-2)得, 解得x=1, 检验:当x=1时x-2≠0, 所以原分式方程解为x=1; (2)原式= = =, 由分式有意义的条件可知:x不能取±1, 当x=0时, 原式=0+1=1. 【点睛】本题考查分式的化简求值以及分式方程的解法,解题的关键是熟练运用分式方程的解法,分式的加减运算以及乘除运算法则,本题属于基础题型. 22.见解析 【分析】由“SAS”可证△ABC≌△ECD,可得∠A=∠E=∠ACD. 【详解】证明:∵AB∥DC, ∴∠B=∠ECD,∠A=∠ACD. 在△ABC和△ECD中, ∴△ABC 解析:见解析 【分析】由“SAS”可证△ABC≌△ECD,可得∠A=∠E=∠ACD. 【详解】证明:∵AB∥DC, ∴∠B=∠ECD,∠A=∠ACD. 在△ABC和△ECD中, ∴△ABC≌△ECD(SAS). ∴∠A=∠E. ∴∠ACD=∠E. 【点睛】本题考查了全等三角形的判定和性质,证明△ABC≌△ECD是本题的关键. 23.(1)122 (2) (3)∠BQC=90°,理由见解析 【分析】(1)根据三角形的内角和角平分线的定义; (2)根据三角形的一个外角等于与它不相邻的两个内角的和,可得∠ABD=∠A+∠AC 解析:(1)122 (2) (3)∠BQC=90°,理由见解析 【分析】(1)根据三角形的内角和角平分线的定义; (2)根据三角形的一个外角等于与它不相邻的两个内角的和,可得∠ABD=∠A+∠ACB,再利用∠BEC=∠DBE﹣∠BCE,即可得到结论; (3)根据三角形的一个外角等于与它不相邻的两个内角的和以及角平分线的定义表示出∠EBC与∠ECB,然后再根据三角形的内角和定理列式整理即可得解. (1) 解:∵BP、CP分别平分∠ABC和∠ACB, ∴∠PBC∠ABC,∠PCB∠ACB, ∴∠BPC=180°﹣(∠PBC+∠PCB) =180°﹣(∠ABC∠ACB) =180°(∠ABC+∠ACB) =180°(180°﹣∠A) =180°﹣90°∠A =90°+32° =122° 故答案为:122; (2) 解:∵CE和BE分别是∠ACB和∠ABD的角平分线, ∴∠BCE∠ACB,∠DBE∠ABD, 又∵∠ABD是△ABC的一外角, ∴∠ABD=∠A+∠ACB, ∴∠DBE(∠A+∠ABC)∠A+∠BCE, ∵∠DBE是△BEC的一外角, ∴∠BEC=∠DBE﹣∠BCE∠A+∠BCE﹣∠BCE∠A; (3) 解:∠BQC=90°,理由如下: 根据题意得:∠CBM=∠A+∠ACB,∠BCN=∠A+∠ABC, ∵BQ平分外角∠CBM,CQ平分外角∠BCN. ∴∠QBC(∠A+∠ACB),∠QCB(∠A+∠ABC), ∴∠BQC=180°﹣∠QBC﹣∠QCB =180°(∠A+∠ACB)(∠A+∠ABC) =180°∠A(∠A+∠ABC+∠ACB) 即∠BQC=90°. 【点睛】本题主要考查了有关角平分线的计算,三角形外角的性质,三角形的内角和定理,熟练掌握三角形外角的性质,三角形的内角和定理是解题的关键. 24.(1)每个类摊位占地面积为5平方米,每个类摊位占地面积为3平方米 (2)最多建22个类摊位 【分析】(1)设每个类摊位占地面积为平方米,则每个类摊位占地面积为平方米,由题意:用60平方米建类摊位 解析:(1)每个类摊位占地面积为5平方米,每个类摊位占地面积为3平方米 (2)最多建22个类摊位 【分析】(1)设每个类摊位占地面积为平方米,则每个类摊位占地面积为平方米,由题意:用60平方米建类摊位的个数恰好是用同样面积建类摊位个数的,列出分式方程,然后解方程即可; (2)设类摊位的数量为个,则类摊位的数量为个,由题意:建造类摊位的数量不少于类摊位数量的3倍,列出一元一次不等式,然后解不等式即可. (1)解:设每个类摊位占地面积为平方米,则每个类摊位占地面积为平方米,依题意,得:,解得:,经检验,是原分式方程的解,且符合题意,则.答:每个类摊位占地面积为5平方米,每个类摊位占地面积为3平方米. (2)设类摊位的数量为个,则类摊位的数量为个,依题意,得:,解得:,因为取整数,所以的最大值为22.答:最多建22个类摊位. 【点睛】本题考查了分式方程的应用以及一元一次不等式的应用.解题的关键是:(1)找准等量关系,正确列出分式方程:(2)找出数量关系,正确列出一元一次不等式. 25.(1);(2); (3)大 小 【分析】(1)图2面积有两种求法,可以由长为2a+b,宽为a+2b的矩形面积求出,也可以由两个边长为a与边长为b的两正方形,及4个长为a,宽为b的矩形 解析:(1);(2); (3)大 小 【分析】(1)图2面积有两种求法,可以由长为2a+b,宽为a+2b的矩形面积求出,也可以由两个边长为a与边长为b的两正方形,及4个长为a,宽为b的矩形面积之和求出,表示即可; (2)阴影部分的面积可以由边长为x+y的大正方形的面积减去边长为x-y的小正方形面积求出,也可以由4个长为x,宽为y的矩形面积之和求出,表示出即可; (3)两正数和一定,则和的平方一定,根据等式,得到被减数一定,差的绝对值越小,即为减数越小,得到差越大,即积越大;当两正数积一定时,即差一定,差的绝对值越小,得到减数越小,可得出被减数越小; 【详解】(1)看图可知, (2) (3)当两个正数的和一定时,它们的差的绝对值越小则积越大;当两个正数的积一定时,它们的差的绝对值越小则和越小. 【点睛】本题考点:整式的混合运算,此题考查了整式的混合运算的应用,弄清题意是解本题的关键. 26.(1)(0,6) (2)见解析 (3)见解析 【分析】(1)作CM⊥x轴于M,求出CM= CN= 2,证明△BAO≌△ACM,推出AO= CM= 2,OB=AM=4,即可得出答案; (2)在 解析:(1)(0,6) (2)见解析 (3)见解析 【分析】(1)作CM⊥x轴于M,求出CM= CN= 2,证明△BAO≌△ACM,推出AO= CM= 2,OB=AM=4,即可得出答案; (2)在BD上截取BF= AE,连AF,证△BAF≌△CAE,证△AFD≌△CED,即可得出答案; (3)作EO⊥OP交PG的延长线于E,连接EB、EN、PB,只要证明四边形ENPB是平行四边形就可以了. (1) 解:过点C作CG⊥x轴于G,如图所示: ∵C(3,﹣3), ∴CG=3,OG=3, ∵∠BOA=∠CGA=90°, ∴∠ABO+∠BAO=∠BAO+∠CAG=90°, ∴∠ABO=∠CAG, 又∵AB=AC, ∴△ABO≌△CAG(AAS), ∴AO=CG=3,OB=AG=AO+OG=6, ∴点B的坐标是(0,6). (2) 证明:如图,过点C作CG⊥x轴于G,CF⊥y轴于F,则CF∥AO. 同(1)得:△ABO≌△CAG(AAS), ∴AO=CG=3, ∵CF=3, ∴AO=CF, ∵CF∥AO ∴∠DAO=∠DCF,∠AOD=∠CFD, ∴△AOD≌△CFD(ASA), ∴AD=CD, ∵CA⊥BA,CH⊥CA, ∴∠BAD=∠ACH=90°, 又∵∠ABO=∠CAG,AB=AC, ∴△BAD≌△ACH(ASA), ∴AD=CH,∠ADB=∠AHC ∴CD=CH, ∵BA=CA, ∴△ABC是等腰直角三角形, ∴∠ACB=45°, ∴∠HCE=90°﹣∠ACB=45°, ∴∠DCE=∠HCE=45°, 又∵CE=CE, ∴△DCE≌△HCE(SAS), ∴∠CDE=∠CHE, ∴∠ADB=∠CDE. (3) 证明:过点O作OK⊥OP交PG延长线于K,连接BK、NF,过点P作PL⊥NF于L. 则△OPK是等腰直角三角形, ∴∠OKP=∠OPK=45°,OK=OP, ∵PN=PF, ∴△PNF是等腰直角三角形, ∴∠PFN=∠PNF=45°, ∵PL⊥NF, ∴∠FPL=45°, 则∠OPF=∠OPL+45°,∠GPN=∠OPL=45°﹣∠MPO, ∵∠KOB+∠BOP=∠FOP+∠BOP=90°, ∴∠KOB=∠FOP, 又∵OB=OF=6, ∴△OKB≌△OPF(SAS), ∴KB=PF=PN,∠OKB=45°+∠GKB=∠OPF=∠OPL+45°, ∴∠GKB=∠OPL=∠GPN, 又∵∠KGB=∠PGN, ∴△KBG≌△PNG(SAS), ∴BG=NG, 即点G为BN的中点. 【点睛】本题是三角形综合题目,考查了全等三角形的判定和性质、坐标与图形性质、等腰直角三角形的判定与性质、平行线的判定与性质、直角三角形的性质等知识,本题综合性强,有一定难度,证明三角形全等是解题的关键,属于中考常考题型. 27.(1)见解析;(2)①②③;(3),证明见解析 【分析】(1)利用等式的性质得出∠BAD=∠CAE,即可得出结论; (2)同(1)的方法判断出△ABD≌△ACE,得出BD=CE,再利用对顶角和三 解析:(1)见解析;(2)①②③;(3),证明见解析 【分析】(1)利用等式的性质得出∠BAD=∠CAE,即可得出结论; (2)同(1)的方法判断出△ABD≌△ACE,得出BD=CE,再利用对顶角和三角形的内角和定理判断出∠BOC=60°,再判断出△BCF≌△ACO,得出∠AOC=120°,进而得出∠AOE=60°,再判断出BF<CF,进而判断出∠OBC>30°,即可得出结论; (3)先判断出△BDC是等边三角形,得出BD=BC,∠DBC=60°,进而判断出△ABD≌△EBC(SAS),由全等三角形的性质即可得出结论. 【详解】(1)证明:∵∠BAC=∠DAE, ∴∠BAC+∠CAD=∠DAE+∠CAD, ∴∠BAD=∠CAE, 在△ABD和△ACE中, , ∴△ABD≌△ACE(SAS); (2)解:如图2,∵△ABC和△ADE是等边三角形, ∴AB=AC,AD=AE,∠BAC=∠DAE=60°, ∴∠BAD=∠CAE, 在△ABD和△ACE中, , ∴△ABD≌△ACE(SAS), ∴BD=CE,①正确,∠ADB=∠AEC, 记AD与CE的交点为G, ∵∠AGE=∠DGO, ∴180°−∠ADB−∠DGO=180°−∠AEC−∠AGE, ∴∠DOE=∠DAE=60°, ∴∠BOC=60°,②正确, 在OB上取一点F,使OF=OC,连接CF, ∴△OCF是等边三角形, ∴CF=OC,∠OFC=∠OCF=60°=∠ACB, ∴∠BCF=∠ACO, ∵AB=AC, ∴△BCF≌△ACO(SAS), ∴∠AOC=∠BFC=180°−∠OFC=120°, ∴∠AOE=180°−∠AOC=60°,③正确, 连接AF,要使OC=OE,则有OC=CE, ∵BD=CE, ∴CF=OF=BD, ∴OF=BF+OD, ∴BF<CF, ∴∠OBC>∠BCF, ∵∠OBC+∠BCF=∠OFC=60°, ∴∠OBC>30°,而没办法判断∠OBC大于30度, 所以,④不一定正确, 即:正确的有①②③, 故答案为①②③; (3)∠A+∠BED=180°. 如图3, 证明:∵∠BDC=60°,BD=CD, ∴△BDC是等边三角形, ∴BD=BC,∠DBC=60°, ∵∠ABC=60°=∠DBC, ∴∠ABD=∠CBE, ∵AB=BE, ∴△ABD≌△EBC(SAS), ∴∠BEC=∠A, ∵∠BED+∠BEC=180°, ∴∠A+∠BED=180°. 【点睛】此题是三角形综合题,主要考查了等腰三角形的性质,等边三角形的性质,全等三角形的判定和性质,构造等边三角形是解本题的关键.- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 001 人教版 初二 上册 期末 强化 数学 综合 检测 试题 答案
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【快乐****生活】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【快乐****生活】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【快乐****生活】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【快乐****生活】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文