人教七年级下册数学期末解答题综合复习试卷及答案.doc
《人教七年级下册数学期末解答题综合复习试卷及答案.doc》由会员分享,可在线阅读,更多相关《人教七年级下册数学期末解答题综合复习试卷及答案.doc(40页珍藏版)》请在咨信网上搜索。
人教七年级下册数学期末解答题综合复习试卷及答案 一、解答题 1.如图1,用两个边长相同的小正方形拼成一个大的正方形. (1)如图2,若正方形纸片的面积为1,则此正方形的对角线AC的长为 dm. (2)如图3,若正方形的面积为16,李明同学想沿这块正方形边的方向裁出一块面积为12的长方形纸片,使它的长和宽之比为3∶2,他能裁出吗?请说明理由. 2.(1)如图,分别把两个边长为的小正方形沿一条对角线裁成个小三角形拼成一个大正方形,则大正方形的边长为_______; (2)若一个圆的面积与一个正方形的面积都是,设圆的周长为,正方形的周长为,则_____(填“”或“”或“”号); (3)如图,若正方形的面积为,李明同学想沿这块正方形边的方向裁出一块面积为的长方形纸片,使它的长和宽之比为,他能裁出吗?请说明理由? 3.工人师傅准备从一块面积为36平方分米的正方形工料上裁剪出一块面积为24平方分米的长方形的工件. (1)求正方形工料的边长; (2)若要求裁下的长方形的长宽的比为4:3,问这块正方形工料是否满足需要?(参考数据:,) 4.有一块面积为100cm2的正方形纸片. (1)该正方形纸片的边长为 cm(直接写出结果); (2)小丽想沿着该纸片边的方向裁剪出一块面积为90cm2的长方形纸片,使它的长宽之比为4:3.小丽能用这块纸片裁剪出符合要求的纸片吗? 5.如图,纸上有五个边长为1的小正方形组成的图形纸,我们可以把它剪开拼成一个正方形. (1)拼成的正方形的面积与边长分别是多少? (2)如图所示,以数轴的单位长度的线段为边作一个直角三角形,以数轴的-1点为圆心,直角三角形的最大边为半径画弧,交数轴正半轴于点A,那么点A表示的数是多少?点A表示的数的相反数是多少? (3)你能把十个小正方形组成的图形纸,剪开并拼成正方形吗?若能,请画出示意图,并求它的边长 二、解答题 6.如图,直线HDGE,点A在直线HD上,点C在直线GE上,点B在直线HD、GE之间,∠DAB=120°. (1)如图1,若∠BCG=40°,求∠ABC的度数; (2)如图2,AF平分∠HAB,BC平分∠FCG,∠BCG=20°,比较∠B,∠F的大小; (3)如图3,点P是线段AB上一点,PN平分∠APC,CN平分∠PCE,探究∠HAP和∠N的数量关系,并说明理由. 7.如图,直线,一副直角三角板中,. (1)若如图1摆放,当平分时,证明:平分. (2)若如图2摆放时,则 (3)若图2中固定,将沿着方向平移,边与直线相交于点,作和的角平分线相交于点(如图3),求的度数. (4)若图2中的周长,现将固定,将沿着方向平移至点与重合,平移后的得到,点的对应点分别是,请直接写出四边形的周长. (5)若图2中固定,(如图4)将绕点顺时针旋转,分钟转半圈,旋转至与直线首次重合的过程中,当线段与的一条边平行时,请直接写出旋转的时间. 8.已知:如图(1)直线AB、CD被直线MN所截,∠1=∠2. (1)求证:AB//CD; (2)如图(2),点E在AB,CD之间的直线MN上,P、Q分别在直线AB、CD上,连接PE、EQ,PF平分∠BPE,QF平分∠EQD,则∠PEQ和∠PFQ之间有什么数量关系,请直接写出你的结论; (3)如图(3),在(2)的条件下,过P点作PH//EQ交CD于点H,连接PQ,若PQ平分∠EPH,∠QPF:∠EQF=1:5,求∠PHQ的度数. 9.如图,已知直线射线CD,.P是射线EB上一动点,过点P作PQEC交射线CD于点Q,连接CP.作,交直线AB于点F,CG平分. (1)若点P,F,G都在点E的右侧,求的度数; (2)若点P,F,G都在点E的右侧,,求的度数; (3)在点P的运动过程中,是否存在这样的情形,使?若存在,求出的度数;若不存在,请说明理由. 10.已知:AB∥CD,截线MN分别交AB、CD于点M、N. (1)如图①,点B在线段MN上,设∠EBM=α°,∠DNM=β°,且满足+(β﹣60)2=0,求∠BEM的度数; (2)如图②,在(1)的条件下,射线DF平分∠CDE,且交线段BE的延长线于点F;请写出∠DEF与∠CDF之间的数量关系,并说明理由; (3)如图③,当点P在射线NT上运动时,∠DCP与∠BMT的平分线交于点Q,则∠Q与∠CPM的比值为 (直接写出答案). 三、解答题 11.如图1,E点在上,.. (1)求证: (2)如图2,平分,与的平分线交于H点,若比大,求的度数. (3)保持(2)中所求的的度数不变,如图3,平分平分,作,则的度数是否改变?若不变,请直接写出答案;若改变,请说明理由. 12.综合与探究(问题情境) 王老师组织同学们开展了探究三角之间数量关系的数学活动. (1)如图1,EF∥MN,点A、B分别为直线EF、MN上的一点,点P为平行线间一点,请直接写出∠PAF、∠PBN和∠APB之间的数量关系; (问题迁移) (2)如图2,射线OM与射线ON交于点O,直线m∥n,直线m分别交OM、ON于点A、D,直线n分别交OM、ON于点B、C,点P在射线OM上运动. ①当点P在A、B(不与A、B重合)两点之间运动时,设∠ADP=∠α,∠BCP=∠β.则∠CPD,∠α,∠β之间有何数量关系?请说明理由; ②若点P不在线段AB上运动时(点P与点A、B、O三点都不重合),请你画出满足条件的所有图形并直接写出∠CPD,∠α,∠β之间的数量关系. 13.如图1,,E是、之间的一点. (1)判定,与之间的数量关系,并证明你的结论; (2)如图2,若、的两条平分线交于点F.直接写出与之间的数量关系; (3)将图2中的射线沿翻折交于点G得图3,若的余角等于的补角,求的大小. 14.已知,直角的边与直线a分别相交于O、G两点,与直线b分别交于E、F点,. (1)将直角如图1位置摆放,如果,则______; (2)将直角如图2位置摆放,N为AC上一点,,请写出与之间的等量关系,并说明理由. (3)将直角如图3位置摆放,若,延长AC交直线b于点Q,点P是射线GF上一动点,探究,与的数量关系,请直接写出结论. 15.如图所示,已知,点P是射线AM上一动点(与点A不重合),BC、BD分别平分和,分别交射线AM于点C、D,且 (1)求的度数. (2)当点P运动时,与之间的数量关系是否随之发生变化?若不变化,请写出它们之间的关系,并说明理由;若变化,请写出变化规律. (3)当点P运动到使时,求的度数. 四、解答题 16.(1)如图1,∠BAD的平分线AE与∠BCD的平分线CE交于点E,AB∥CD,∠ADC=50°,∠ABC=40°,求∠AEC的度数; (2)如图2,∠BAD的平分线AE与∠BCD的平分线CE交于点E,∠ADC=α°,∠ABC=β°,求∠AEC的度数; (3)如图3,PQ⊥MN于点O,点A是平面内一点,AB、AC交MN于B、C两点,AD平分∠BAC交PQ于点D,请问的值是否发生变化?若不变,求出其值;若改变,请说明理由. 17.在中,射线平分交于点,点在边上运动(不与点重合),过点作交于点. (1)如图1,点在线段上运动时,平分. ①若,,则_____;若,则_____; ②试探究与之间的数量关系?请说明理由; (2)点在线段上运动时,的角平分线所在直线与射线交于点.试探究与之间的数量关系,并说明理由. 18.Rt△ABC中,∠C=90°,点D、E分别是△ABC边AC、BC上的点,点P是一动点.令∠PDA=∠1,∠PEB=∠2,∠DPE=∠α. (1)若点P在线段AB上,如图(1)所示,且∠α=50°,则∠1+∠2= °; (2)若点P在边AB上运动,如图(2)所示,则∠α、∠1、∠2之间的关系为: ; (3)若点P运动到边AB的延长线上,如图(3)所示,则∠α、∠1、∠2之间有何关系?猜想并说明理由. (4)若点P运动到△ABC形外,如图(4)所示,则∠α、∠1、∠2之间的关系为: . 19.已知在中,,点在上,边在上,在中,边在直线上,; (1)如图1,求的度数; (2)如图2,将沿射线的方向平移,当点在上时,求度数; (3)将在直线上平移,当以为顶点的三角形是直角三角形时,直接写出度数. 20.问题情境:如图1,AB∥CD,∠PAB=130°,∠PCD=120°.求∠APC度数. 小明的思路是:如图2,过P作PE∥AB,通过平行线性质,可得∠APC=50°+60°=110°. 问题迁移: (1)如图3,AD∥BC,点P在射线OM上运动,当点P在A、B两点之间运动时,∠ADP=∠α,∠BCP=∠β.∠CPD、∠α、∠β之间有何数量关系?请说明理由; (2)在(1)的条件下,如果点P在A、B两点外侧运动时(点P与点A、B、O三点不重合),请你直接写出∠CPD、∠α、∠β间的数量关系. 【参考答案】 一、解答题 1.(1);(2)不能,理由见解析 【分析】 (1)由正方形面积,可求得正方形边长,然后利用勾股定理即可求出对角线长; (2)利用方程思想求出长方形的长边,然后与正方形边长比较大小即可. 【详解】 解: 解析:(1);(2)不能,理由见解析 【分析】 (1)由正方形面积,可求得正方形边长,然后利用勾股定理即可求出对角线长; (2)利用方程思想求出长方形的长边,然后与正方形边长比较大小即可. 【详解】 解:(1)∵正方形纸片的面积为, ∴正方形的边长, ∴. 故答案为:. (2)不能; 根据题意设长方形的长和宽分别为和. ∴长方形面积为:, 解得:, ∴长方形的长边为. ∵, ∴他不能裁出. 【点睛】 本题考查了算术平方根在长方形和正方形面积中的应用,灵活的进行算术平方根计算及无理数大小比较是解题的关键. 2.(1);(2);(3)不能裁剪出,详见解析 【分析】 (1)根据所拼成的大正方形的面积为2即可求得大正方形的边长; (2)由圆和正方形的面积公式可分别求的圆的半径及正方形的边长,进而可求得圆和正方形 解析:(1);(2);(3)不能裁剪出,详见解析 【分析】 (1)根据所拼成的大正方形的面积为2即可求得大正方形的边长; (2)由圆和正方形的面积公式可分别求的圆的半径及正方形的边长,进而可求得圆和正方形的周长,利用作商法比较这两数大小即可; (3)利用方程思想求出长方形的长边,与正方形边长比较大小即可; 【详解】 解:(1)∵小正方形的边长为1cm, ∴小正方形的面积为1cm2, ∴两个小正方形的面积之和为2cm2, 即所拼成的大正方形的面积为2 cm2, ∴大正方形的边长为cm, (2)∵, ∴, ∴, 设正方形的边长为a ∵, ∴, ∴, ∴ 故答案为:<; (3)解:不能裁剪出,理由如下: ∵长方形纸片的长和宽之比为, ∴设长方形纸片的长为,宽为, 则, 整理得:, ∴, ∵450>400, ∴, ∴, ∴长方形纸片的长大于正方形的边长, ∴不能裁出这样的长方形纸片. 【点睛】 本题通过圆和正方形的面积考查了对算术平方根的应用,主要是对学生无理数运算及比较大小进行了考查. 3.(1)6分米;(2)满足. 【分析】 (1)由正方形面积可知,求出的值即可; (2)设长方形的长宽分别为4a分米、3a分米,根据面积得出方程,求出,求出长方形的长和宽和6比较即可. 【详解】 解:( 解析:(1)6分米;(2)满足. 【分析】 (1)由正方形面积可知,求出的值即可; (2)设长方形的长宽分别为4a分米、3a分米,根据面积得出方程,求出,求出长方形的长和宽和6比较即可. 【详解】 解:(1)正方形工料的边长为分米; (2)设长方形的长为4a分米,则宽为3a分米. 则, 解得:, 长为,宽为 ∴满足要求. 【点睛】 本题主要考查了算术平方根及实数大小比较,用了转化思想,即把实际问题转化成数学问题. 4.(1)10;(2)小丽不能用这块纸片裁出符合要求的纸片. 【分析】 (1)根据算术平方根的定义直接得出; (2)直接利用算术平方根的定义长方形纸片的长与宽,进而得出答案. 【详解】 解:(1)根据算 解析:(1)10;(2)小丽不能用这块纸片裁出符合要求的纸片. 【分析】 (1)根据算术平方根的定义直接得出; (2)直接利用算术平方根的定义长方形纸片的长与宽,进而得出答案. 【详解】 解:(1)根据算术平方根定义可得,该正方形纸片的边长为10cm; 故答案为:10; (2)∵长方形纸片的长宽之比为4:3, ∴设长方形纸片的长为4xcm,则宽为3xcm, 则4x•3x=90, ∴12x2=90, ∴x2=, 解得:x=或x=-(负值不符合题意,舍去), ∴长方形纸片的长为2cm, ∵5<<6, ∴10<2, ∴小丽不能用这块纸片裁出符合要求的纸片. 【点睛】 本题考查了算术平方根.解题的关键是掌握算术平方根的定义:一个正数的正的平方根叫这个数的算术平方根;0的算术平方根为0.也考查了估算无理数的大小. 5.(1)5;;(2);;(3)能,. 【分析】 (1)易得5个小正方形的面积的和,那么就得到了大正方形的面积,求得面积的算术平方根即可为大正方形的边长. (2)求出斜边长即可. (3)一共有10个小正 解析:(1)5;;(2);;(3)能,. 【分析】 (1)易得5个小正方形的面积的和,那么就得到了大正方形的面积,求得面积的算术平方根即可为大正方形的边长. (2)求出斜边长即可. (3)一共有10个小正方形,那么组成的大正方形的面积为10,边长为10的算术平方根,画图. 【详解】 试题分析: 解:(1)拼成的正方形的面积与原面积相等1×1×5=5, 边长为, 如图(1) (2)斜边长=, 故点A表示的数为:;点A表示的相反数为: (3)能,如图 拼成的正方形的面积与原面积相等1×1×10=10,边长为. 考点:1.作图—应用与设计作图;2.图形的剪拼. 二、解答题 6.(1)∠ABC=100°;(2)∠ABC>∠AFC;(3)∠N=90°﹣∠HAP;理由见解析. 【分析】 (1)过点B作BMHD,则HDGEBM,根据平行线的性质求得∠ABM与∠CBM,便可求得最后 解析:(1)∠ABC=100°;(2)∠ABC>∠AFC;(3)∠N=90°﹣∠HAP;理由见解析. 【分析】 (1)过点B作BMHD,则HDGEBM,根据平行线的性质求得∠ABM与∠CBM,便可求得最后结果; (2)过B作BPHDGE,过F作FQHDGE,由平行线的性质得,∠ABC=∠HAB+∠BCG,∠AFC=∠HAF+∠FCG,由角平分线的性质和已知角的度数分别求得∠HAF,∠FCG,最后便可求得结果; (3)过P作PKHDGE,先由平行线的性质证明∠ABC=∠HAB+∠BCG,∠AFC=∠HAF+∠FCG,再根据角平分线求得∠NPC与∠PCN,由后由三角形内角和定理便可求得结果. 【详解】 解:(1)过点B作BMHD,则HDGEBM,如图1, ∴∠ABM=180°﹣∠DAB,∠CBM=∠BCG, ∵∠DAB=120°,∠BCG=40°, ∴∠ABM=60°,∠CBM=40°, ∴∠ABC=∠ABM+∠CBM=100°; (2)过B作BPHDGE,过F作FQHDGE,如图2, ∴∠ABP=∠HAB,∠CBP=∠BCG,∠AFQ=∠HAF,∠CFQ=∠FCG, ∴∠ABC=∠HAB+∠BCG,∠AFC=∠HAF+∠FCG, ∵∠DAB=120°, ∴∠HAB=180°﹣∠DAB=60°, ∵AF平分∠HAB,BC平分∠FCG,∠BCG=20°, ∴∠HAF=30°,∠FCG=40°, ∴∠ABC=60°+20°=80°,∠AFC=30°+40°=70°, ∴∠ABC>∠AFC; (3)过P作PKHDGE,如图3, ∴∠APK=∠HAP,∠CPK=∠PCG, ∴∠APC=∠HAP+∠PCG, ∵PN平分∠APC, ∴∠NPC=∠HAP+∠PCG, ∵∠PCE=180°﹣∠PCG,CN平分∠PCE, ∴∠PCN=90°﹣∠PCG, ∵∠N+∠NPC+∠PCN=180°, ∴∠N=180°﹣∠HAP﹣∠PCG﹣90°+∠PCG=90°﹣∠HAP, 即:∠N=90°﹣∠HAP. 【点睛】 本题考查了角平分线的定义,平行线性质和判定:两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等.此题难度适中,注意掌握辅助线的作法,注意掌握数形结合思想与方程思想的应用,理清各角度之间的关系是解题的关键,也是本题的难点. 7.(1)见详解;(2)15°;(3)67.5°;(4)45cm;(5)10s或30s或40s 【分析】 (1)运用角平分线定义及平行线性质即可证得结论; (2)如图2,过点E作EK∥MN,利用平行线性 解析:(1)见详解;(2)15°;(3)67.5°;(4)45cm;(5)10s或30s或40s 【分析】 (1)运用角平分线定义及平行线性质即可证得结论; (2)如图2,过点E作EK∥MN,利用平行线性质即可求得答案; (3)如图3,分别过点F、H作FL∥MN,HR∥PQ,运用平行线性质和角平分线定义即可得出答案; (4)根据平移性质可得D′A=DF,DD′=EE′=AF=5cm,再结合DE+EF+DF=35cm,可得出答案; (5)设旋转时间为t秒,由题意旋转速度为1分钟转半圈,即每秒转3°,分三种情况:①当BC∥DE时,②当BC∥EF时,③当BC∥DF时,分别求出旋转角度后,列方程求解即可. 【详解】 (1)如图1,在△DEF中,∠EDF=90°,∠DFE=30°,∠DEF=60°, ∵ED平分∠PEF, ∴∠PEF=2∠PED=2∠DEF=2×60°=120°, ∵PQ∥MN, ∴∠MFE=180°−∠PEF=180°−120°=60°, ∴∠MFD=∠MFE−∠DFE=60°−30°=30°, ∴∠MFD=∠DFE, ∴FD平分∠EFM; (2)如图2,过点E作EK∥MN, ∵∠BAC=45°, ∴∠KEA=∠BAC=45°, ∵PQ∥MN,EK∥MN, ∴PQ∥EK, ∴∠PDE=∠DEK=∠DEF−∠KEA, 又∵∠DEF=60°. ∴∠PDE=60°−45°=15°, 故答案为:15°; (3)如图3,分别过点F、H作FL∥MN,HR∥PQ, ∴∠LFA=∠BAC=45°,∠RHG=∠QGH, ∵FL∥MN,HR∥PQ,PQ∥MN, ∴FL∥PQ∥HR, ∴∠QGF+∠GFL=180°,∠RHF=∠HFL=∠HFA−∠LFA, ∵∠FGQ和∠GFA的角平分线GH、FH相交于点H, ∴∠QGH=∠FGQ,∠HFA=∠GFA, ∵∠DFE=30°, ∴∠GFA=180°−∠DFE=150°, ∴∠HFA=∠GFA=75°, ∴∠RHF=∠HFL=∠HFA−∠LFA=75°−45°=30°, ∴∠GFL=∠GFA−∠LFA=150°−45°=105°, ∴∠RHG=∠QGH=∠FGQ=(180°−105°)=37.5°, ∴∠GHF=∠RHG+∠RHF=37.5°+30°=67.5°; (4)如图4,∵将△DEF沿着CA方向平移至点F与A重合,平移后的得到△D′E′A, ∴D′A=DF,DD′=EE′=AF=5cm, ∵DE+EF+DF=35cm, ∴DE+EF+D′A+AF+DD′=35+10=45(cm), 即四边形DEAD′的周长为45cm; (5)设旋转时间为t秒,由题意旋转速度为1分钟转半圈,即每秒转3°, 分三种情况: BC∥DE时,如图5,此时AC∥DF, ∴∠CAE=∠DFE=30°, ∴3t=30, 解得:t=10; BC∥EF时,如图6, ∵BC∥EF, ∴∠BAE=∠B=45°, ∴∠BAM=∠BAE+∠EAM=45°+45°=90°, ∴3t=90, 解得:t=30; BC∥DF时,如图7,延长BC交MN于K,延长DF交MN于R, ∵∠DRM=∠EAM+∠DFE=45°+30°=75°, ∴∠BKA=∠DRM=75°, ∵∠ACK=180°−∠ACB=90°, ∴∠CAK=90°−∠BKA=15°, ∴∠CAE=180°−∠EAM−∠CAK=180°−45°−15°=120°, ∴3t=120, 解得:t=40, 综上所述,△ABC绕点A顺时针旋转的时间为10s或30s或40s时,线段BC与△DEF的一条边平行. 【点睛】 本题主要考查了平行线性质及判定,角平分线定义,平移的性质等,添加辅助线,利用平行线性质是解题关键. 8.(1)见解析;(2)∠PEQ+2∠PFQ=360°;(3)30° 【分析】 (1)首先证明∠1=∠3,易证得AB//CD; (2)如图2中,∠PEQ+2∠PFQ=360°.作EH//AB.理由平行线 解析:(1)见解析;(2)∠PEQ+2∠PFQ=360°;(3)30° 【分析】 (1)首先证明∠1=∠3,易证得AB//CD; (2)如图2中,∠PEQ+2∠PFQ=360°.作EH//AB.理由平行线的性质即可证明; (3)如图3中,设∠QPF=y,∠PHQ=x.∠EPQ=z,则∠EQF=∠FQH=5y,想办法构建方程即可解决问题; 【详解】 (1)如图1中, ∵∠2=∠3,∠1=∠2, ∴∠1=∠3, ∴AB//CD. (2)结论:如图2中,∠PEQ+2∠PFQ=360°. 理由:作EH//AB. ∵AB//CD,EH//AB, ∴EH//CD, ∴∠1=∠2,∠3=∠4, ∴∠2+∠3=∠1+∠4, ∴∠PEQ=∠1+∠4, 同法可证:∠PFQ=∠BPF+∠FQD, ∵∠BPE=2∠BPF,∠EQD=2∠FQD,∠1+∠BPE=180°,∠4+∠EQD=180°, ∴∠1+∠4+∠EQD+∠BPE=2×180°, 即∠PEQ+2(∠FQD+∠BPF)=360°, ∴∠PEQ+2∠PFQ=360°. (3)如图3中,设∠QPF=y,∠PHQ=x.∠EPQ=z,则∠EQF=∠FQH=5y, ∵EQ//PH, ∴∠EQC=∠PHQ=x, ∴x+10y=180°, ∵AB//CD, ∴∠BPH=∠PHQ=x, ∵PF平分∠BPE, ∴∠EPQ+∠FPQ=∠FPH+∠BPH, ∴∠FPH=y+z﹣x, ∵PQ平分∠EPH, ∴Z=y+y+z﹣x, ∴x=2y, ∴12y=180°, ∴y=15°, ∴x=30°, ∴∠PHQ=30°. 【点睛】 本题考查了平行线的判定与性质,角平分线的定义等知识.(2)中能正确作出辅助线是解题的关键;(3)中能熟练掌握相关性质,找到角度之间的关系是解题的关键. 9.(1)40°;(2)65°;(3)存在,56°或20° 【分析】 (1)依据平行线的性质以及角平分线的定义,即可得到∠PCG的度数; (2)依据平行线的性质以及角平分线的定义,即可得到∠ECG=∠G 解析:(1)40°;(2)65°;(3)存在,56°或20° 【分析】 (1)依据平行线的性质以及角平分线的定义,即可得到∠PCG的度数; (2)依据平行线的性质以及角平分线的定义,即可得到∠ECG=∠GCF=25°,再根据PQ∥CE,即可得出∠CPQ=∠ECP=65°; (3)设∠EGC=4x,∠EFC=3x,则∠GCF=4x-3x=x,分两种情况讨论:①当点G、F在点E的右侧时,②当点G、F在点E的左侧时,依据等量关系列方程求解即可. 【详解】 解:(1)∵∠CEB=100°,AB∥CD, ∴∠ECQ=80°, ∵∠PCF=∠PCQ,CG平分∠ECF, ∴∠PCG=∠PCF+∠FCG=∠QCF+∠FCE=∠ECQ=40°; (2)∵AB∥CD ∴∠QCG=∠EGC,∠QCG+∠ECG=∠ECQ=80°, ∴∠EGC+∠ECG=80°, 又∵∠EGC-∠ECG=30°, ∴∠EGC=55°,∠ECG=25°, ∴∠ECG=∠GCF=25°,∠PCF=∠PCQ=(80°-50°)=15°, ∵PQ∥CE, ∴∠CPQ=∠ECP=65°; (3)设∠EGC=4x,∠EFC=3x,则∠GCF=∠FCD=4x-3x=x, ①当点G、F在点E的右侧时, 则∠ECG=x,∠PCF=∠PCD=x, ∵∠ECD=80°, ∴x+x+x+x=80°, 解得x=16°, ∴∠CPQ=∠ECP=x+x+x=56°; ②当点G、F在点E的左侧时, 则∠ECG=∠GCF=x, ∵∠CGF=180°-4x,∠GCQ=80°+x, ∴180°-4x=80°+x, 解得x=20°, ∴∠FCQ=∠ECF+∠ECQ=40°+80°=120°, ∴∠PCQ=∠FCQ=60°, ∴∠CPQ=∠ECP=80°-60°=20°. 【点睛】 本题主要考查了平行线的性质,解题时注意:两直线平行,同旁内角互补;两直线平行,内错角相等. 10.(1)30°;(2)∠DEF+2∠CDF=150°,理由见解析;(3) 【分析】 (1)由非负性可求α,β的值,由平行线的性质和外角性质可求解; (2)过点E作直线EH∥AB,由角平分线的性质和平行 解析:(1)30°;(2)∠DEF+2∠CDF=150°,理由见解析;(3) 【分析】 (1)由非负性可求α,β的值,由平行线的性质和外角性质可求解; (2)过点E作直线EH∥AB,由角平分线的性质和平行线的性质可求∠DEF=180°﹣30°﹣2x°=150°﹣2x°,由角的数量可求解; (3)由平行线的性质和外角性质可求∠PMB=2∠Q+∠PCD,∠CPM=2∠Q,即可求解. 【详解】 解:(1)∵+(β﹣60)2=0, ∴α=30,β=60, ∵AB∥CD, ∴∠AMN=∠MND=60°, ∵∠AMN=∠B+∠BEM=60°, ∴∠BEM=60°﹣30°=30°; (2)∠DEF+2∠CDF=150°. 理由如下:过点E作直线EH∥AB, ∵DF平分∠CDE, ∴设∠CDF=∠EDF=x°; ∵EH∥AB, ∴∠DEH=∠EDC=2x°, ∴∠DEF=180°﹣30°﹣2x°=150°﹣2x°; ∴∠DEF=150°﹣2∠CDF, 即∠DEF+2∠CDF=150°; (3)如图3,设MQ与CD交于点E, ∵MQ平分∠BMT,QC平分∠DCP, ∴∠BMT=2∠PMQ,∠DCP=2∠DCQ, ∵AB∥CD, ∴∠BME=∠MEC,∠BMP=∠PND, ∵∠MEC=∠Q+∠DCQ, ∴2∠MEC=2∠Q+2∠DCQ, ∴∠PMB=2∠Q+∠PCD, ∵∠PND=∠PCD+∠CPM=∠PMB, ∴∠CPM=2∠Q, ∴∠Q与∠CPM的比值为, 故答案为:. 【点睛】 本题主要考查了平行线的性质、角平分线的性质,准确计算是解题的关键. 三、解答题 11.(1)见解析;(2)100°;(3)不变,40° 【分析】 (1)如图1,延长交于点,根据,,可得,所以,可得,又,进而可得结论; (2)如图2,作,,根据,可得,根据平行线的性质得角之间的关系,再 解析:(1)见解析;(2)100°;(3)不变,40° 【分析】 (1)如图1,延长交于点,根据,,可得,所以,可得,又,进而可得结论; (2)如图2,作,,根据,可得,根据平行线的性质得角之间的关系,再根据比大,列出等式即可求的度数; (3)如图3,过点作,设直线和直线相交于点,根据平行线的性质和角平分线定义可求的度数. 【详解】 解:(1)证明:如图1,延长交于点, ,, , , , , , ; (2)如图2,作,, , , ,, 平分, , , , , , , 平分, , , , , 设, , 比大, , 解得 的度数为; (3)的度数不变,理由如下: 如图3,过点作,设直线和直线相交于点, 平分,平分, , , ,, , , , , 由(2)可知:, , , , , , . 【点睛】 本题考查了平行线的判定与性质,解决本题的关键是掌握平行线的判定与性质. 12.(1)∠PAF+∠PBN+∠APB=360°;(2)①,见解析;②或 【分析】 (1)作PC∥EF,如图1,由PC∥EF,EF∥MN得到PC∥MN,根据平行线的性质得∠PAF+∠APC=180°,∠ 解析:(1)∠PAF+∠PBN+∠APB=360°;(2)①,见解析;②或 【分析】 (1)作PC∥EF,如图1,由PC∥EF,EF∥MN得到PC∥MN,根据平行线的性质得∠PAF+∠APC=180°,∠PBN+∠CPB=180°,即有∠PAF+∠PBN+∠APB=360°; (2)①过P作PE∥AD交ON于E,根据平行线的性质,可得到,,于是; ②分两种情况:当P在OB之间时;当P在OA的延长线上时,仿照①的方法即可解答. 【详解】 解:(1)∠PAF+∠PBN+∠APB=360°,理由如下: 作PC∥EF,如图1, ∵PC∥EF,EF∥MN, ∴PC∥MN, ∴∠PAF+∠APC=180°,∠PBN+∠CPB=180°, ∴∠PAF+∠APC+∠PBN+∠CPB=360°, ∴∠PAF+∠PBN+∠APB=360°; (2)①, 理由如下:如答图,过P作PE∥AD交ON于E, ∵AD∥BC, ∴PE∥BC, ∴,, ∴ ②当P在OB之间时,,理由如下: 如备用图1,过P作PE∥AD交ON于E, ∵AD∥BC, ∴PE∥BC, ∴,, ∴; 当P在OA的延长线上时,,理由如下: 如备用图2,过P作PE∥AD交ON于E, ∵AD∥BC, ∴PE∥BC, ∴,, ∴; 综上所述,∠CPD,∠α,∠β之间的数量关系是或. 【点睛】 本题考查了平行线的性质:两直线平行,同位角相等,内错角相等,同旁内角互补.难点是分类讨论作平行辅助线. 13.(1),见解析;(2);(3)60° 【分析】 (1)作EF//AB,如图1,则EF//CD,利用平行线的性质得∠1=∠BAE,∠2=∠CDE,从而得到∠BAE+∠CDE=∠AED; (2)如图2, 解析:(1),见解析;(2);(3)60° 【分析】 (1)作EF//AB,如图1,则EF//CD,利用平行线的性质得∠1=∠BAE,∠2=∠CDE,从而得到∠BAE+∠CDE=∠AED; (2)如图2,由(1)的结论得∠AFD=∠BAF+∠CDF,根据角平分线的定义得到∠BAF=∠BAE,∠CDF=∠CDE,则∠AFD=(∠BAE+∠CDE),加上(1)的结论得到∠AFD=∠AED; (3)由(1)的结论得∠AGD=∠BAF+∠CDG,利用折叠性质得∠CDG=4∠CDF,再利用等量代换得到∠AGD=2∠AED-∠BAE,加上90°-∠AGD=180°-2∠AED,从而可计算出∠BAE的度数. 【详解】 解:(1) 理由如下: 作,如图1, , . ,, ; (2)如图2,由(1)的结论得, 、的两条平分线交于点F, ,, , , ; (3)由(1)的结论得, 而射线沿翻折交于点G, , , , , . 【点睛】 本题考查了平行线性质:两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等. 14.(1)136°;(2)∠AOG+∠NEF=90°,理由见解析;(3)当点P在GF上时,∠OPQ=140°﹣∠POQ+∠PQF;当点P在线段GF的延长线上时,140°﹣∠POQ=∠OPQ+∠PQF. 解析:(1)136°;(2)∠AOG+∠NEF=90°,理由见解析;(3)当点P在GF上时,∠OPQ=140°﹣∠POQ+∠PQF;当点P在线段GF的延长线上时,140°﹣∠POQ=∠OPQ+∠PQF. 【分析】 (1)如图1,作CP∥a,则CP∥a∥b,根据平行线的性质可得∠AOG=∠ACP,∠BCP+∠CEF=180°,然后利用∠ACP+∠BCP=90°即可求得答案; (2)如图2,作CP∥a,则CP∥a∥b,根据平行线的性质可得∠AOG=∠ACP,∠BCP+∠CEF=180°,然后结合已知条件可得∠BCP=∠NEF,然后利用∠ACP+∠BCP=90°即可得到结论; (3)分两种情况,如图3,当点P在GF上时,过点P作PN∥OG,则NP∥OG∥EF,根据平行线的性质可推出∠OPQ=∠GOP+∠PQF,进一步可得结论;如图4,当点P在线段GF的延长线上时,同上面方法利用平行线的性质解答即可. 【详解】 解:(1)如图1,作CP∥a, ∵, ∴CP∥a∥b, ∴∠AOG=∠ACP,∠BCP+∠CEF=180°, ∴∠BCP=180°﹣∠CEF, ∵∠ACP+∠BCP=90°, ∴∠AOG+180°﹣∠CEF=90°, ∵∠AOG=46°, ∴∠CEF=136°, 故答案为136°; (2)∠AOG+∠NEF=90°. 理由如下:如图2,作CP∥a, 则CP∥a∥b, ∴∠AOG=∠ACP,∠BCP+∠CEF=180°, 而∠NEF+∠CEF=180°, ∴∠BCP=∠NEF, ∵∠ACP+∠BCP=90°, ∴∠AOG+∠NEF=90°; (3)如图3,当点P在GF上时,过点P作PN∥OG, ∴NP∥OG∥EF, ∴∠GOP=∠OPN,∠PQF=∠NPQ, ∴∠OPQ=∠GOP+∠PQF, ∴∠OPQ=140°﹣∠POQ+∠PQF; 如图4,当点P在线段GF的延长线上时,过点P作PN∥OG, ∴NP∥OG∥EF, ∴∠GOP=∠OPN,∠PQF=∠NPQ, ∵∠OPN=∠OPQ+∠QPN, ∴∠GOP=∠OPQ+∠PQF, ∴140°﹣∠POQ=∠OPQ+∠PQF. 【点睛】 本题考查了平行线的性质以及平行公理的推论等知识,属于常考题型,正确添加辅助线、灵活应用平行线的判定和性质是解题的关键. 15.(1);(2)不变化,,理由见解析;(3) 【分析】 (1)结合题意,根据角平分线的性质,得;再根据平行线的性质计算,即可得到答案; (2)根据平行线的性质,得,;结合角平分线性质,得,即可完成求解 解析:(1);(2)不变化,,理由见解析;(3) 【分析】 (1)结合题意,根据角平分线的性质,得;再根据平行线的性质计算,即可得到答案; (2)根据平行线的性质,得,;结合角平分线性质,得,即可完成求解; (3)根据平行线的性质,得;结合,推导得;再结合(1)的结论计算,即可得到答案. 【详解】 (1)∵BC,BD分别评分和, ∴, ∴ 又∵, ∴ ∵, ∴ ∴; (2)∵, ∴, 又∵BD平分 ∴, ∴; ∴与之间的数量关系保持不变;- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 人教七 年级 下册 数学 期末 解答 综合 复习 试卷 答案
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【精***】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【精***】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【精***】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【精***】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文