人教版初二上册压轴题模拟数学综合检测试卷解析(一).doc
《人教版初二上册压轴题模拟数学综合检测试卷解析(一).doc》由会员分享,可在线阅读,更多相关《人教版初二上册压轴题模拟数学综合检测试卷解析(一).doc(18页珍藏版)》请在咨信网上搜索。
人教版初二上册压轴题模拟数学综合检测试卷解析(一) 1.在平面直角坐标系中,A(a,0),B(0,b)分别是x轴负半轴和y轴正半轴上一点,点C与点A关于y轴对称,点P是x轴正半轴上C点右侧一动点. (1)当2a2+4ab+4b2+2a+1=0时,求A,B的坐标; (2)当a+b=0时, ①如图1,若D与P关于y轴对称,PE⊥DB并交DB延长线于E,交AB的延长线于F,求证:PB=PF; ②如图2,把射线BP绕点B顺时针旋转45o,交x轴于点Q,当CP=AQ时,求∠APB的大小. 2.(1)模型:如图1,在中,平分,,,求证:. (2)模型应用:如图2,平分交的延长线于点,求证:. (3)类比应用:如图3,平分,,,求证:. 3.如图,在平面直角坐标系中,点A(a,0),B(0,b),且a,b满足. (1)直接写出______,______; (2)连接AB,P为内一点,. ①如图1,过点作,且,连接并延长,交于.求证:; ②如图2,在的延长线上取点,连接.若,点P(2n,−n),试求点的坐标. 4.在平面直角坐标系中,点A(a,0),点B(0,b),已知a,b满足. (1)求点A和点B的坐标; (2)如图1,点E为线段OB的中点,连接AE,过点A在第二象限作,且,连接BF交x轴于点D,求点D和点F的坐标;: (3)在(2)的条件下,如图2,过点E作交AB于点P,M是EP延长线上一点,且,连接MO,作,ON交BA的延长线于点N,连接MN,求点N的坐标. 5.如图,在平面直角坐标系中,A(a,0),B(0,b),且|a+4|+b2﹣86+16=0. (1)求a,b的值; (2)如图1,c为y轴负半轴上一点,连CA,过点C作CD⊥CA,使CD=CA,连BD.求证:∠CBD=45°; (3)如图2,若有一等腰Rt△BMN,∠BMN=90°,连AN,取AN中点P,连PM、PO.试探究PM和PO的关系. 6.阅读理解题: 定义:如果一个数的平方等于﹣1,记为i2=﹣1,这个数i叫做虚数单位,把形如a+bi(a,b为实数)的数叫做复数,其中a叫这个复数的实部,b叫做这个复数的虚部,它的加、减、乘、除运算与代数式的运算类似. 例如:计算:(2﹣i)+(5+3i)=(2+5)+(﹣1+3)i=7+2i; (1+i)×(2﹣i)=1×2﹣i+2×i﹣i2=2+(﹣1+2)i+1=3+i; 根据以上信息,完成下列问题: (1)填空:i3= ,i4= ,i+i2+i3+…+i2021= ; (2)计算:(1+i)×(3﹣4i)﹣(﹣2+3i)(﹣2﹣3i); (3)已知a+bi=(a,b为实数),求的最小值. 7.已知ABC中,∠BAC=60°,以AB和BC为边向外作等边ABD和等边BCE. (1)连接AE、CD,如图1,求证:AE=CD; (2)若N为CD中点,连接AN,如图2,求证:CE=2AN (3)若AB⊥BC,延长AB交DE于M,DB=,如图3,则BM=_______(直接写出结果) 8.△ABC、△DPC都是等边三角形. (1)如图1,求证:AP=BD; (2)如图2,点P在△ABC内,M为AC的中点,连PM、PA、PB,若PA⊥PM,且PB=2PM. ①求证:BP⊥BD; ②判断PC与PA的数量关系并证明. 【参考答案】 2.(1);(2)①见解析;②∠APB=22.5° 【分析】(1)利用非负数的性质求解即可; (2)①想办法证明∠PBF=∠F,可得结论;②如图2中,过点Q作QF⊥QB交PB于F,过点F作FH⊥x轴 解析:(1);(2)①见解析;②∠APB=22.5° 【分析】(1)利用非负数的性质求解即可; (2)①想办法证明∠PBF=∠F,可得结论;②如图2中,过点Q作QF⊥QB交PB于F,过点F作FH⊥x轴于H,可得等腰直角△BQF,证明△FQH≌△QBO(AAS),再证明FQ=FP即可解决问题. 【详解】解:(1)∵2a2+4ab+4b2+2a+1=0, ∴(a+2b)2+(a+1)2=0, ∵(a+2b)2≥0 ,(a+1)2≥0, ∴a+2b=0,a+1=0, ∴a=﹣1,b=, ∴A(﹣1,0),B(0,). (2)①证明:如图1中, ∵a+b=0, ∴a=﹣b, ∴OA=OB, 又∵∠AOB=90°, ∴∠BAO=∠ABO=45°, ∵D与P关于y轴对称, ∴BD=BP, ∴∠BDP=∠BPD, 设∠BDP=∠BPD=α, 则∠PBF=∠BAP+∠BPA=45°+α, ∵PE⊥DB, ∴∠BEF=90°, ∴∠F=90°﹣∠EBF, 又∠EBF=∠ABD=∠BAO﹣∠BDP=45°﹣α, ∴∠F=45°+α, ∴∠PBF=∠F, ∴PB=PF. ②解:如图2中,过点Q作QF⊥QB交PB于F,过点F作FH⊥x轴于H.可得等腰直角△BQF, ∵∠BOQ=∠BQF=∠FHQ=90°, ∴∠BQO+∠FQH=90°,∠FQH+∠QFH=90°, ∴∠BQO=∠QFH, ∵QB=QF, ∴△FQH≌△QBO(AAS), ∴HQ=OB=OA, ∴HO=AQ=PC, ∴PH=OC=OB=QH, ∴FQ=FP, 又∠BFQ=45°, ∴∠APB=22.5°. 【点睛】本题考查完全平方公式、实数的非负性、全等三角形的判定与性质、等腰直角三角形的判定与性质,解题的关键是综合运用相关知识解题. 3.(1)证明见解析;(2)证明见解析;(3)证明见解析; 【分析】(1)由题意得DE=DF,,,即可得出:=AB:AC; (2)在AB上取点E,使得AE=AC,根据题意可证△ACD≌△AED,从而 解析:(1)证明见解析;(2)证明见解析;(3)证明见解析; 【分析】(1)由题意得DE=DF,,,即可得出:=AB:AC; (2)在AB上取点E,使得AE=AC,根据题意可证△ACD≌△AED,从而可求出,,即可求解; (3)延长BE至M,使EM=DC,连接AM,根据题意可证△ADC≌△AEM,故而得出AE为∠BAM的角平分线,即,即可得出答案; 【详解】解:(1)∵AD平分∠BAC,DE⊥AB,DE⊥AC, ∴DE=DF, ∵ ,, ∴:=AB:AC; (2)如图,在AB上取点E,使得AE=AC,连接DE 又∵ AD平分∠CAE, ∴ ∠CAD=∠DAE, 在△ACD和△AED中, , ∴△ACD≌△AED(SAS), ∴CD=DE且∠ADC=∠ADE, ∴ , ∴ , ∴AB:AC=BD:CD; (3)如图延长BE至M,使EM=DC,连接AM, ∵ ∠D+∠AEB=180°, 又∵∠AEB+∠AEM=180°, ∴∠D=∠AEM, 在△ADC与△AEM中, , ∴△ADC≌△AEM(SAS), ∴∠DAC=∠EAM=∠BAE,AC=AM, ∴AE为∠BAM的角平分线, 故 , ∴BE:CD=AB:AC; 【点睛】本题考查了全等三角形的判定与性质、角平分线的性质、以及三角形的面积的应用,正确掌握知识点是解题的关键; 4.(1)3,;(2)①见解析;②的坐标为(,) 【分析】(1)先利用幂的乘方和积的乘方化简,再利用单项式的性质求解即可; (2)①连接AC,过点B作BN⊥BP,交CP的延长线于点N,利用SAS证明 解析:(1)3,;(2)①见解析;②的坐标为(,) 【分析】(1)先利用幂的乘方和积的乘方化简,再利用单项式的性质求解即可; (2)①连接AC,过点B作BN⊥BP,交CP的延长线于点N,利用SAS证明△OPB≌△OCA,再证明△BNP为等腰直角三角形,利用AAS证明△ACD≌△BND,即可证明AD=DB; ②作出如图所示的辅助线,证明△BMP为等腰直角三角形,利用AAS证明△PBF≌△MPE,求得E(2n,n) ,M(3n−3,n),证明点M,E关于y轴对称,得到3n−3+2n=0,即可求解. 【详解】(1)∵, ∴, ∴,, 解得:,, 故答案为:3,; (2)①连接AC, ∵∠COP=∠AOB=90°, ∴∠COP-∠AOP =∠AOB-∠AOP, ∴, 在△OPB和△OCA中, , ∴△OPB≌△OCA(SAS), ∴AC=BP,∠OCA=∠OPB=90°, 过点B作BN⊥BP,交CP的延长线于点N, ∵∠COP=90°,OP=OC, ∴∠OCP=∠OPC=∠ACP=45°, ∵∠OPB=90°, ∴∠BPN=45°, ∴△BNP为等腰直角三角形, ∴∠BPN=∠N=45°, ∴BN=BP=AC, 在△ACD和△BND中, , ∴△ACD≌△BND(AAS), ∴AD=DB; ②∵∠AOB=90°,AO=OB, ∴△AOB为等腰直角三角形, ∴∠OBA=45°, ∵∠MBO=∠ABP, ∴∠MBO+∠OBP=∠ABP+∠OBP=∠OBA=45°, ∴∠MBP=45°, ∵OP⊥BP, ∴△BMP为等腰直角三角形, ∴MP=BP, 过点P作y轴的平行线EF,分别过M,B作ME⊥EF于E,BF⊥EF于F,EF交x轴于G,ME交y轴于H,连接OE, ∴∠MPE+∠EMP=∠MPE +∠FPB=90°, ∴∠EMP=∠FPB, 在△PBF和△MPE中, , ∴△PBF≌△MPE(AAS), ∴BF=EP,PF=ME, ∵P(2n,−n), ∴BF=EP=EH=2n,PG=EG=n,PF=ME=3−n, ∴MH=ME-EH=3−n−2n=3−3n, ∴E(2n,n) ,M(3n−3,n), ∴点P,E关于x轴对称, ∴OE=OP,∠OEP=∠OPE, 同理OM=OE,点M,E关于y轴对称, ∴3n−3+2n=0, 解得,即点M的坐标为(,). 【点睛】本题考查了坐标与图形、全等三角形的判定与性质、等腰直角三角形的判定与性质等知识,解题的关键是灵活运用所学知识解决问题,学会添加常用辅助线,利用全等三角形的性质解决问题. 5.(1),;(2)D(-1,0),F(-2,4);(3)N(-6,2) 【分析】(1)结合题意,根据绝对值和乘方的性质,得,,通过求解一元一次方程,得,;结合坐标的性质分析,即可得到答案; (2) 解析:(1),;(2)D(-1,0),F(-2,4);(3)N(-6,2) 【分析】(1)结合题意,根据绝对值和乘方的性质,得,,通过求解一元一次方程,得,;结合坐标的性质分析,即可得到答案; (2)如图,过点F作FH⊥AO于点H,根据全等三角形的性质,通过证明,得AH=EO=2,FH=AO=4,从而得OH =2,即可得点F坐标;通过证明,推导得HD=OD=1,即可得到答案; (3)过点N分别作NQ⊥ON交OM的延长线于点Q,NG⊥PN交EM的延长线于点G,再分别过点Q和点N作QR⊥EG于点R,NS⊥EG于点S,根据余角和等腰三角形的性质,通过证明等腰和等腰,推导得,再根据全等三角形的性质,通过证明,得等腰,再通过证明,得NS=EM=4,MS=OE=2,即可完成求解. 【详解】(1)∵, ∴. ∵, ∴, ∴, ∴, ∴,. (2)如图,过点F作FH⊥AO于点H ∵AF⊥AE ∴∠FHA=∠AOE=90°, ∵ ∴∠AFH=∠EAO 又∵AF=AE, 在和中 ∴ ∴AH=EO=2,FH=AO=4 ∴OH=AO-AH=2 ∴F(-2,4) ∵OA=BO, ∴FH=BO 在和中 ∴ ∴HD=OD ∵ ∴HD=OD=1 ∴D(-1,0) ∴D(-1,0),F(-2,4); (3)如图,过点N分别作NQ⊥ON交OM的延长线于点Q,NG⊥PN交EM的延长线于点G,再分别过点Q和点N作QR⊥EG于点R,NS⊥EG于点S ∴ ∴, ∴ ∴ ∴ ∴等腰 ∴NQ=NO, ∵NG⊥PN, NS⊥EG ∴ ∴, ∴ ∵, ∴ ∵点E为线段OB的中点 ∴ ∴ ∴ ∴ ∴ ∴ ∴ ∴等腰 ∴NG=NP, ∵ ∴ ∴∠QNG=∠ONP 在和中 ∴ ∴∠NGQ=∠NPO,GQ=PO ∵, ∴PO=PB ∴∠POE=∠PBE=45° ∴∠NPO=90° ∴∠NGQ=90° ∴∠QGR=45°. 在和中 ∴. ∴QR=OE 在和中 ∴ ∴QM=OM. ∵NQ=NO, ∴NM⊥OQ ∵ ∴等腰 ∴ ∵ ∴ 在和中 ∴ ∴NS=EM=4,MS=OE=2 ∴N(-6,2). 【点睛】本题考查了直角坐标系、全等三角形、直角三角形、等腰三角形、绝对值、乘方的知识;解题的关键是熟练掌握直角坐标系、全等三角形、等腰三角形的性质,从而完成求解. 6.(1)a=﹣4,b=4;(2)见解析;(3)MP=OP,MP⊥OP,理由见解析 【分析】(1)先利用完全平方公式将a和b的式子化成绝对值与平方数之和的形式,再利用绝对值的非负数和平方数的非负性即可 解析:(1)a=﹣4,b=4;(2)见解析;(3)MP=OP,MP⊥OP,理由见解析 【分析】(1)先利用完全平方公式将a和b的式子化成绝对值与平方数之和的形式,再利用绝对值的非负数和平方数的非负性即可; (2)如图1(见解析),作于E.易证,由三角形全等的性质得,再证明是等腰直角三角形即可; (3)如图2(见解析),延长MP至Q,使得,连接AQ,OQ,OM,延长MN交AO于C.证出和,再利用全等三角形的性质证明是等腰直角三角形即可. 【详解】(1) 由绝对值的非负性和平方数的非负性得: 解得:; (2)如图1,作于E 是等腰直角三角形, ; (3)如图2,延长MP至Q,使得,连接AQ,OQ,OM,延长MN交AO于C ∴ ∵在四边形MCOB中, 是等腰直角三角形 ∴ 是等腰直角三角形 . 【点睛】本题考查了绝对值的非负数和平方数的非负性、三角形全等的判定定理与性质、等腰直角三角形的判定与性质,熟练掌握这些定理与性质是解题关键. 7.(1)﹣i,1,;(2)﹣i﹣6;(3)的最小值为25. 【分析】(1)根据题目所给条件可得i3=i2•i,i4=i2•i2计算即可得出答案; (2)根据多项式乘法法则进行计算,及题目所给已知条 解析:(1)﹣i,1,;(2)﹣i﹣6;(3)的最小值为25. 【分析】(1)根据题目所给条件可得i3=i2•i,i4=i2•i2计算即可得出答案; (2)根据多项式乘法法则进行计算,及题目所给已知条件即可得出答案; (3)根据题目已知条件,a+bi=4+3i,求出a、b,即可得出答案. 【详解】(1)i3=i2•i=﹣1×i=﹣i, i4=i2•i2=﹣1×(﹣1)=1, 设S=i+i2+i3+…+i2021, iS=i2+i3+…+i2021+i2022, ∴(1﹣i)S=i﹣i2022, ∴S=, 故答案为﹣i,1,; (2)(1+i)×(3﹣4i)﹣(﹣2+3i)(﹣2﹣3i) =3﹣4i+3i﹣4i2﹣(4﹣9i2) =3﹣i+4﹣4﹣9 =﹣i﹣6; (3)a+bi====4+3i, ∴a=4,b=3, ∴=, ∴的最小值可以看作点(x,0)到点A(0,4),B(24,3)的最小距离, ∵点A(0,4)关于x轴对称的点为A'(0,﹣4),连接A'B即为最短距离, ∴A'B==25, ∴的最小值为25. 【点睛】此题考查了实数的运算,以及规律型:数字的变化类,弄清题中的新定义是解本题的关键. 8.(1)见解析 (2)见解析 (3) 【分析】(1)先判断出∠DBC=∠ABE,进而判断出△DBC≌△ABE,即可得出结论; (2)先判断出△ADN≌△FCN,得出CF=AD,∠NCF=∠AN 解析:(1)见解析 (2)见解析 (3) 【分析】(1)先判断出∠DBC=∠ABE,进而判断出△DBC≌△ABE,即可得出结论; (2)先判断出△ADN≌△FCN,得出CF=AD,∠NCF=∠AND,进而判断出∠BAC=∠ACF,即可判断出△ABC≌△CFA,即可得出结论; (3)先判断出△ABC≌△HEB(ASA),得出,,再判断出△ADM≌△HEM (AAS),得出AM=HM,即可得出结论. (1) 解:∵△ABD和△BCE是等边三角形, ∴BD=AB,BC=BE,∠ABD=∠CBE=60°, ∴∠ABD+∠ABC=∠CBE+∠ABC, ∴∠DBC=∠ABE, ∴△ABE≌△DBC(SAS), ∴AE=CD; (2) 解:如图,延长AN使NF=AN,连接FC, ∵N为CD中点, ∴DN=CN, ∵∠AND=∠FNC, ∴△ADN≌△FCN(SAS), ∴CF=AD,∠NCF=∠AND, ∵∠DAB=∠BAC=60° ∴∠ACD +∠ADN=60° ∴∠ACF=∠ACD+∠NCF=60°, ∴∠BAC=∠ACF, ∵△ABD是等边三角形, ∴AB=AD, ∴AB=CF, ∵AC=CA, ∴△ABC≌△CFA (SAS), ∴BC=AF, ∵△BCE是等边三角形, ∴CE=BC=AF=2AN; (3) 解: ∵△ABD是等边三角形, ∴,∠BAD=60°, 在Rt△ABC中,∠ACB=90°-∠BAC=30°, ∴, 如图,过点E作EH // AD交AM的延长线于H, ∴∠H=∠BAD=60°, ∵△BCE是等边三角形, ∴BC=BE,∠CBE=60°, ∵∠ABC=90°, ∴∠EBH=90°-∠CBE=30°=∠ACB, ∴∠BEH=180°-∠EBH-∠H=90°=∠ABC, ∴△ABC≌△HEB (ASA), ∴,, ∴AD=EH, ∵∠AMD=∠HME, ∴△ADM≌△HEM (AAS), ∴AM=HM, ∴ ∵,, ∴. 故答案为:. 【点睛】此题是三角形综合题,主要考查了等边三角形的性质,含30°角的直角三角形的性质,全等三角形的判定和性质,构造出全等三角形是解本题的关键. 9.(1)证明过程见解析; (2)①证明过程见解析;②PC=2PA,理由见解析. 【分析】(1)证明△BCD≌△ACP(SAS),可得结论; (2)①如图2中,延长PM到K,使得MK=PM,连接C 解析:(1)证明过程见解析; (2)①证明过程见解析;②PC=2PA,理由见解析. 【分析】(1)证明△BCD≌△ACP(SAS),可得结论; (2)①如图2中,延长PM到K,使得MK=PM,连接CK.证明△AMP≌△CMK(SAS),推出MP=MK,AP=CK,∠APM=∠K=90°,再证明△PDB≌△PCK(SSS),可得结论; ②结论:PC=2PA.想办法证明∠DPB=30°,可得结论. (1)证明:如图1中,∵△ABC,△CDP都是等边三角形,∴CB=CA,CD=CP,∠ACB=∠DCP=60°,∴∠BCD=∠ACP,在△BCD和△ACP中,,∴△BCD≌△ACP(SAS),∴BD=AP; (2)证明:如图2中,延长PM到K,使得MK=PM,连接CK.∵AP⊥PM,∴∠APM=90°,在△AMP和△CMK中,,∴△AMP≌△CMK(SAS),∴MP=MK,AP=CK,∠APM=∠K=90°,同法可证△BCD≌△ACP,∴BD=PA=CK,∵PB=2PM,∴PB=PK,∵PD=PC,∴△PDB≌△PCK(SSS),∴∠PBD=∠K=90°,∴PB⊥BD.②解:结论:PC=2PA.∵△PDB≌△PCK,∴∠DPB=∠CPK,设∠DPB=∠CPK=x,则∠BDP=90°-x,∵∠APC=∠CDB,∴90°+x=60°+90°-x,∴x=30°,∴∠DPB=30°,∵∠PBD=90°,∴PD=2BD,∵PC=PD,BD=PA,∴PC=2PA. 【点睛】本题属于三角形综合题,考查了全等三角形的判定和性质,等边三角形的性质,直角三角形30°角的性质等知识,解题的关键是学会添加常用辅助线,关注全等三角形解决问题.- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 人教版 初二 上册 压轴 模拟 数学 综合 检测 试卷 解析
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【w****g】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【w****g】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【w****g】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【w****g】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文