人教版八年级下册数学永州数学期末试卷复习练习(Word版含答案).doc
《人教版八年级下册数学永州数学期末试卷复习练习(Word版含答案).doc》由会员分享,可在线阅读,更多相关《人教版八年级下册数学永州数学期末试卷复习练习(Word版含答案).doc(29页珍藏版)》请在咨信网上搜索。
人教版八年级下册数学永州数学期末试卷复习练习(Word版含答案) 一、选择题 1.下列各式中,一定是二次根式的是( ) A. B. C. D. 2.要做一个直角三角形的木架,以下面各组木棒为三边,刚好能做成的是( ) A.5,6,7 B.10,4,8 C.10,26,24 D.9,15,17 3.不能判定四边形为平行四边形的题设是( ) A., B., C., D., 4.甲、乙、丙三人进行射箭测试,每人10次射箭成绩的平均数均是8.9环,方差分别是,,,则成绩最稳定的是( ) A.甲 B.乙 C.丙 D.无法确定 5.如图,顺次连接四边形ABCD各边中点得四边形EFGH,要使四边形EFGH为矩形,应添加的条件是( ) A.ABDC B.AC=BD C.AC⊥BD D.AB=DC 6.如图,点为边上一点,将沿翻折得到,点在上,且.那么的度数为( ) A.38° B.48° C.51° D.62° 7.如图,有一个圆柱,底面圆的直径AB=,高BC=12cm,P为BC的中点,一只蚂蚁从点出发沿着圆柱的表面爬到点的最短距离为 A.9cm B.10cm C.11cm D.12cm 8.在平面直角坐标系中,定义:已知图形W和直线,如果图形W上存在一点Q,使得点Q到直线的距离小于或等于k,则称图形W与直线“k关联”.已知线段AB,其中点,.若线段AB与直线“关联”,则b的取值范围是( ) A.-1≤b≤ B.0≤b≤4 C.0≤b≤6 D.≤b≤6 二、填空题 9.若二次根式有意义,则x的取值范围是________. 10.菱形的两条对角线分别为8、10,则菱形的面积为_____. 11.如图,A代表所在的正方形的面积,则A的值是______. 12.如图,矩形的对角线与相交点,,,,分别为,的中点,则的长度为______. 13.在平面直角坐标中,点A(﹣3,2)、B(﹣1,2),直线y=kx(k≠0)与线段AB有交点,则k的取值范围为___. 14.如图, 在矩形ABCD中, 对角线AC, BD交于点O, 已知∠AOD=120°, AB=1,则BC的长为______ 15.如图,在平面直角坐标系第一象限内,直线与的交角内部作等腰,使,边轴,轴,点在直线上,点在直线上,的延长线交直线于点,作等腰,使,轴,轴,点在直线上…按此规律,则等腰的腰长为______. 16.如图,将矩形纸片ABCD折叠,使点D与点B重合,点C落在处,折痕为EF,若AB=1,BC=2,则EF=________. 三、解答题 17.计算: (1)(1+)(2﹣); (2)(+)×; (3)+3+; (4)+. 18.由于过度采伐森林和破坏植被,我国部分地区频频遭受沙尘暴的侵袭.近日,A城气象局测得沙尘暴中心在A城的正西方向240km的B处,以每时12km的速度向北偏东60°方向移动,距沙尘暴中心150km的范围为受影响区域. (1)A城是否受到这次沙尘暴的影响?为什么? (2)若A城受这次沙尘暴影响,那么遭受影响的时间有多长? 19.如图1,图2,图3,图4一个每个小正方形的边长为1正方形网格,借用网格就能计算出一些三角形的面积的面积. (1)请你利用正方形网格,计算出如图1所示的△ABC的面积为 . (2)请你利用正方形网格,在图2中比较1与的大小. (3)已知x是正数,请利用正方形网格,在图3中求出的最小值. (4)若△ABC三边的长分别为,,(其中m>0,n>0且m≠n),请利用正方形网格,在图4中求出这个三角形的面积. 20.如图,在▱ABCD中,过点D作DF⊥BC于点F,点E在边AD上,AE=CF,连结BE、CE. (1)求证:四边形BFDE是矩形. (2)若DE=AB,∠ABC=130°,求∠DEC的度数. 21.先阅读下列的解答过程,然后再解答: 形如的化简,只要我们找到两个正数a、b,使a+b=m,ab=n,使得,,那么便有:(a>b) 例如:化简 解:首先把化为,这里m=7,n=12,由于4+3=7,4×3=12 即, ∴= (1)填空:= ,= ; (2)化简:. 22.我国传统的计重工具﹣﹣秤的应用,方便了人们的生活,如图1,可以用秤砣到秤纽的水平距离,来得出秤钩上所挂物体的重量.称重时,若秤杆上秤砣到秤纽的水平距离为x(厘米)时,秤钩所挂物重为y(斤).如表中为若干次称重时所记录的一些数据. x(厘米) 1 2 4 8 y(斤) 0.75 1.00 1.50 2.5 (1)在图2中将表x,y的数据通过描点的方法表示,观察判断x,y的函数关系,并求秤杆上秤砣到秤纽的水平距离为16厘米时,秤钩所挂物重是多少斤? (2)已知秤砣到秤纽的最大水平距离为50厘米,这杆秤的可称物重范围是多少斤? 23.如图.正方形ABCD的边长为4,点E从点A出发,以每秒1个单位长度的速度沿射线AD运动,运动时间为t秒(t>0),以AE为一条边,在正方形ABCD左侧作正方形AEFG,连接BF. (1)当t=1时,求BF的长度; (2)在点E运动的过程中,求D、F两点之间距离的最小值; (3)连接AF、DF,当△ADF是等腰三角形时,求t的值. 24.如图,平面直角坐标系中,O为原点,直线y=x+1分别交x轴、y轴于点A、B,直线y=﹣x+5分别交x轴、y轴于点C、D,直线AB、CD相交于点E. (1)请直接写出A、D的坐标; (2)P为直线CD上方直线AE上一点,横坐标为m,线段PE长度为d,请求出d与m的关系式; (3)在(2)的条件下,连接PC、PD,若∠CPD=135°,求点P的坐标. 25.如图,四边形为正方形.在边上取一点,连接,使. (1)利用尺规作图(保留作图痕迹):分别以点、为圆心,长为半径作弧交正方形内部于点,连接并延长交边于点,则; (2)在前面的条件下,取中点,过点的直线分别交边、于点、. ①当时,求证:; ②当时,延长,交于点,猜想与的数量关系,并说明理由. 26.如图1,已知RtABC中,∠BAC=90°,点D是AB上一点,且AC=8,∠DCA=45°,AE⊥BC于点E,交CD于点F. (1)如图1,若AB=2AC,求AE的长; (2)如图2,若∠B=30°,求CEF的面积; (3)如图3,点P是BA延长线上一点,且AP=BD,连接PF,求证:PF+AF=BC. 【参考答案】 一、选择题 1.D 解析:D 【分析】 根据二次根式的定义进行判断即可. 【详解】 解:当a<0时,无意义,所以选项A不符合题意; 当a=0时,无意义,因此选项B不符合题意; 当a≠0时,无意义,因此选项C不符合题意; ,无论a取何值,a2+1≥1,因此 总有意义,所以选项D符合题意; 故选:D. 【点睛】 本题考查二次根式的定义,理解二次根式有意义的条件是正确判断的前提. 2.C 解析:C 【分析】 由勾股定理的逆定理,只要验证两小边的平方和等于最长边的平方即可. 【详解】 解:、因为,故不能作为直角三角形三边长度,不符合题意; 、因为,故不能作为直角三角形三边长度,不符合题意; 、因为,故能作为直角三角形三边长度,符合题意; 、因为,故不能作为直角三角形三边长度,不符合题意. 故选:C. 【点睛】 本题考查勾股定理的逆定理的应用,解题的关键是判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可. 3.D 解析:D 【解析】 【分析】 根据平行四边形的判定定理逐一进行判定即可;(1)两组对边分别平行的四边形是平行四边形;(2)两组对边分别相等的四边形是平行四边形;(3)对角线互相平分的四边形是平行四边形;(4)一组对边平行且相等的四边形是平行四边形;(5)两组对角分别相等 的四边形是平行四边形. 【详解】 .,, 四边形为平行四边形(两组对边分别相等的四边形是平行四边形); 故本选项能判定四边形为平行四边形,不合题意; .,, 四边形为平行四边形(两组对角分别相等的四边形是平行四边形); 故本选项能判定四边形为平行四边形,不合题意; .,, 四边形为平行四边形(对角线互相平分的四边形是平行四边形); 故本选项能判定四边形为平行四边形,不合题意; .,不能判定四边形为平行四边形, 故此选项符合题意; 故选:. 【点睛】 本题考查平行四边形的判定定理,熟练掌握平行四边形的判定定理是解题关键. 4.C 解析:C 【解析】 【分析】 根据方差是用来衡量一组数据波动大小的量,故由甲、乙、丙的方差可作出判断. 【详解】 解:由于 , ∴成绩较稳定的是丙. 故选C. 【点睛】 本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定. 5.C 解析:C 【分析】 根据三角形的中位线定理和平行四边形的判定定理得到四边形EFGH是平行四边形,根据矩形的判定定理解答即可. 【详解】 解:∵E、F、G、H分别是四边形ABCD各边中点, ∴EH=BD,EH∥BD,FG=BD,FG∥BD, ∴EH=FG,EH∥FG, ∴四边形EFGH是平行四边形, 当AC⊥BD时,AC⊥EH, ∴EH⊥EF, ∴四边形EFGH为矩形, 故选:C. 【点睛】 本题考查的是三角形的中位线定理和矩形的判定定理,掌握三角形的中位线平行于第三边,并且等于第三边的一半是解题的关键. 6.C 解析:C 【解析】 【分析】 由平行四边形的性质和折叠的性质得出∠BFE=∠A=52°,∠FBE=∠ABE,由等腰三角形的性质和三角形的外角性质得出∠EDF=∠DEF=∠BFE=26°,由三角形内角和定理求出∠ABD=102°,即可得出∠ABE的度数. 【详解】 解:∵四边形ABCD是平行四边形, ∴∠A=∠C=52°, 由折叠的性质得:∠BFE=∠A=52°,∠FBE=∠ABE, ∵EF=DF, ∴∠EDF=∠DEF=∠BFE=26°, ∴∠ABD=180°-∠A-∠EDF=102°, ∴∠ABE=∠ABD=51°, 故选:C. 【点睛】 本题考查了平行四边形的性质、折叠的性质、等腰三角形的性质、三角形的外角性质、三角形内角和定理;熟练掌握平行四边形的性质和等腰三角形的性质是解决问题的关键. 7.B 解析:B 【解析】 【分析】 把圆柱的侧面展开,连接,利用勾股定理即可得出的长,即蚂蚁从点爬到点的最短距离. 【详解】 解:如图:展开后线段的长度是圆柱中半圆的周长, 圆柱底面直径、高,为的中点, , 在中,, 蚂蚁从点爬到点的最短距离为, 故选:. 【点睛】 本题考查的是平面展开最短路径问题,根据题意画出圆柱的侧面展开图,利用勾股定理求解是解答此题的关键. 8.C 解析:C 【分析】 如图(见解析),先画出图形,再根据定义求出两个临界位置时b的值,由此即可得. 【详解】 如图,过点B作直线的垂线,垂足为点D,连接OA,延长AB交直线于点C 由题意,有以下两个临界位置: ①点A到直线的距离等于 , 当直线经过原点O时,, 即为点A到直线的距离,此时 ②点B到直线的距离等于,即 轴 ,且点C的纵坐标与点A的纵坐标相同,即为1 是等腰直角三角形 点C的横坐标为 将点代入直线得: 解得 则b的取值范围是 故选:C. 【点睛】 本题考查了等腰直角三角形的判定与性质、一次函数的几何应用等知识点,理解新定义,求出两个临界位置时b的值是解题关键. 二、填空题 9. 【解析】 【分析】 根据二次根式被开放数为非负数,分式的分母不为零求解即可. 【详解】 解:∵二次根式有意义, ∴2-x>0,解得:x<2. 故答案为:x<2. 【点睛】 本题考查了二次根式有意义的条件,熟练掌握二次根式被开放数为非负数是解题的关键. 10.【解析】 【分析】 根据对角线的长度,利用面积公式即可求解. 【详解】 解:菱形的面积计算公式S=ab(a、b为菱形的对角线长) ∴菱形的面积S=×8×10=40, 故答案为: 40. 【点睛】 本题主要考查菱形的面积,掌握菱形的面积公式是解题的关键. 11.A 解析:144 【解析】 【分析】 根据勾股定理可直接求解. 【详解】 解:A所在正方形的面积为, 故答案为:144. 【点睛】 本题主要考查勾股定理,勾股定理:直角三角形中两直角边的平方和等于斜边的平方. 12.5 【分析】 先利用勾股定理求解 再利用矩形的性质求解 从而根据中位线的性质可得答案. 【详解】 解: 矩形,,, ,分别为,的中点, 故答案为: 【点睛】 本题考查的是矩形的性质,勾股定理的应用,三角形的中位线的性质,灵活应用以上知识是解题的关键. 13.B 解析: 【分析】 分别把B点和A点坐标代入y=kx(k≠0)可计算出对应的k的值,从而得到k的取值范围. 【详解】 解:∵直线y=kx(k≠0)与线段AB有交点, ∴当直线y=kx(k≠0)过B(-1,2)时,k值最小,则有-k=2,解得k=-2, 当直线y=kx(k≠0)过A(-3,2)时,k值最大,则-3k=2,解得k=, ∴k的取值范围为 故答案为: 【点睛】 本题考查了一次函数的应用和性质,解题的关键是运用数形结合的思想进行转化解题. 14.A 解析: 【分析】 根据矩形的性质可得∠ACB的度数,从而利用勾股定理可求出BC的长度. 【详解】 解:由题意得:∠ACB=30°,∠ABC=90°,在Rt△ABC中, AC=2AB=2, 由勾股定理得,BC=, 故答案为: 【点睛】 本题考查了矩形的性质,比较简单,解答本题的关键是求出∠ACB的度数. 15.【分析】 设,利用两个函数解析式求出B,C的坐标,然后求出AB的长度,再根据轴,轴,利用求出点的坐标,,再利用求出点,从而可得到结果; 【详解】 设, ∵直线与的交角内部作等腰,使,边轴,轴,点在 解析: 【分析】 设,利用两个函数解析式求出B,C的坐标,然后求出AB的长度,再根据轴,轴,利用求出点的坐标,,再利用求出点,从而可得到结果; 【详解】 设, ∵直线与的交角内部作等腰,使,边轴,轴,点在直线上, ∴, ∵点C在直线, ∴, 解得:, ∴等腰Rt△ABC的腰长为, ∴, ∴的坐标为, 设,则, ∵在直线上, ∴, 解得:, ∴等腰Rt△的腰长为, ∴, ∴, 设,则, ∵点在直线, ∴, 解得:, ∴等腰Rt△的腰长为, 以此类推, ,即等腰Rt△的腰长为, ,即等腰Rt△的腰长为, , ∴,即等腰Rt△的腰长为; 故答案是. 【点睛】 本题主要考查了坐标系中点的规律问题,准确计算是解题的关键. 16.【分析】 设,在中利用勾股定理求出x,再去证明BE=BF,再过点F作于点G,在中用勾股定理求EF长度. 【详解】 设,∵AD=BC=2,∴, ∵折叠,∴, 在中,, 得,解得, ∴, ∵折叠,∴, 解析: 【分析】 设,在中利用勾股定理求出x,再去证明BE=BF,再过点F作于点G,在中用勾股定理求EF长度. 【详解】 设,∵AD=BC=2,∴, ∵折叠,∴, 在中,, 得,解得, ∴, ∵折叠,∴, ∵,∴, ∴,∴, 如图,作于点G,则,, 在中,,. 故答案是:. 【点睛】 本题考查折叠问题,解题的关键是利用折叠的性质,以及勾股定理方程思想去求边长,再想办法做辅助线构造直角三角形求线段长度. 三、解答题 17.(1)-1+(2)(3)(4)0 【分析】 (1)利用多项式乘以多项式展开,然后合并即可; (2)把二次根式相乘化为最简二次根式即可; (3)把二次根式化为最简二次根式即可; (4)先把二次根式化为 解析:(1)-1+(2)(3)(4)0 【分析】 (1)利用多项式乘以多项式展开,然后合并即可; (2)把二次根式相乘化为最简二次根式即可; (3)把二次根式化为最简二次根式即可; (4)先把二次根式化为最简二次根式,然后合并即可. 【详解】 解:(1)(1+)(2﹣) =2-+2-3, =-1+ (2)(+)× =, = (3) = (4) = = =0 【点睛】 本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的加减乘除运算,再合并即可.在二次根式的混合运算中,要结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径. 18.(1)受影响,理由见解析;(2)15小时 【分析】 (1)过点作AC⊥BM,垂足为C,在Rt△ABC中,由题意可知∠ABC=30°,由此可以求出AC 的长度,然后和150km比较大小即可判断A城是否 解析:(1)受影响,理由见解析;(2)15小时 【分析】 (1)过点作AC⊥BM,垂足为C,在Rt△ABC中,由题意可知∠ABC=30°,由此可以求出AC 的长度,然后和150km比较大小即可判断A城是否受到这次沙尘暴的影响; (2)如图,设点E、F是以A为圆心,150km为半径的圆与BM的交点,根据勾股定理可以求出CE的长度,也就求出了EF的长度,然后除以沙尘暴的速度即可求出遭受影响的时间. 【详解】 解:(1)过点A作AC⊥BM,垂足为C, 在Rt△ABC中,由题意可知∠CBA=30°, ∴AC=AB=×240=120, ∵AC=120<150, ∴A城将受这次沙尘暴的影响. (2)设点E,F是以A为圆心,150km为半径的圆与MB的交点,连接AE,AF, 由题意得,,CE=90 ∴EF=2CE=2×90=180 180÷12=15(小时) ∴A城受沙尘暴影响的时间为15小时. 【点睛】 本题考查了直角三角形中30°的角所对的直角边等于斜边的一半及勾股定理的应用,正确理解题意,把握好题目的数量关系是解决问题的关键. 19.(1);(2)+1>;(3);(4)mn. 【解析】 【分析】 (1)利用分割法求出三角形面积即可. (2)构造三角形三边为,1,即可判断. (3)如图,欲求的最小值,相当于在x轴上取一点P(x,0 解析:(1);(2)+1>;(3);(4)mn. 【解析】 【分析】 (1)利用分割法求出三角形面积即可. (2)构造三角形三边为,1,即可判断. (3)如图,欲求的最小值,相当于在x轴上取一点P(x,0),到M(0,3),N(5,1)的距离和最小. (4)建立如图网格图,小长方形的从为m,宽为n,则QW=,TW=,QT=,利用分割法求解即可. 【详解】 解:(1)如图1中,S△ABC=3×4-×1×2-×1×4-×3×3=, 故答案为:. (2)如图2中,观察图象可知,DE=,EF=1,DF=. ∵DF+EF>DE, ∴+1>. (3)如图,欲求的最小值,相当于在x轴上取一点P(x,0)到M(0,3),N(5,1)的距离和最小. 作点M关于x轴的对称点M′,连接NM′,交x轴于P,此时PM+PN的值最小,最小值=. (4)建立如图网格图,小长方形的长为m,宽为n,则QW=,TW=,QT=, ∴S△QWT=4m×3n-×2m×n-×3m×3n-×4m×2n=mn. 故答案为:mn. 【点睛】 本题属于几何变换综合题,考查了三角形的面积,勾股定理等知识,解题的关键是学会;利用数形结合思想解决问题,学会用转化的思想解决问题. 20.(1)见解析;(2)25° 【分析】 (1)由题意可证四边形DFBE是平行四边形,且DE⊥AB,可得结论; (2)根据平行四边形的性质求得∠ADC=130°,DE=CD,再利用等腰三角形的性质即可求 解析:(1)见解析;(2)25° 【分析】 (1)由题意可证四边形DFBE是平行四边形,且DE⊥AB,可得结论; (2)根据平行四边形的性质求得∠ADC=130°,DE=CD,再利用等腰三角形的性质即可求解. 【详解】 (1)证明:在▱ABCD中,AD∥BC,AD=BC, ∴ED∥BF. ∵ED=AD−AE,BF=BC−CF,AE=CF, ∴ED=BF. ∴四边形BFDE是平行四边形. ∵DF⊥BC, ∴∠DFB=90°, ∴四边形BFDE是矩形; (2)解:在▱ABCD中,AB=CD,∠ABC=∠ADC. ∵DE=AB,∠ABC=130°, ∴DE=CD,∠ADC=130°. ∴∠DEC=×(180°−130°)=25°. 【点睛】 本题考查了矩形的判定,平行四边形的性质,运用等腰三角形的判定和性质解决问题是本题的关键. 21.(1) , ;(2) 【解析】 【分析】 (1)化简时,根据范例确定a,b值为3和1,化简时,根据范例确定a,b值为4和5,再根据范例求解.(2)化简时,根据范例确定a,b值为15和4,再根据范例求 解析:(1) , ;(2) 【解析】 【分析】 (1)化简时,根据范例确定a,b值为3和1,化简时,根据范例确定a,b值为4和5,再根据范例求解.(2)化简时,根据范例确定a,b值为15和4,再根据范例求解. 【详解】 解:(1)在中,m=4,n=3,由于3+1=4,3×1=3 即, ∴=; 首先把化为,这里m=9,n=20,由于4+5=9,4×5=20 即, ∴= (2)首先把化为,这里m=19,n=60,由于15+4=19,15×4=60 即, ∴= 【点睛】 本题考查了二次根式的化简,根据题中的范例把根号内的式子整理成完全平方的形式是解答此题的关键. 22.(1)y=x+,杆上秤砣到秤纽的水平距离为16厘米时,秤钩所挂物重是4.5斤;(2)0≤y≤13 【分析】 (1)画出各点,根据图象判断是一次函数,利用待定系数法求解析式,代入数值计算即可; (2) 解析:(1)y=x+,杆上秤砣到秤纽的水平距离为16厘米时,秤钩所挂物重是4.5斤;(2)0≤y≤13 【分析】 (1)画出各点,根据图象判断是一次函数,利用待定系数法求解析式,代入数值计算即可; (2)把把x=50代入解析式,求出最大物重即可确定范围. 【详解】 解:(1)描点如图所示,这些点在一条直线上,故x,y的函数关系是一次函数, 设x,y的函数关系式:y=kx+b, ∵当x=2时,y=1;x=4时,y=1.5; ∴, 解得k=,b=, ∴x,y的函数关系式:y=x+, 把x=16代入:y=x+, 得y=4.5, ∴杆上秤砣到秤纽的水平距离为16厘米时,秤钩所挂物重是4.5斤; (2)把x=50代入y=x+, 得y=13, ∴0≤y≤13, ∴这杆秤的可称物重范围是0≤y≤13. 【点睛】 本题考查了一次函数的应用,掌握一次函数解析式的求法是解题关键. 23.(1) (2) (3)2或或4 【分析】 (1)由勾股定理可求出答案; (2)延长AF,过点D作射线AF的垂线,垂足为H,设AH=DH=x,在Rt△AHD中,得出x2+x2=42,解方程 解析:(1) (2) (3)2或或4 【分析】 (1)由勾股定理可求出答案; (2)延长AF,过点D作射线AF的垂线,垂足为H,设AH=DH=x,在Rt△AHD中,得出x2+x2=42,解方程求出x即可得出答案; (3)分AF=DF,AF=AD,AD=DF三种情况,由正方形的性质及直角三角形的性质可得出答案. 【详解】 解:(1)当t=1时,AE=1, ∵四边形AEFG是正方形, ∴AG=FG=AE=1,∠G=90°, ∴BF===, (2)如图1,延长AF,过点D作射线AF的垂线,垂足为H, ∵四边形AGFE是正方形, ∴AE=EF,∠AEF=90°, ∴∠EAF=45°, ∵DH⊥AH, ∴∠AHD=90°,∠ADH=45°=∠EAF, ∴AH=DH, 设AH=DH=x, ∵在Rt△AHD中,∠AHD=90°, ∴x2+x2=42, 解得x1=﹣2(舍去),x2=2, ∴D、F两点之间的最小距离为2; (3)当AF=DF时,由(2)知,点F与点H重合,过H作HK⊥AD于K,如图2, ∵AH=DH,HK⊥AD, ∴AK==2, ∴t=2. 当AF=AD=4时,设AE=EF=x, ∵在Rt△AEF中,∠AEF=90°, ∴x2+x2=42, 解得x1=﹣2(舍去),x2=2, ∴AE=2, 即t=2. 当AD=DF=4时,点E与D重合,t=4, 综上所述,t为2或2或4. 【点睛】 本题是四边形综合题,考查了勾股定理,正方形的性质,等腰三角形的性质等知识,解题的关键是熟练掌握正方形的性质,学会用分类讨论的思想思考问题. 24.(1)A(﹣1,0),D(0,5);(2)d=(m﹣2);(3)点P的坐标为(3,4). 【解析】 【分析】 (1)分别令直线y=x+1,直线y=-x+5x0,y=0,即可求得A点坐标和D点坐标; 解析:(1)A(﹣1,0),D(0,5);(2)d=(m﹣2);(3)点P的坐标为(3,4). 【解析】 【分析】 (1)分别令直线y=x+1,直线y=-x+5x0,y=0,即可求得A点坐标和D点坐标; (2))过点P作PM⊥x轴,交CD于F,M是垂足,先求出P、F的坐标,即可求出PE=2m4,再通过已知和辅助线判断△PEF是等腰直角三角形,从而得出PE=PF,即可得出结论; (3)先过点C作CN⊥DP,交DP的延长线于点N,连接OP,ON,过O作OG⊥ON,交PD的延长线于G,然后证明△ODG≌△OCN,再证明△OCN≌△OPN,得出OP=5,在直角三角形OMP中用勾股定理求解即可. 【详解】 解:(1)∵直线y=x+1分别交x轴、y轴于点A、B, ∴令x=0,则y=1,令y=0,则x=﹣1, ∴A(﹣1,0),B(0,1), 又∵直线y=﹣x+5分别交x轴、y轴于点C、D, ∴令x=0,则y=5,令y=0,则x=5, ∴C(5,0),D(0,5) ∴A(﹣1,0),D(0,5); (2)过点P作PM⊥x轴,交CD于F,M是垂足,如图所示, 由(1)知OA=OB,OC=OD, ∴∠ABO=∠DCO=45°, ∴△AEC为等腰直角三角形, ∴∠PEF=90°, 又∵∠DCO=45°, ∴∠EFP=∠MFC=45°, ∴△PEF为等腰直角三角形, ∴PE=EF=PF, ∵P在直线y=x+1上,P的横坐标为m, ∴P(m,m+1), F在直线y=﹣x+5上,F的横坐标为m, ∴F(m,﹣m+5), ∴PF=m+1﹣(﹣m+5)=m+1+m﹣5=2m﹣4, ∴d=PE=PF=(2m﹣4)=(m﹣2); (3)过点C作CN⊥DP,交DP的延长线于点N,连接OP,ON, 过O作OG⊥ON,交PD的延长线于G,如图所示, ∵∠DOC=∠CND=90°, ∴∠ODN+∠OCN=180°, 又∵∠ODG+∠ODN=180°, ∴∠ODG=∠OCN, ∵∠DOG=90°﹣∠DON,∠CON=90°﹣∠DON, ∴∠DOG=∠CON, 在△ODG和△OCN中, ∴△ODG≌△OCN(ASA), ∴OG=ON, ∴∠ONG=∠OGN=45°, ∴∠CNO=∠PNO=45°, ∵∠CPD=135°,CN⊥DP, ∴∠CPN=45°, ∴∠PCN=45°, ∴NP=NC, 在△OCN和△OPN中, , ∴△OCN≌△OPN(SAS), ∴OP=OC=5, 在Rt△OPM中, OP2=OM2+MP2, ∴52=m2+(m+1)2, 解得:m=3或m=﹣4(舍去), ∴m+1=4, ∴点P的坐标为(3,4). 【点睛】 此题考查了一次函数与坐标轴的交点,勾股定理,坐标与图形性质,等腰直角三角形的判定与性质,关键是通过作辅助线证明三角形全等,把条件转化到直角三角形OPM中. 25.(1)作图见解析;(2)①见解析;②数量关系为:或.理由见解析; 【分析】 (1)按照题意,尺规作图即可; (2)连接PE,先证明PQ垂直平分BE,得到PB=PE,再证明,得到,利用在直角三角形中, 解析:(1)作图见解析;(2)①见解析;②数量关系为:或.理由见解析; 【分析】 (1)按照题意,尺规作图即可; (2)连接PE,先证明PQ垂直平分BE,得到PB=PE,再证明,得到,利用在直角三角形中,30°所对的直角边等于斜边的一半,即可解答; (3)NQ=2MQ或NQ=MQ,分两种情况讨论,作辅助线,证明,即可解答. 【详解】 (1)如图1,分别以点、为圆心,长为半径作弧交正方形内部于点,连接并延长交边于点; 图1 (2)①连接,如图2, 图2 点是的中点, 垂直平分. , , , , , , . ②数量关系为:或. 理由如下,分两种情况: I、如图3所示,过点作于点交于点,则. 图3 正方形中,, . 在和中, . . 又, , .. . Ⅱ、如图4所示,过点作于点交于点,则. 图4 同理可证. 此时. 又,. . ,. 【点睛】 本题为正方形和三角形变化综合题,难度较大,熟练掌握相关性质定理以及分类讨论思想是解答本题的关键. 26.(1);(2);(3)见解析 【分析】 (1)利用勾股定理求出BC,再利用面积法求出AE即可. (2)如图2中,过点作于点,先求得,根据含30度角的直角三角形的性质求得,设,勾股定理求得进而求得,利 解析:(1);(2);(3)见解析 【分析】 (1)利用勾股定理求出BC,再利用面积法求出AE即可. (2)如图2中,过点作于点,先求得,根据含30度角的直角三角形的性质求得,设,勾股定理求得进而求得,利用三角形面积公式即可求得CEF的面积; (3)如图3中,过A点作AM⊥CD于点M,与BC交于点N,连接DN,证明△AMF≌△DMN(ASA),推出AF=DN=CN,再证明△APF≌△DBN(SAS),可得结论. 【详解】 (1)∵AB=2AC,AC=8, ∴AB=16, ∵∠BAC=90°, ∴BC=, ∵AE⊥BC, ∴S△ABC=, ∴AE=. (2)如图,过点作于点,则, ∠B=30°,,, ,, , , AE⊥BC, , 设,则,, , , , , 解得 (3)证明:如图3中,过A点作AM⊥CD于点M,与BC交于点N,连接DN. ∵∠BAC=90°,AC=AD, ∴AM⊥CD,AM=DM=CM,∠DAM=∠CAM=∠ADM=∠ACD=45°, ∴DN=CN, ∴∠NDM=∠NCM, ∵AE⊥BC, ∴∠ECF+∠EFC=∠MAF+∠AFM=90°, ∵∠AFM=∠EFC, ∴∠MAF=∠ECF, ∴∠MAF=∠MDN, ∵∠AMF=∠DMN, ∴△AMF≌△DMN(ASA), ∴AF=DN=CN, ∵∠BAC=90°,AC=AD, ∴∠DAM=∠CAM=∠ADM=∠ACD=45°, ∴∠NAP=∠CDB=135°, ∵∠MAF=∠MDN, ∴∠PAF=∠BDN, ∵AP=DB, ∴△APF≌△DBN(SAS), ∴PF=BN, ∵AF=CN, ∴PF+AF=CN+BN, 即PF+AF=BC. 【点睛】 考查了全等三角形的判定和性质,解直角三角形等知识,解题的关键是学会利用参数构建方程解决问题,学会添加常用辅助线,构造全等三角形是解题的关键.- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 人教版八 年级 下册 数学 永州 期末试卷 复习 练习 Word 答案
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【精****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【精****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【精****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【精****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文